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Abstract

Ecological intensification has been proposed as an alternative paradigm for intensive agri-

culture to boost yield sustainably through utilizing ecosystem services. A prerequisite to

achieving this is to understand the relations between multiple ecosystem services and pro-

duction, while taking growth conditions such as nutrient availability into consideration. Here,

we conducted a pot-field experiment to study the interactive effects of soil organic matter

(SOM) content and arbuscular mycorrhizal fungi (AMF) inoculation on the production of

raspberry (Rubus idaeus L.) under four levels of fertilizer application. Raspberry flower num-

ber, fruit number and yield only significantly increased with fertilizer inputs but were not

impacted by SOM content or AMF inoculation. Fruit set and single berry weight were influ-

enced by both SOM content and AMF inoculation, in complex three-way interactions with

fertilizer application. Fruit set of AMF inoculated plants increased with fertilizer inputs in low

SOM soils, but decreased with fertilizer inputs under high SOM soils, with the highest fruit

set occurring at no fertilizer inputs. In low SOM soils, the relation between single berry

weight and fertilizer application was more pronounced in inoculated plants than in non-inoc-

ulated plants, while in high SOM soils the relative benefits of AMF inoculation on single

berry weight decreased with increasing fertilizer inputs. We attribute the lack of effects of

AMF inoculation and SOM content on flower number, fruit number and yield mainly to poten-

tial tradeoffs between the experimental variables that all influence resource uptake by plant

root systems. Our results suggest that potentially beneficial effects of AMF and SOM can be

offset by each other, probably driven by the dynamic relations between AMF and the host

plants. The findings reveal fundamental implications for managing AMF inoculation and

SOM management simultaneously in real-world agricultural systems.

Introduction

Conventional agricultural intensification cannot meet the twofold challenge facing agriculture:

increasing yield to feed the growing world population while minimizing negative externalities
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on the environment [1,2]. It is increasingly difficult to further promote productivity through

mainstream intensive farming practices [3,4], because the production is increasingly limited

by critical natural ecosystem services, such as insect pollination [5,6] and soil formation [7].

Additionally, these intensive farming practices have caused severe environmental problems,

such as soil and water pollution [8,9] and biodiversity loss [10,11], which are threatening

human-wellbeing [3]. Ecological intensification has been proposed as a promising alternative

for conventional intensive agriculture. It is based on managing multiple ecosystem services to

complement and/or replace artificial inputs to maintain or enhance productivity while reduc-

ing negative environmental impacts [12,13]. Ecological intensification has been advocated as

an environmentally friendly way towards food security [14,15] and an increasing number of

studies provide proof of concept for this paradigm [16–18]. There are still knowledge gaps

between theory and practice, however, which limit the adoption of ecological intensification

by the agricultural sector [13]. For example, when multiple ecosystem services are managed in

conjunction, their effects on production could interact synergistically, negatively or not at all

[19,20]. Understanding whether and how different ecosystem services interact in shaping crop

production is of importance to maximize the benefits of ecological intensification and promote

its adoption [13].

Soil organic matter (SOM) and arbuscular mycorrhizal fungi (AMF) are two natural factors

that provide or influence vital ecosystem services in cropping systems [12,17,21]. SOM is often

used as a proxy for soil services, as it is able to mediate the flow of soil ecosystem services

[12,22], and it strongly affects almost all soil properties [23]. Examples include soil structural

stability and water-holding capacity (physical properties), cation exchange capacity and pH

regulation (chemical properties), and nutrient supply for microbial communities (biological

properties) [23]. SOM content, therefore, often relates positively to crop production [17,24].

AMF are widespread soil microorganisms from the phylum Glomeromycota, and they can

form symbiotic associations with the majority of the cultivated crops [25,26]. AMF develop an

extensive hyphal network through proliferating their hyphae inside plant roots (intracellular

hyphae) as well as within the soil (extraradical hyphae), thus acting as a bridge between plant

and soil [27–29]. AMF mainly help their host plants exploit poorly mobile ions (notably inor-

ganic phosphate) that are beyond the root zone, in exchange for photosynthetic products from

the host for metabolic needs [29]. Besides assisting with resource uptake, AMF colonization

can also benefit the hosts by enhancing their tolerance to abiotic and biotic stresses, such as

drought, salinity, diseases and pathogens [30,31]. Indirectly, AMF can benefit the hosts via

improving soil structure and soil aggregation [32]. Inoculation of AMF has been found to pro-

mote crop yield [21,33,34], especially where the indigenous AMF communities have been

degraded by agricultural practices [35,36].

A wealth of studies have shown that AMF and SOM can influence each other [37,38]. AMF

are able to positively influence SOM content directly, through producing glomalin-related soil

proteins [39,40], which are significant components of SOM [41,42]. Additionally, AMF has

been found to affect the decomposition of SOM negatively [38] or positively [43]. On the other

hand, various organic compounds released from the decomposition of SOM have been shown

to influence AMF growth and activity, either positively [44] or negatively [45]. However, as far

as we know, so far no studies ever clearly tested whether and how their effects on crop produc-

tion interact. Furthermore, agricultural practices, in particular artificial fertilizer application,

can influence the effects of both AMF [46] and SOM [24] as it also influences nutrient avail-

ability of crop plants. It is therefore essential to take fertilizer inputs into consideration when

test the interacting effects of AMF and SOM on crop production. Here, we examined (1) the

combined effects of AMF inoculation and SOM content on the production of raspberry

(Rubus idaeus L.) and (2) how they are affected by fertilizer application.
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Materials and methods

(a) Study system

Raspberry was used as the study crop, which is an important perennial fruit crop, with growing

consumer interest due to its health benefits and flavours [47,48]. We selected the commercial

cultivar ‘Tulameen’, as it is among the most popular raspberry cultivars in a range of climatic

conditions [49] and is locally available. The study was conducted in an experimental field of

Wageningen University & Research in the Netherlands, from August 2019 to September 2020.

(b) Experimental setup

We adopted a randomized complete block design to account for potential confounding gradi-

ents in the experimental field, and we combined all of the following three crossed factors: (i)

low SOM content vs high SOM content, (ii) AMF inoculated vs non-inoculated and (iii) four

levels of fertilizer application (i.e. 16 plants per block). The SOM treatments were obtained by

mixing different proportions of two types of sandy soils which had different SOM content

(0.3% vs 4.6%) resulting in either 1.95% SOM content soils (‘low SOM’ treatment; available N:

14.0 mg/kg, available P: 0.6 mg/kg, available K: 19.4 mg/kg, pH: 6.6) or 3.96% SOM content

soils (‘high SOM’ treatment; available N: 43.1 mg/kg, available P: 0.6 mg/kg, available K: 26.6

mg/kg, pH: 5.9). As for AMF treatments, we used Rhizophagus intraradices inoculum

(MYKOS1 Xtreme Gardening, Canada: 300 propagules/gram). Half of the original inoculum

was autoclaved at 121˚C for two hours as sterilized inoculum for non-inoculated treatments

[50]. The four levels of fertilizer treatments represented the equivalent 0, 33, 66 and 99 kg ha-1

of N per year, ranging from no to optimum N inputs [51]. The fertilizer used was a compound

fertilizer (Fertilizers1Cropsolutions, The Netherlands), containing 10.80% N, 13.44% K and

5.89% P.

We purchased 160 raspberry cuttings from a local supplier, with an average height of ca. 60

cm. To avoid the influence from the original peaty substrate, we carefully washed away the soil

adhering to the roots in early August 2019. We added the recommended dose of AMF inocu-

lum (25 grams) or an equal volume of sterilized inoculum evenly to the washed roots of the

plants. The plants were then transplanted to a 10-litre plastic pot (upper diameter 28 cm, holes

in the bottom for drainage but covered with cloth to minimize root growth out of the pot) and

filled with low or high SOM soils according to the experimental design. However, higher than

expected mortality occurred, possibly due to the cuttings being damaged during the roots

washing process combined with the late summer heat. Only 56 plants survived out of the 160

plants, and 48 of them were of good health and thus were selected for further experimentation

in three blocks. To carry out the experiment with sufficient replication, we additionally pur-

chased another 160 raspberry cuttings in early October 2019. Because 60 cm cuttings were no

longer available, we used plants with an average height of ca. 25 cm. Strictly following the ear-

lier described protocol and using the same materials, the new batch of cuttings were washed,

inoculated and transplanted into the low or high SOM soils. In this round, 110 out of the 160

new cuttings survived. These 110 plants were arranged into seven blocks. In total, the experi-

ment therefore started out with 158 potted raspberry plants in 10 blocks. Plants with different

treatments were placed randomly within each block. Plants were spaced with one meter within

and between rows. Pots were dug into the soil to protect the roots from extremely high or low

temperatures. The fertilizer treatments were applied by splitting the annual dose (0, 33, 66 and

99 kg ha-1 of N) into three applications: the first one in the autumn, the second one at bud

break in early spring of the following year and the last one at early flowering. All plants

received equal and ample irrigation (depending on the weather conditions), and weeds in the
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pots were regularly removed. Prior to berry ripening, all plants were bagged with mesh bags to

avoid predation by animals. We harvested and weighed the ripe berries when they had just

turned bright red. We summed up the berry weight from the same plant to get the total yield

and fruit number. Additionally, we carefully counted the wilted or aborted flowers that failed

to develop into fruits, which in combination with the fruit number allowed us to estimate the

flower number. Because we could only have taken root samples at the end of the experiment,

and earlier analyses showed AMF colonization rate of raspberry plants from different treat-

ments did not differ after almost a year’s growth [52], we did not measure AMF root coloniza-

tion rates.

(c) Data analysis

Until harvest, 41 plants from the first batch survived and developed fruits; all 110 plants from

the second batch survived, but only 25 of them developed fruits. Since we mainly focus on the

effects of treatments on production, only the plants that produced fruits were involved in the

data analysis (sample size n = 66, S1 Table). We ran separate linear mixed-effects models using

the function lme() of the nlme package in R [53] to study the interacting effects of SOM, AMF

and fertilizer on flower number, fruit number, single berry weight (g/fruit) and total yield (g/

plant), and included “block” as a random factor. We included the origins of the plants as a cov-

ariable in all models, to account for differences between plants from the first and the second

batch. Because the fruit set followed a binomial distribution, we used the function glmmTMB

() to run the same models assuming a binomial distribution [54]. Single berry weight was aver-

aged per plant to avoid pseudoreplication, and response variables were transformed if neces-

sary to meet the normality and homoscedasticity assumptions of the models.

Full models were simplified by removing non-significant predictors (backward elimina-

tion) using likelihood ratio tests with removal thresholds of p> 0.05, until the resulting mini-

mum adequate model consisted only of variables that contributed significantly to the outcome

[55,56].

Results

The number of flowers per plant was only influenced by fertilizer inputs (Table 1). Plants

receiving 99 kg N�ha-1 produced 32% more flowers than plants without any fertilizer inputs

(Fig 1A). Similarly, fruit number and total yield per plant were only affected by fertilizer inputs

(Table 1). The fruit number of the plants grown with the highest fertilizer inputs was 69%

higher than that of plants receiving no fertilizer (Fig 1B). Increasing fertilizer inputs from 0 to

Table 1. Effects of arbuscular mycorrhizal fungi (AMF; inoculated vs non-inoculated), soil organic matter (high vs low SOM content) and fertilizer application

rates (0, 33, 66, 99 kg N�ha-1�year-1) on raspberry fruit production variables (n = 66). Bold values represent significant effects (P<0.05).

Flower number (sqrt

transformed)

Fruit set Fruit number

(ln transformed)

Single berry weight Yield

(ln transformed)

χ 2
(1) P χ 2

(1) P χ 2
(1) P χ 2

(1) P χ 2
(1) P

AMF 0.185 0.667 1.614 0.204 0.232 0.630 2.070 0.150 0.005 0.943

SOM 0.601 0.438 22.136 0.000 0.936 0.333 1.304 0.254 0.137 0.711

Fertilizer 5.107 0.024 23.883 0.000 6.433 0.011 10.593 0.001 14.914 0.000

Origin 29.620 0.000 17.136 0.000 27.739 0.000 13.807 0.000 28.936 0.000

AMF:fertilizer 0.014 0.907 13.303 0.000 0.671 0.413 0.670 0.413 0.241 0.624

AMF:SOM 0.033 0.855 1.054 0.305 0.292 0.589 3.356 0.067 0.246 0.620

SOM:fertilizer 1.132 0.287 0.715 0.398 0.008 0.928 0.073 0.787 0.019 0.891

AMF:SOM:fertilizer 0.768 0.381 16.053 0.000 0.047 0.829 4.722 0.030 1.438 0.230

https://doi.org/10.1371/journal.pone.0269751.t001
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99 kg N�ha-1 increased yield from 25.7 g to 63.5 g (Fig 1C). SOM content or AMF inoculation

did not affect these yield parameters, nor did they influence the effect of fertilizer (no signifi-

cant interactions; Table 1).

A three-way interaction was found between the effects of AMF inoculation, SOM content

and fertilizer inputs on fruit set (Table 1). In low SOM soils, the fruit set increased with

increasing fertilizer inputs, for both AMF inoculated and non-inoculated plants (Fig 2A). In

high SOM soils, the fruit set of non-inoculated plants showed a positive relationship with fer-

tilizer inputs, while the fruit set of inoculated plants was highest in unfertilized soils and

decreased with increasing fertilizer inputs (Fig 2B).

There was also a three-way interaction between the three experimental variables on the sin-

gle berry weight per plant (Table 1). In low SOM soils, the relationship with fertilizer applica-

tion rate was much more pronounced for AMF inoculated plants than for non-inoculated

plants (Fig 3A). In high SOM soils, single berry weight was consistently higher in AMF inocu-

lated plants than in non-inoculated plants, although the difference seemed to decrease with

increasing fertilizer inputs (Fig 3B).

Fig 1. Effects of fertilizer application rates on flower number (a), fruit number (b) and yield (c) per plant. Graphs show conditional partial regression plots

based on the minimum adequate models. Shadings show the 95% confidence interval, and points represent partial residuals.

https://doi.org/10.1371/journal.pone.0269751.g001

Fig 2. Interactive effects of AMF inoculation, SOM and fertilizer application rates on fruit set per plant. Graphs show conditional partial regression plots

based on the minimum adequate model; shadings show the 95% confidence interval, and points represent partial residuals.

https://doi.org/10.1371/journal.pone.0269751.g002
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Discussion

In this study, we found that the numbers of flowers and fruit, as well as the most important

parameter from the perspective of farmers, yield per plant, were only driven by fertilizer inputs

and were not significantly impacted by AMF inoculation or SOM content. The positive rela-

tion between fertilizer application and fruit set in AMF inoculated plants in low SOM soils,

changed into a negative relation in high SOM soils. Similarly, at low SOM the relation between

fertilizer application and single berry weight was more pronounced in inoculated plants than

in non-inoculated plants, but in high SOM soils it was the other way around. This suggests

that the effects of AMF and SOM on these yield parameters cancel each other out and as a

result did not contribute to the final yield.

At first glance, the lack of effects of AMF inoculation and SOM content on yield, flower

number and fruit number, may seem at odds with results of earlier studies done using this

same study system. For example, Chen, Kleijn (52) found significant positive effects of AMF

inoculation on raspberry flower number, fruit number and yield. Furthermore, in wild rasp-

berry populations, we found that yield was positively related to the SOM content (Chen K.

et al., unpublished results, January 2022). However, the first study was only done at low SOM

content levels (1.95%; the same as the current low SOM content treatment), while the second

study was exclusively done in high SOM content soils (mean 7.4%, range 3.2–13.1%), and nei-

ther of these studies simultaneously manipulated both SOM content and AMF inoculation.

Potential tradeoffs between the effects of the two factors on raspberry yield would therefore

not become apparent in these studies. This is further supported by the fact that Fig 3A is almost

an exact copy of Fig 3 in [52]. Both these graphs show the effects of fertilizer and AMF on sin-

gle berry weight under the same low SOM content levels. Furthermore, in our previous experi-

ments we showed that part of the effects of AMF and SOM could be explained by their positive

influence on flower visitation rate by pollinators [52,57]. Because pollinators were not consid-

ered in this study, this may have left unexplained any potential indirect effects of AMF inocula-

tion and SOM content on flower visitation rate and consequently the final yield.

In low SOM soils, AMF-inoculated plants produced smaller raspberries than the non-inoc-

ulated plants under low fertilizer inputs, while the beneficial effects of AMF inoculation on

Fig 3. Interactive effects of AMF inoculation, SOM and fertilizer application rates on average single berry weight (g) per plant. Graphs show conditional

partial regression plots based on the minimum adequate model; shadings show the 95% confidence interval, and points represent partial residuals.

https://doi.org/10.1371/journal.pone.0269751.g003
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berry weight only became apparent at adequate fertilizer inputs. One possible explanation for

this is that under nutrient deficiency AMF have to compete for the limiting nitrogen for their

hyphae development against the host plants, reducing the resources that host plants can allo-

cate to fruit development [58,59]. In high SOM soils and under low fertilizer inputs, AMF

inoculation increased both single berry weight and fruit set compared to those of the non-

inoculated treatments (Figs 2B and 3B), likely because AMF could help acquire nutrients from

soil organic matter to compensate for the effects of artificial inputs [60]. However, the benefits

of AMF inoculation tended to decrease (Fig 3B) or even change into parasitic effects (Fig 2B)

with increasing fertilizer application rate, a pattern found in previous studies as well [61–63].

The demonstrated tradeoff between effects of AMF inoculation and SOM content at different

fertilizer application rates on berry weight and fruit set might explain why we didn’t observe

any effect of these factors on flower number, fruit number and yield. The negative interaction

could be explained by the cost-benefit relation between AMF and the host plants [61–63].

Host plants share up to 20% of total photosynthetic carbon with AMF, as the cost to maintain

the symbiotic associations [64], while receiving mineral nutrients and other resources

absorbed by AMF as the benefit [29]. The cost-benefit relations vary from positive to negative,

depending on the environmental context and the identity of AMF and the host plants [65].

Under high fertilizer inputs and high SOM soils, the host plants might obtain adequate nutri-

ents via their own root systems [66,67], which decreases the dependence on the assistance of

AMF over nutrients acquisition. However, if the associated cost does not decrease, or less

strongly, this may result in a net negative benefit which may explain the decreasing benefits of

AMF for single berry weight and fruit set with increasing fertilizer levels in the present study.

In addition, the decreasing benefits of AMF inoculation might also be explained by the direct

suppressing effects of the host plants on AMF growth. When plants obtain sufficient nutrients

and water via their own root system in high nutrients soils (high SOM and fertilizer in this

study), they may suppress AMF development [68]. Consequently, the suppressed AMF con-

tributed less to production and this might indirectly constrain the benefits delivery of SOM

since AMF can enhance the decomposition of SOM [69,70].

Although our study is based on only one study in one crop species, it is the first one to

explore the interactive effects of AMF and SOM under a range of fertilizer application rates.

Our results provide an indication that the benefits of AMF and SOM on crop yield offset each

other. This finding contributes to the understanding of the dynamic effects of AMF inocula-

tion on crop production. For example, Yamawaki, Matsumura [71] found significant positive

effects of AMF inoculation on turmeric (Curcuma longa L.) production under greenhouse

conditions but no effects were found under field conditions, and they attributed the differing

outcomes to the influence of indigenous AMF. However, the lack of beneficial effects of AMF

inoculation under field conditions could also be caused by tradeoffs due to the interactive

effects between AMF, SOM and fertilizer, according to our findings. Therefore, our findings

may have important implications for applying AMF as biofertilizers in practical cropping sys-

tems, which has been increasingly proposed as a key solution for accomplishing sustainable

agriculture [72,73]. For example, when SOM content is high, inoculating AMF might not be

such a good idea as when SOM content is low, unless with reduced fertilizer inputs. This study

starts the exploration of the combined effects of AMF and SOM on raspberry production

under several fertilizer inputs, and further research over a wider range of contexts (e.g. crop,

soil type, climate, irrigation and fungicides) is needed to identify their interactive effects under

real-world conditions.
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