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Abstract The clinical development of selective alpha-7

nicotinic acetylcholine receptor (a7 nAChR) agonists has

hitherto been focused on disorders characterized by cog-

nitive deficits (e.g., Alzheimer’s disease, schizophrenia).

However, a7 nAChRs are also widely expressed by cells of

the immune system and by cells with a secondary role in

pathogen defense. Activation of a7 nAChRs leads to an

anti-inflammatory effect. Since sterile inflammation is a

frequently observed phenomenon in both psychiatric dis-

orders (e.g., schizophrenia, melancholic and bipolar

depression) and neurological disorders (e.g., Alzheimer’s

disease, Parkinson’s disease, and multiple sclerosis), a7
nAChR agonists might show beneficial effects in these

central nervous system disorders. In the current review, we

summarize information on receptor expression, the intra-

cellular signaling pathways they modulate and reasons for

receptor dysfunction. Information from tobacco smoking,

vagus nerve stimulation, and cholinesterase inhibition is

used to evaluate the therapeutic potential of selective a7
nAChR agonists in these inflammation-related disorders.
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Introduction

Alpha-7 nicotinic acetylcholine receptors (a7 nAChRs) are

expressed in the central nervous system (CNS) and are

thought to play a role in a wide variety of psychiatric and

neurological disorders. Peripheral and CNS immune cells

strongly express a7 nAChRs; activation of a7 nAChRs on

these cells has been shown to suppress inflammatory pro-

cesses. Since inflammation is involved in several

psychiatric disorders, as well as in basically all neurolog-

ical disorders, specific a7 nAChR agonists could display

therapeutic effects. In the current review, we summarize

information on receptor expression, the intracellular sig-

naling pathways modulated by these receptors, reasons for

receptor dysfunction, clinical evidence for altered a7
nAChRs, and we conclude with a discussion about poten-

tial indications for selective a7 nAChRs agonists.

Expression of a7 nAChR

Distinct from most nicotinic acetylcholine receptors

(nAChR), the a7-subtype mainly forms homomeric, rather

than heteromeric pentamers. In the central nervous system,

including the human brain, such nicotinic-a7 homomeric

pentamers are expressed by pyramidal and interneurons [1–

3]. Apart from neurons, immature (doublecortin positive)

granule cells [4], astrocytes [5–7], and microglia cells [8–

13] also express the a7 nAChR. Finally, NG2-positive cells
(these are oligodendrocyte precursors) also express a7
nAChRs [5, 14]. The dogma that a7 nAChRs exclusively

assemble as homomeric pentamers was recently overturned

by the discovery that a7 subunits also form heteromeric

pentameric ion channels with b2 subunits [15]. Such het-

eromeric a7b2 channels were found on cholinergic
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projection neurons in mouse and human basal forebrain

[15, 16]. Concerning function, activation of a7 nAChRs

results in strong calcium and sodium influxes, which in the

case of a presynaptic location facilitates neurotransmitter

release [17, 18]. A postsynaptic localization on parvalbu-

min-positive GABA neurons suggests a role in

synchronized oscillatory output of pyramidal neurons.

Outside the brain, the receptor is expressed on several

cell types of the immune system. This includes monocytes

[19–21], dendritic cells [22], macrophages [23–26], T-cells

[27, 28], and B-cells [29, 30]. The receptor has also been

identified on additional cell types known to play a role in

the host’s defense against pathogenic organisms. Examples

are the microvascular endothelium [31], keratinocytes [32,

33], placenta [34], bronchial epithelial cells [35], platelets

[36], adipocytes [37], and synoviocytes [38]. During

wound healing, expression of a7 nAChRs is transiently

observed on fibrocytes and myofibroblasts in the wound

zones [39]. Completing this list, a7 nAChRs were detected

in mouse testes, in mouse and human sperm (where they

modify sperm motility [40]), in rat superior cervical gan-

glia [41], and in group-IV muscle afferent neurons [42].

Not unexpectedly, numerous cell lines endogenously

express a7 nAChR too. This includes rat PC12-cells [43],

human SH-SY5Y neuroblastoma cells [44, 45], mouse

RAW264.7 [46, 47], the human leukemic T-cell line

MOLT3 [48], the human monocyte U937 cell line [20, 49],

and immortalized human T-lymphocyte ‘Jurkat’ cells [27].

Recombinant expression has also been achieved in cell

lines that endogenously express the chaperones required for

a7 nAChR expression, e.g., SH-EP1 cells [50], SH-SY5Y

[51], or GH3 cells [52].

With respect to the above-listed localizations of a7
nAChR, a word of caution is needed, since some expres-

sion studies are confounded by the use of tools that also

detect a distinct, duplicated a7-like protein ‘dupa7’ [26,

53], by the use of antibodies which recognize cross-react-

ing epitopes [54] or by the use of the non-selective

radioligand MLA (besides a7 nAChRs this compound also

binds to nicotinic a3/a6b2b3* receptors, see [55]).

In addition to expression on the cell surface, an intra-

cellular localization of a7 nAChRs has been observed in

brain mitochondria [56]. In this organelle, the a7 nAChR

may assemble with b2 subunits where it presumably

influences pore formation and cytochrome-c release [57].

Intracellular signaling pathways

In mouse hippocampal neurons, a7 nAChRs are charac-

terized by rapid activation and desensitization. The

fractional calcium current (Pf) has been assessed and found

to be 6.1 [58]. This indicates that in neurons a7 nAChRs

have a special role in the modulation of intracellular cal-

cium, enabling substantial calcium entry at resting or

hyperpolarized membrane potential, which is different

compared to other nAChRs, but similar to NMDA recep-

tors at depolarized membrane potential. However, thus far,

it is not known if this also holds true for a7 nAChRs in

other cells (e.g., immune cells). The intracellular pathways

following a7 nAChR activation in non-neuronal cells

involve calcium influx through the channel pore, which

then triggers calcium-induced calcium release from ryan-

odine- and IP3-dependent stores [10, 28, 59]. Further long-

lasting intracellular pathways involve activation of intra-

cellular phosphatases and kinases, which trigger signaling

events independent of an ion flux (which implies that the

a7 nAChR acts as metabotropic receptor) [60]. For

instance, activation of a7 nAChRs leads to stimulation of

adenylate cyclase-1 and thus to increases in cAMP levels

[61]. This in turn stimulates protein kinase A (PKA), which

may result in further signaling events such as CREB acti-

vation [61] and GSK3 inhibition [62]. Activation of the a7
nAChR on non-neuronal cells inhibited TLR3-, TLR4- or

TLR9-induced transcription and release of inflammatory

cytokines [9, 19, 21, 34, 47]. One of the intracellular sig-

naling cascades described in this context is a pathway that

involves JAK2-mediated tyrosine-phosphorylation of the

p85 subunit of PI3 K, activation of Akt and CREB, and

subsequent inhibition of (or competition with) NFjB [20,

25, 49, 63] (see Fig. 1). Egea and colleagues emphasize

that this pathway furthermore leads to activation of the

transcription factor Nrf2, which is important for tran-

scription of numerous anti-oxidative proteins and for the

induction of an anti-inflammatory phenotype of microglia

cells [64]. Alternatively, downstream signaling towards

NFjB may involve JAK2 activation of STAT3 [65–68]

(see Fig. 1). Finally, activation of a7 nAChRs can result in

inhibition of p38 MAP-kinase [8, 10, 19]. A functional

consequence of this latter pathway is inhibition of the re-

lease of inflammatory mediators like TNFa and HMGB1

[8, 10, 19].

The anti-inflammatory activity of a7 nAChR
stimulation

As early as 1998, Sugano et al. [49] described that nicotine

displayed an anti-inflammatory activity involving inhibi-

tion of NFjB-signaling. Following this observation, it was

shown that the receptor responsible for this response was

the a7 nAChR subtype [20, 23, 24, 69, 70]. Moreover, it

was shown that the anti-inflammatory effect of electrical

stimulation of the vagus nerve was also mediated by the a7
nAChR [23, 24, 69]. Notably, after splenectomy the ben-

eficial effects of vagus nerve stimulation were lost [71], but
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some controversy still exists about the exact localization of

the a7 nAChRs involved in the response to vagus nerve

stimulation. The vagus nerve is supposed to activate the

celiac ganglion, which is the origin of the adrenergic

splenic nerve. According to one scenario, the splenic nerve

releases noradrenaline onto memory T-cells (CD4?

CD44high, CD62Llow), resulting in synthesis and release of

acetylcholine that activates a7 nAChRs on spleen-macro-

phages [69, 72, 73]. The alternative proposal assumes that

the a7 nAChRs are localized postsynaptically in the celiac

ganglion. This view is supported by data showing that

postganglionic stimulation of the splenic nerve still results

in an anti-inflammatory response, even in mice with a

genetic deletion of the a7 nAChR [74]. However, in a

critical review Martelli [75] proposes that efferent vagus

nerve stimulation achieves its anti-inflammatory effect via

a non-neuronal (humoral) pathway. It is evident that this is

an area that is still very much in development. Interest-

ingly, activation of glucocorticoid receptors increases the

expression of a7 nAChRs [76]. This implies that the anti-

inflammatory activity of glucocorticoids may include a

nicotinergic mechanism. Overall, given the expression

pattern, the cellular signaling cascades, and information

from vagus nerve stimulation, the data strongly indicate

that activation of the a7 nAChR suppresses the respon-

siveness of the immune system.

Surprisingly, whereas the activity of positive allosteric

modulators (PAMs) in animal models of learning/memory

or on evoked potentials is well documented (see [77] for a

recent review), there is a paucity of reports on their anti-

inflammatory activity. In this context, PNU-120596 has

been shown to attenuate TNFa and IL-6 in a rodent model

of inflammatory pain. These findings have been recently

corroborated with a different molecule (‘‘PAM-2,’’ [78]).

Along the same lines several reports have shown that a7
nAChR PAMs reduce brain injury and improve neurolog-

ical function after focal cerebral ischemia in rats [79–81].

Notably, the anti-inflammatory response to a7 nAChR

stimulation also occurs in the brain. Thus, activation of a7
nAChRs is known to alter the phenotype of both macro-

phages and microglia from an M1-like to an M2-like

phenotype [11, 19, 82, 83]. Consequently, any dysfunction

in the a7 nAChR and its signaling processes could tip the

balance towards more inflammation.

Reasons for dysfunction of the a7 nAChR

Dysfunction of a7 nAChRs may have a variety of causes.

For adequate membrane insertion, the a7 nAChR has to be

assembled first as a pentamer and is thereafter shuttled to

the plasma membrane. This process requires several

chaperone molecules such as RIC3, SLURP1, Lynx1,

EPHB2, or PICK1, and evidently, their dysfunction could

affect receptor level and function [1, 33, 48, 84–88]. In

addition, transcription of the a7 nAChR can be diminished

by heterozygotic or homozygotic 15q13.3 microdeletions

[89], by methylation of the promotor [90] or by MeCP2

(methyl CpG binding protein 2) dysfunction [91].

Moreover, activity of the a7 nAChR is modified by

phosphorylation. An as yet undefined tyrosine-phosphory-

lated protein was shown to inhibit the functional activity of

the a7 nAChR, whereas tyrosine kinase inhibition by

genistein enhanced surface expression of the a7 nAChR

[35, 37, 84, 92] or its function [51]. Serine-phosphorylation

of the a7 nAChR can influence function too. It has been

reported that activation of D1/D5 dopamine receptors

attenuated a7 nAChR currents via PKA-mediated phos-

phorylation of the serine residue 365 in the M3–M4

cytoplasmic loop of the channel [93]. Other possibilities

have been proposed as well. For instance, diminished sig-

naling of a7 nAChR might result from increased levels of

the purported endogenous a7 nAChR inhibitor, kynurenic

acid [94], though conflicting data have been reported too

[95]. Also cholinergic input may be dysfunctional [69], or
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Fig. 1 Schematic anti-inflammatory signaling pathways activated by

nAChR a7. Stimulation of nAChR a7 activates Jak2 leading to

inhibition of NFjB and GSK3 but also to CREB activation. A

separate signaling cascade involves activation of PKA and AKT

enabling the nuclear translocation of Nrf2 (NFE2L2), which drives

expression of HMOX1 (HO-1). This pathway elicits potent anti-

inflammatory and neuroprotective effects
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the signaling pathway downstream of the receptor may be

altered [27, 66, 92]. Furthermore, dysfunction of the a7
nAChR could result from the presence of the CHRFAM7-

gene. This gene encodes a dominant negative variant of the

a7 nAChR [26, 96] and is unique for humans [26, 97].

Transcripts, often described as ‘dupa7’, have been found in

the promyelocytic leukemia cell line HL-60 [26], mono-

cyte cell lines (THP1, U937, and Mono-Mac6 [98]), and

neuroblastoma cell lines (SH-SY5Y, IMR32 [98]). High

levels of dupa7 transcripts have also been described in

native immune cells such as peripheral blood monocytic

cells, lymphocytes and synoviocytes, and in lower amounts

also in human brain tissue [7, 26, 53].

Rapid metabolism of acetylcholine and receptor
desensitization

Cholinergic innervation in the brain arises mainly from two

sources. Cholinergic neurons from the medial septal

nucleus innervate the hippocampus [99], whereas cholin-

ergic nerves from the basal forebrain (including the nucleus

basalis Meynert) project to the cortex, amygdala, caudate

nucleus, putamen, and thalamus [100]. Acetylcholine

locally released by cholinergic neurons is assumed to cross

the synaptic cleft despite effective catabolism by choli-

nesterases [101]. However, it is less clear whether volume

transmission to extrasynaptic neuronal sites is sufficiently

high to lead to relevant a7 nAChR stimulation. Outside the

brain, high levels of cholinesterases are found in the blood

and therefore it has been questioned whether a7 nAChRs

on, for example, circulating immune cells will be exposed

to levels of acetylcholine that are sufficient for activation

[102]. Further doubts about the physiological relevance of

a7 nAChRs relate to their rapid desensitization [101, 103,

104]. However in the latter case, there are two counter-

arguments. In the first place, a7 nAChRs not only rapidly

desensitize, they also quickly recover [105]. The second

argument is that intracellular effects are presumably more

sustained and therefore could outlast receptor desensitiza-

tion. Vijayaraghavan et al. [6] provide yet one more piece

of information, which, in addition, addresses the issue of

volume transmission. The authors found that extracellular

levels of choline-acetyl transferase (ChAT) are actively

regulated. This means that, despite ongoing extracellular

cholinesterase-activity, extracellular acetylcholine is per-

manently resynthesized. As a consequence, acetylcholine

may act over long distances from its site of release.

Importantly, acetylcholine is not only synthesized and

released by neurons but also by several non-neural cells.

Frequently these cells express both ChAT and a7 nAChRs,

and as a result, an intrinsic paracrine loop is formed [102].

Examples are bronchial epithelial cells [35], lymphocytes

[6, 28], human neuronal stem cells [6], and astrocytes [6,

106]. As a last argument in favor of a physiological rele-

vance of extrasynaptic a7 nAChRs, it should be mentioned

that these receptors are also activated by choline, the pre-

cursor and hydrolytic split product of acetylcholine [46, 67,

81, 107]. In summary, extrasynaptic a7 nAChRs will be

readily activated under physiological conditions.

Diseases in which treatment with a7 nAChR
agonists could be useful

Since a7 nAChRs are expressed on interneurons, presy-

naptically on glutamatergic neurons, and on neuronal

progenitor cells, the logical prediction was that a7 nAChR

agonists could provide a beneficial influence on cognitive

function. Consequently, the clinical testing of a7 nAChR

agonists has focused on disorders with profound cognitive

dysfunction (i.e., schizophrenia, Alzheimer’s disease). The

fact that nicotinic a7 receptors are also strongly expressed

by cells of the immune system, including those of the brain

innate immune system, has often been (but not always, [64,

108]) overlooked. With this in mind, in the following

sections we will reflect on the therapeutic use of selective

a7 nAChR agonists in psychiatric and neurological

disorders.

Depression

Inflammation and exposure to stress are generally recog-

nized as strong proximal factors for the development of

depression symptoms [109]. Many kinds of stress, but in

particular those involving threat, loss, entrapment, and

humiliation, lead to activation of the immune system [109–

112]. This has been conceptualized as an anticipatory

response by the innate immune system to prepare for

physical injury [113]. Phagocytic cells such as macro-

phages and microglia are essential components of the

innate immune system and contribute to the host’s defense

against invading microorganisms. Notably, phagocytes

from patients with depression are hyper-responsive [114–

116]. Upon activation, these cells produce cytotoxic com-

pounds like nitric oxide and oxygen radicals [117, 118].

These reactive oxygen radicals formed during the ‘respi-

ratory burst’ may irreversibly oxidize tetrahydrobiopterin

[119]. Since tetrahydrobiopterin is an essential cofactor for

the production of dopamine, noradrenaline, and serotonin,

the heightened activity of microglial cells may ultimately

lead to a reduction in central monoamine levels (see

Fig. 2). This could be the underlying cause of low mood

and anhedonia in depression (Kalkman and Feuerbach, in

preparation). As outlined above, a7 nAChRs are expressed
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both on macrophages and microglia, and their activation

leads to anti-inflammatory effects. In particular, activation

of a7 nAChRs might lead to a shift in microglia phenotype

from M1-like (activated for anti-microbial activity) to M2-

like (resolution, removal of debris) [10, 11, 13, 83, 120],

while a similar process has been described in the periphery.

Stimulation of a7 nAChRs attenuates macrophage

responsiveness and diminishes release of cytokines [23, 46,

47, 66] and therefore will limit the negative impact of

inflammation on tetrahydrobiopterin metabolism.

Activation of a7 nAChRs in the brain has been shown to

activate protein kinase A (PKA) via a mechanism involv-

ing calcium-dependent activation of adenylatecyclase-1

and, consequently, an increase in cAMP levels [61]. PKA

is one of the kinases that increase Ser9-phosphorylation of

GKS3b, which results in inhibition of the kinase activity.

PKA also fosters Ser133-phosphorylation of the transcrip-

tion factor CREB. Ser133-P-CREB is a substrate for

GSK3b, which subsequently results in rapid catabolism of

CREB and thus termination of CREB signaling. CREB

competes with NFjB for binding to CREB-binding protein

(CBP), and therefore limits the inflammatory NFjB signal.

Activation of a7 nAChRs in the brain may thus lead to an

anti-inflammatory activity. Increased PKA activity,

increased Ser9-phosphorylation of GSK3b, and increased

Ser133-phosphorylation of CREB have all been observed

in mouse brain after chronic treatment with the a7 nAChR

agonist A582941 [62]. Notably, Ser9-phosphorylation of

GSK3b following A582941 treatment was absent in mice

with a genetic deletion of the a7 nAChR [121].

Vagus nerve stimulation, which reduces inflammation

[23, 66, 69, 122], has been approved for treatment of drug-

resistant depression in humans [123]. In long-term natu-

ralistic studies, significant improvements and increasing

remission rates were noted in patients with refractory

depression [124–126]. Oxytocin (reported to display

antidepressant activity [127]) increases the excitability of

central vagal neurons in rats [128] and inhibits LPS-in-

duced release of inflammatory cytokines in healthy human

subjects [129]. The antidepressant activity of oxytocin

could thus be a consequence of stimulation of the cholin-

ergic anti-inflammatory pathway. In conclusion, there is

accumulating evidence that a7 nAChR agonists could

possess antidepressant activity, although none of the

compounds that were in clinical development has been

tested in this indication.

Schizophrenia

Symptoms of schizophrenia are commonly divided into

three domains, namely positive symptoms (delusions, hal-

lucinations), negative symptoms (social withdrawal,

anhedonia), and cognitive deficits (learning and memory

deficits, alogia). A history of maternal and prenatal infec-

tions, prior hospitalization for severe infection, and

autoimmune comorbidity represent major risk factors for

schizophrenia [130]. These conditions, which are linked to

the elevation of pro-inflammatory cytokines has led to the

formulation of the ‘‘prenatal cytokine hypothesis’’ [131].
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Fig. 2 Microglia cells play a role in eradication of invading

microorganisms and in removal of debris. During these processes,

the cells adapt specialized phenotypes (M1 and M2-like, respec-

tively). During the respiratory burst, labile oxygen products are

formed that oxidize microbial proteins and nucleic acids, but also

oxidize the essential cofactor for monoamine synthesis, tetrahydro-

biopterin. Sterile neuroinflammation is a common observation in

neurological and psychiatric disorders. Acetylcholine, acting via a7

nAChRs, promotes M2-polarization. As such, it reduces neuroin-

flammation, while promoting phagocytosis. M2-polarized microglia

cells not only produce neurotrophins and anti-inflammatory cytoki-

nes, they also effectively phagocytose and catabolize Ab. a7 nAChR

agonists are expected to improve neurological and psychiatric

disorders via inhibition of neuroinflammation, to restore tetrahydro-

biopterin levels (improve mood symptoms) and to provide

neuroprotection
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This hypothesis proposes that early alterations in the

peripheral and central innate immune system disrupt nor-

mal development and maturation of neuronal systems

during the juvenile and early adult stages of life, affecting

processes such as myelination, synaptic pruning, and neu-

ronal modeling [131]. Results from genetic studies are

consistent with such a process, as confirmed genetic risk

factors for schizophrenia include mutations in genes

involved in immune function (e.g., HLA-C and HLA-

DRA) and synaptic pruning [132, 133]. The first episode of

psychosis is often associated with microglia activation

[130, 134, 135], elevated levels of pro-inflammatory

cytokines in the CSF [136–138], and a significant loss in

white matter volume (reviewed in [136]). It is assumed that

cytokines, chemokines, prostaglandins, and reactive oxy-

gen products released by activated microglia generate a

toxic milieu for oligodendrocytes (leading to white matter

loss) and neurites (gray matter loss) [130, 136, 139, 140].

The severity of negative symptoms correlates with the

diminution of white matter [130].

The impetus to develop a7 nAChR agonists was based

on two sets of clinical information. First, the early literature

reported extremely high values for the prevalence of

smoking in schizophrenia patients (see [141]). This infor-

mation was supplemented by data from radioligand binding

experiments investigating brain tissue of deceased

schizophrenia patients (for summary see [100]). Using

[125I]-a-bungarotoxin (a-btx) as radioligand, a reduction in

labeling of the a7 nAChR was found in the dentate gyrus

[142], the reticular nucleus of the thalamus [143], the

frontal cortex [144], and the cingulate cortex [1]. A vast

body of genetic literature supports the contention that the

functionality of the a7 nAChR in schizophrenia is dimin-

ished. CHRNA7, the gene encoding the a7 nAChR, is

located on 15q14, a chromosomal area that is linked to

genetic transmission of schizophrenia [145]. This area is

also subject to deletion copy number variations (CNVs,)

[146, 147]. Decreases in a-btx binding observed in

schizophrenia patients could be due to an increased

expression and insertion of dupa7, since heteromeric

dupa7/a7 nAChRs do not bind this radioligand [84, 148].

Notably, decreased a-btx binding is unlikely to be

explained by differences in smoking behavior [1]. Poly-

morphisms in the CHRNA7 promoter that decrease gene-

transcription are also associated with schizophrenia [149].

A 2 bp deletion allele in CHRFAM7A is frequent in

Caucasians (42 %) and less in African-Americans (14 %)

[150]. This 2 bp deletion form of CHRFAM7A is an even

stronger inhibitor of a7 nAChR than wild-type

CHRFAM7A and consistent with this, several studies

support an association of the 2 bp deletion in the

CHRFAM7A gene with schizophrenia and bipolar disorder

(summarized by Sinkus et al. [150]). Finally, CNVs occur

in the CHRNA7 and in CHRFAM7A, and deletions were

strongly associated with schizophrenia. Interestingly, this

was especially the case when the CHRNA7 was deleted,

while CHRFAM7A was present [150].

The pathophysiological consequence of the diminished

functionality was mainly sought in the cognitive domain.

The prediction that a7 nAChR agonists would improve

cognition in schizophrenia was tested clinically with a

series of development compounds (for a recent reviews, see

[100, 151, 152]). Since the nicotine a7 receptor and the

5HT3 receptor are phylogenetically very similar, several

developmental a7 nAChR agonists lack selectivity and

block the 5HT3 receptor concomitantly [108]. Encenicline

(EVP6124), which is a mixed a7 nAChR agonist/5HT3

antagonist, showed significant clinical improvement on

PANSS cognitive impairment domain and also for the

PANSS negative scale [153]. Another mixed a7 nAChR

agonist and 5HT3 antagonist tropisetron significantly

reduced PANSS total and the negative symptom subscale

with increasing treatment time [154]. Further, a mixed a7
agonist/5HT3 antagonist RG3487 (also known as

MEM3454), was reported to improve negative symptoms

and depression ratings [155]. It remains unclear if the

beneficial effect on negative symptom ratings is due to a7
nAChR activation or to 5HT3 blockade, as both a selective

a7 nAChR agonist (TC-5619) and a selective 5HT3

antagonist (ondansetron) improved negative symptoms

[156, 157]. DMXB-A (GTS-21) [158], a a7 nAChR agonist

with additional inhibitory activity at a4b2 nAChRs [159],

improved alogia and anhedonia ratings in the scale for

assessment of negative symptoms. Remarkably, a7
nAChR-positive allosteric modulators (galantamine,

galantamine plus choline, and JNJ39393406) were com-

pletely inactive [100]. Taken together, these data show that

a7 nAChR activation did not improve positive symptoms,

whereas a beneficial effect against negative symptoms was

observed repeatedly. The clinical evidence that a7 nAChR

activation leads to improvement of cognitive dysfunction

in schizophrenia still remains somewhat equivocal [100,

160], although the data for encenicline are encouraging

[153, 161]. It is noteworthy that the clinical development of

several mixed nAChR a7 agonist/5HT3 antagonist com-

pounds (e.g., RG3487, tropisetron) in schizophrenia has

been halted [152]. This may be related to side effects

associated with 5HT3 receptor blockade (e.g., constipation,

arrhythmias) (see [108, 162, 163]). Currently, three a7
nAChR agonists remain in clinical development

(AQW051, encenicline, and GTS-21) [152].

The observation that nAChR a7 agonists improve neg-

ative symptoms is remarkable. It can be speculated that

stimulation of nAChRs a7 counteracts microglia activa-

tion, such that white and gray matters are exposed less to

the toxic microglia products. In this respect it is noteworthy
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that minocycline, a compound which suppresses microglia

activation, also specifically improved negative symptoms

(for review see [164]). Negative symptoms, like symptoms

of melancholic depression, might reflect distinct behavioral

consequences of central inflammation. However, it could

be that negative symptoms are not distinct and in fact

reflect aspects of melancholic depression, or that rating

scales for negative symptoms do not discriminate between

depression symptoms and negative symptoms [155]. Since

microglia activation occurs early in the disease process

(i.e., during, or even before, the first period of psychosis),

early intervention with compounds that limit microglia

activation (nAChR a7 agonists, minocycline) might be

appropriate.

Bipolar disorder

The cardinal features of bipolar disorder are recurrent

episodes of depression and hypomania, whereas the latter

includes euphoric or irritable mood, mental and behavioral

over-activity, as well as decreased need for sleep and

involvement in risky activities [165]. As for major

depressive disorder, diseases and habits that are associated

with peripheral inflammation (diabetes, obesity, cardio-

vascular disease, smoking, and alcohol abuse) are

recognized risk factors for bipolar disorder (reviewed in

[166–168]). And in further similarity to major depression,

childhood trauma is a strong predictor for appearance of

bipolar disorder later in life [169]. Increases in serum

levels of inflammation markers have been observed during

manic, depressed and even euthymic phases [170–173].

Bipolar disorder shares genetic risk loci with schizophrenia

and with major depression [171, 174]. There is evidence

for microglia activation in the brain of bipolar disorder

patients: first, higher levels of IL1b, IL1R, MYD88, and

iNOS have been found in a post-mortem study in the

frontal cortex [175]. Second, microglia-derived inflamma-

tion markers MCP1 and YKL40 were increased in CSF

[176], and third, microglia activation was detected by

PK11195 imaging [177]. The inflammatory milieu in the

brain is probably responsible for atrophy, volumetric

changes, cognitive decline, and symptom worsening [167,

175]. The same genetic polymorphisms, copy number

variations and alteration in the pseudo-gene CHRFAM7A,

which are presumed to diminish the functionality of the

nAChR a7 receptor in schizophrenia, have also been

detected in bipolar disorder [161, 178].

The neurodevelopmental consequences of diminished

a7 nAChR signaling may be inferred from studying

CHRNA7 knockout mice. It has been reported that nicotine

administration to these animals led to a longer period of

elevated extracellular dopamine levels in the nucleus

accumbens than in control mice [179]. Excessive dopamine

signaling via D2 receptors in the striatum causes an acti-

vation of GSK3b via a multiprotein complex involving the

D2 receptor, b-arrestin, Akt, GSK3b, and PP2A [180, 181],

while active GSK3b results in diminished long-term

potentiation (LTP) [182–184]. Unexpected rewarding out-

comes result in dopamine release in the striatum, whereas

unpredicted negative outcomes result in a strong reduction

in dopamine output [185]. Such a dopamine ‘‘dip’’

improves avoidance learning (via D2 receptor hypo-stim-

ulation) by decreasing GSK3b activity, and thus promoting

LTP. In contrast, hyper-stimulation of D2 receptors, and

activation of GSK3b, both result in a diminished learning

from incorrect reward predictions. If we assume that the

a7-p85-Akt-GSK3b pathway is activated in striatal neu-

rons (as it is in immune cells), dysfunction of the a7
nAChR would result in reduced inhibitory GSK3b-phos-
phorylation, in poorer learning from unrewarding

conditions, and eventually in more (i.e., less suppressed)

risk-taking behavior. Taken together, dysfunction of the a7
nAChR would increase both depression-risk and hypoma-

nia symptoms. The prediction that selective a7 nAChR

agonists might counteract these symptoms remains to be

tested.

Autism spectrum disorder

Autism is a general term for a group of neurodevelop-

mental disorders characterized by difficulties in social

interaction, verbal and non-verbal communication, and

repetitive behaviors. Several distinct subtypes have been

identified, and these are often combined under the umbrella

diagnosis ‘‘autism spectrum disorder’’ (ASD). Certain

genetic copy number variations, which can be either

inherited or occur de novo, exert a profound effect on brain

development and lead to syndromes that fit the ASD

diagnosis. The 15q13.3 microdeletion syndrome is such an

example. Gillentine and Schaaf [147] collected all pub-

lished cases of heterozygous 15q13.3 deletions and

calculated that nearly half of them displayed cognitive

deficits, while seizures and symptoms of ASD were noted

in 26 and 21 % of these cases, respectively. It is not clar-

ified by which mechanism heterozygosity for the a7
nAChR could lead to ASD. It is known, however, that the

a7 nAChR is essential for the formation of NMDA

synapses [86], and that the absence of functional a7
nAChRs results in perturbation of NMDA neurotransmis-

sion at glutamatergic synapses [186]. The EphB2 receptor

is involved in the process by which a7 nAChRs enhance

formation of NMDA synapses [86, 187] and, interestingly,
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also dysfunction of the EphB2-receptor has been recog-

nized as a risk factor for autism spectrum disorder [188].

Rett syndrome is another distinct genetic form of aut-

ism. In the majority of cases, Rett syndrome is caused by a

mutation in the MeCP2 gene; the functional consequence

of this mutation is a severe reduction in the expression of

a7 nAChRs [91]. Yasui and colleagues have therefore

proposed to use a7 nAChR agonists for the treatment of

Rett syndrome.

Although the pathology seen after partial deletion or

dysfunction of the a7 nAChR provides support for its

physiological role, it also creates a dilemma for pharma-

cotherapy with a7 agonists. Such compounds can only

work when the receptor is present and functional. A study

by Le Pichon and colleagues exemplifies this [189]. The

authors created lymphoblastoid cell lines from a patient

with a homozygous 15q13.3 microdeletion, his heterozy-

gous parents, and from several further family members and

age-matched controls. The lymphoblast cells were treated

with lipopolysaccharide, which provoked the expected

increase in TNFa release. TNFa release was suppressed by

nicotine (which in turn could be blocked by the a7 nAChR

antagonist a-btx) in all control and hemizygous deletion

cell lines, but notably not in lymphoblasts from the index

patient [189]. Patients with a strongly dysfunctional or

absent a7 nAChR will not benefit from a a7 nAChRs

agonist. It is reasonable to assume that cases of moderate

hypoactivity of the a7 nAChR will exist among the wide

spectrum of autism disorders, but the challenge will be to

identify a biomarker to enable their selection. The current

clinical evidence for a therapeutic effect of an increase in

cholinergic signaling in ASD is quite limited. It is based on

a few open label studies, case reports and a single small-

size double-blind augmentation study with a cholinester-

ase-inhibitor [190].

In a subset of autism patients, there is evidence for an

increase in allergic inflammation [191] and for mast cell

activation [192]. These observations hint to an increased

TH2 polarization (perhaps owing to a helminth infection).

An infection with a helminth would skew the differentia-

tion of helper T-cell towards the TH2 phenotype. IL4 and

IL5, cytokines produced by TH2 cells [193], promote

macrophage/microglia M2A polarization and mast cell

activation [194–196]. Indeed, Gupta et al. [197], recently

reported that the expression pattern of microglia genes in

autism cases was characteristic for an increased M2A

phenotype. Treatment with a7-agonists is expected to

further increase M2 polarization, and thus could accentuate

the autism-phenotype. According to this line of reasoning,

the treatment with a7 nAChR agonists might be contra-

indicated in at least some forms of autism spectrum

disorder.

Multiple sclerosis

Neuroinflammation represents a key aspect of the neuro-

logical disorders that will be discussed in this and

following sections. Multiple sclerosis (MS) is an autoim-

mune disease that affects axonal nerve transmission in

peripheral, lumbal, and central nerves, which as first

symptoms often results in motor and sensory problems.

Depression is a common comorbidity [198]. The precise

sequence of events that leads to MS in patients is not

known [199], but activation of lymphocytes, macrophages,

dendritic cells, and microglia are known to occur early in

the disease [200]. a7 nAChR activation can lead to inhi-

bition of lymphocyte proliferation [28, 201] and to

inhibition of macrophage and microglia activation [8, 11,

24, 25, 46]. Stimulation of a7 nAChR on endothelial cells

furthermore limits the extravasation of leukocytes during

inflammation [31], although it is not known if this is also

true for the blood–brain barrier. Together, these findings

suggest that a7 nAChR agonists might be therapeutically

useful in multiple sclerosis. Indeed, nicotine was shown to

inhibit experimental MS in rodents [83, 201], but to our

knowledge, selective a7 nAChR agonists remain to be

investigated in human MS.

Parkinson’s disease

The motor symptoms of Parkinson’s disease (PD) are

ascribed to degeneration of dopaminergic neurons in the

substantia nigra pars compacta. Other important symp-

toms are anxiety and depression, as well as memory loss,

confusion, and dementia. In this respect, it is noteworthy

that not only dopamine neurons perish but also the

cholinergic system. Degeneration of the basal forebrain

cholinergic system occurs early in the disease process and

precedes the dementia symptoms [202, 203]. In fact, in PD-

dementia the levels of cerebral ChAT are reduced to levels

below those seen in Alzheimer’s disease [204], whereas

cholinesterase inhibition improves dementia in Parkinson’s

disease [205].

A large number of epidemiological studies (for a recent

summary see [120]) have consistently shown that smoking

is associated with a lower incidence of PD. Data from

preclinical models of Parkinson’s disease indicate that

nicotine and selective a7 nAChR agonists reduce microglia

activation and neuroinflammation, and prevent nigro-stri-

atal dopamine-neuronal loss [206, 207]. a7 nAChRs

expressed on astrocytes may also contribute to the neuro-

protective effect, since activation of these receptors

suppressed astroglial apoptosis induced by oxidative stress

and preserved neurotrophic factor supply by glial cells
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[208]. An alternative suggestion is that nicotine reduces PD

symptoms owing to its stimulant effect on nigro-striatal

dopamine release. This nicotine-induced dopamine release

is mediated primarily via a6b2-containing receptors

localized on dopaminergic neurons. These neurons are

particularly vulnerable to damage and in models of nigro-

striatal damage, the a6b2-receptor numbers are signifi-

cantly reduced [209]. For this reason, it is rather unlikely

that the indirect dopamine release induced by nicotine

acting on a6b2 receptors plays a significant role in the

positive effect of smoking in PD. Post-mortem studies of

brains from patients with Parkinson’s disease provide

convincing evidence for neuroinflammation in the pars

compacta, with increases in neurotoxic cytokines, micro-

glia activation, and lymphocyte infiltration (reviewed by

Hirsch and Hunot [210]).

Depression occurs in about 35 % of PD-patients [211]

and might develop in the premotor stage of the disease

[211, 212]. Consistent with theories about microglia acti-

vation as contributor to depression [213, 214], depressive

symptoms may be considered as an early indicator of

Parkinson’s disease. The protective effect that smoking

exerts on PD could thus relate to a7 nAChR-mediated anti-

inflammatory activity of nicotine [11]. This would imply

that selective a7 nAChR agonists could be effective as

prophylactic treatment for Parkinson’s disease. In this

respect, it is worthwhile to mention that in MPTP-treated

laboratory animals, the density of a7 nAChR increases

(which is in contrast to a6b2-containing nAChRs, see

above) [215]. The a7 nAChR agonist AQW051 [216] has

been tested in patients with established Parkinson’s disease

(ClinicalTrials.gov), but results remain to be published.

Alzheimer’s disease

One of the functions of microglia is to remove debris [217].

Microglia cells phagocytose and subsequently degrade Ab,
and thereby promote the removal of Ab from the brain

[218]. As mentioned before, microglia cells assume dif-

ferent phenotypes. With aging, microglia shift their

morphology to a pro-inflammatory state and presumably

lose their ability to phagocytose [219]. Activation of a7
nAChR expressed on microglia alters the phenotype and

promotes phagocytosis and metabolism of Ab [12]. Based

on these data, one would expect that nicotine (smoking)

and cholinesterase inhibitors would diminish Ab load and

improve Alzheimer disease. In transgenic animals, over-

expressing Ab beneficial effects of nicotine or ChE-I were

indeed observed, while knock out of the a7 nAChR

worsened pathology [12, 62, 220]. In patients with Alz-

heimer’s disease, cholinesterase inhibitors limit the

cognitive deficits early in the course of the disease, but

dosing and efficacy are limited by cholinergic (in particular

muscarinic) side effects. For this reason, it is expected that

a7 nAChR agonists might reach a similar therapeutic

efficacy, but with less side effects. In a recent meta-anal-

ysis of prospective cohort studies investigating the effect of

smoking on dementia and Alzheimer’s disease, smoking

increased risk for dementia and AD [221]. This meta-

analysis study included 37 studies with a total of almost 1

million patients and the statistical power was sufficient to

investigate the influence of age. The increase in dementia

risk was observed in the age group between 65 and 75,

whereas the interpretation of results from patients older

than 75 was hampered by a survival effect. Importantly, the

increase in dementia or AD risk was not significant for

smokers under 65 [221]. This result is clearly different

from Parkinson’s disease, where smoking tendentially

caused more benefit than harm [222]. Why would this be?

The answer may lie in the special interaction of Ab with a7
nAChRs. Parri et al. [223] have recently reviewed this in

great detail. The fact that Ab binds to a7 nAChRs has been

observed and confirmed in numerous experimental settings,

including post-mortem AD brain; however, it is unclear if

this interaction results in inhibition or in stimulation of the

receptor, and whether this interaction is reversible by

agonists and antagonists. An intra-subunit allosteric bind-

ing pocket within the transmembrane domain of the a7
nAChR has been described as mechanism for non-com-

petitive antagonism by Ab (summarized by Parri et al.

[223]). A further complication with relevance to AD

pathology is the observation that cholinergic neurons in the

basal forebrain express a heteromeric a7b2 isoform [224,

225]. Liu et al. [224] have reported that the a7b2 receptor

is particularly sensitive to Ab, since concentrations as low

as 1 nM inhibited the functional responses to choline. They

furthermore noted that inhibition was strongest with Ab in

its oligomeric form, followed by fibrillar Ab, whereas

monomeric Ab was inactive. It is not clear why blockade

of the a7b2 receptor is neurotoxic to cholinergic neurons,

and if microglia cells from basal forebrain structures

express this heteromeric nicotinic receptor. Nevertheless,

one can begin to sketch a positive feedback process where

aging causes polarization of microglia towards a phenotype

that is less effective in phagocytosing and degrading Ab.
An overload of oligomeric Ab in the extracellular space

will block the a7b2 nicotinic receptor on basal forebrain

cholinergic neurons, and these die as a consequence. Less

acetylcholine leads to a reduction in a7 nAChR stimulation

of microglia cells, which results in further loss of their

phagocytic capacity. Diminished clearance of Ab ulti-

mately leads to extracellular precipitates, which

presumably are a further trigger to microglia recruitment,

inflammatory processes, and further toxicity to cholinergic

neurons (see Fig. 3). In this process, an early intervention
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with nicotine, cholinesterase inhibitors, and in principle, a7
nAChR agonists may delay the start of the vicious circle.

However, later in the process the availability of a7
nAChRs will be reduced by the negative interaction with

the accumulating oligomeric Ab. This would explain why

the toxic effects of smoking become dominant over the

neuroprotective effects in Alzheimer’s disease, but not (or

less) in Parkinson’s disease. If the above-sketched vicious

circle is correct, treatment with selective a7 nAChR ago-

nists would be useful as prophylaxis, but less so for

treatment of established severe AD-dementia.

Discussion

From a historical perspective, selective a7 nAChR agonists

have been targeted for cognitive deficits associated with

schizophrenia (for recent reviews see [151, 152, 226]) and

dementia in Alzheimer’s disease [227, 228]. Where

investigated, the dose–response relationships for the pro-

cognitive effects of a7 nAChR agonists usually display an

inverted U-shape, indicating that higher doses are less

effective than certain lower doses [142, 229–232].

Although the exact mechanism behind this profile remains

speculative, it has been frequently noted that high con-

centrations of agonist cause receptor desensitization and

suppression of functional responses [103, 233]. For

instance, in in vitro experiments in oocytes, high concen-

trations of a7 nAChR agonists desensitized the receptor

and blocked the calcium influx to the endogenous agonist

acetylcholine [234]. Similar inhibitory effects on calcium

influx were observed with synthetic a7 nAChR agonists at

high concentrations [235]. Remarkably though, at lower

concentrations a number of a7 nAChR agonists actually

may potentiate the acetylcholine-induced response [236].

Estimations of brain levels at which a7 nAChR agonists

evoke cognition-enhancing effects are in the range where

they potentiate the acetylcholine-induced calcium influx in

oocytes. It is therefore reasonable to assume that the pro-

cognitive effect of a7 nAChR agonists is due to an

enhancement of the acetylcholine-evoked response (known

as the ‘‘co-agonist hypothesis,’’ see [236, 237]). This

assumption is supported by preclinical data demonstrating

an additive pro-cognitive effect of donepezil and the a7
nAChR agonist encenicline [236]. Although not yet

reported, a similar co-agonist effect may occur at a7
receptors expressed by immune cells. If true, this would

imply that low doses of a a7 nAChR agonist would be

sufficient to enhance the anti-inflammatory response to the

endogenous agonists (choline and/or acetylcholine).

In reviews dealing with potential indications of

selective a7 nAChR agonists, the anti-inflammatory

activity has never taken central stage (at least up to

recently, see [64, 108]). The role that inflammation plays

Ageing

Dementia

Less M2
microglia

More M1
microglia

Inflammation

More Aβ

Aβ oligomeres

α7β2 
inhibition

Aggregation

Death of 
cholinergic 

neurons

Less nAChR 
α7 activation 

Fig. 3 During aging the polarization of microglia gradually shifts

towards the M1 phenotype. Diminution of M2 polarization presum-

ably has negative consequences for Ab catabolism. When

extracellular Ab levels increase, several positive feedback loops are

triggered that ultimately lead to the demise of cholinergic neurons.

Activation of a7 nAChRs counteracts the loss of the M2 phenotype.

a7 nAChR agonists may furthermore compete with Ab at (mitochon-

drial?) nicotinic a7b2 receptors. Treatment with a7 nAChR agonists

might therefore delay the demise of cholinergic neurons, and thus

delay the onset of dementia
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in the pathophysiology of psychiatric disorders is, how-

ever, well recognized [130, 140, 167, 171, 176, 238]. In

the current review, we argue that several alternative

indications for a7 agonists may be delineated from their

effect on inflammation. Treatment with a7 nAChRs

agonist may result in inhibition of the pro-inflammatory

enzyme, GSK3b. In this respect, the treatment with a7-
agonists resembles lithium treatment. This similarity

may hold true not only for an indication like bipolar

disorder (improvement in both manic and depressive

symptoms) but also for suicide and neurological disor-

ders. Suicide is a major cause of death in depression,

bipolar disorder, and schizophrenia. Clinical data have

accumulated which indicate that inflammation and

microglia M1-polarization contribute to the pathophysi-

ology of suicide independent from the underlying

psychiatric disease [239–242]. Diverse pro-inflammatory

mechanisms such as autoimmunity, neurotropic patho-

gens, stress, or traumatic brain injury have been

documented in suicidal patients [243]. Since a7 nAChR

stimulation in immune cells can result in GSK3b inhi-

bition, and since the GSK3-inhibitor, lithium [244], is a

recognized anti-inflammatory [245] and anti-suicidal

compound [246, 247], one may propose the use of

nicotine a7-agonists for prevention of suicide. Chronic

treatment with lithium by virtue of its GSK3b inhibitory

effect also ameliorated the disease processes in preclin-

ical models of multiple sclerosis [248], Alzheimer [249–

251], and Parkinson’s disease [252–254]. It should be

noted though that GSK3b inhibition by lithium in these

models is just a symptomatic treatment and does not stop

the underlying pathological processes. Consequently,

once the pharmacotherapy is interrupted, the disease is

likely to return. Nevertheless, treatment with a a7
nAChR agonist might constitute a safe alternative to

lithium and one could propose the use of a7 nAChR

agonists for these neurological disorders.

In contrast to lithium treatment, the beneficial effect of

a7 nAChR stimulation is lost when the receptor is defec-

tive (or missing all together). An example was presented in

the autism section, and also in late-stage Alzheimer’s dis-

ease, the nicotine receptor owing to the interaction with the

b-amyloid protein may become severely dysfunctional.

One potential explanation for the lack of robust effects of

a7 nAChR agonists on cognitive function in schizophrenia

is the rapid desensitization of a7 nAChRs. This is a general

concern and applies to any a7 nAChR agonist indication. A

simple biomarker test for quantification of a7 nAChR

stimulation on an inflammation read-out would thus be

highly desirable. Perhaps the receptor desensitization of a7
nAChRs may be less of an issue for inflammation-related

indications. In this context, it is remarkable that basically

all a7 agonists were effective against negative symptoms

of schizophrenia (while effects on cognition were equivo-

cal). We would also expect that the beneficial effects of

smoking and cholinesterase-inhibitor-treatment would be

absent if a7 nAChRs would be desensitized for most of the

time. However, it must be admitted that a thorough

investigation of the concentration/response relationship for

the anti-inflammatory effect of any of the selective a7
nAChR agonists remains to be determined.

Since epidemiological data suggest that smoking exerts

a protective effect in Parkinson’s disease, a7 nAChR

agonists might be a preferable alternative to cholinesterase

inhibition and smoking. Registration studies for prophy-

lactic indications such as in Parkinson’s or Alzheimer’s

disease are however difficult, long lasting, and expensive,

and it is unlikely that companies will invest in these indi-

cations without the opportunity for registration in an acute

disorder. What could be the pioneer indication for a7
nAChR agonists? Based on clinical information from vagus

nerve stimulation treatment, depression would be a logical

choice. Unfortunately, depression studies generally suffer

from a high placebo response, making also the indication

‘depression’ less attractive.

We currently favor L-DOPA-induced dyskinesia as

possible ‘pioneer indication.’ It has been published that two

chemically distinct a7 nAChR agonists, ABT-107 and

AQW051, suppress L-DOPA-induced dyskinesias in

(MPTP-treated) Parkinsonian monkeys [255, 256]. The

precise mechanism by which this response is brought about

remains unknown; however, again it may involve GSK3

inhibition, since low-dose lithium was also recently shown

to be active in a similar Parkinson model in mice [254].

The beneficial effect of a7 nAChR agonists may involve

attenuation of MPTP-induced neuroinflammation and pro-

tection dopamine neurons in the substantia nigra pars

compacta [206]. Thus, efficacy for a7 nAChR agonists in

clinical trials of L-DOPA-induced dyskinesias could serve

as a clinical entry point to pave the way for indications

where longer treatment regimens are warranted.
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