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Abstract
The application of Middle-sized Car-like Robots (MCRs) in indoor and outdoor road scenarios is becoming broader and broader.
To achieve the goal of stable and efficient movement of the MCRs on the road, a motion planning algorithm based on the Hybrid
Potential Field Model (HPFM) is proposed in this paper. Firstly, the artificial potential field model improved with the eye model
is used to generate a safe and smooth initial path that meets the road constraints. Then, the path constraints such as curvatures and
obstacle avoidance are converted into an unconstrained weighted objective function. The efficient least-squares & quasi-Newton
fusion algorithm is used to optimize the initial path to obtain a smooth path curve suitable for the MCR. Finally, the speed
constraints are converted into a weighted objective function based on the path curve to get the best speed profile. Numerical
simulation and practical prototype experiments are carried out on different road scenes to verify the performance of the proposed
algorithm. The results show that re-planned trajectories can satisfy the path constraints and speed constraints. The real-time re-
planning period is 184 ms, which demonstrates the proposed approach’s effectiveness and feasibility.

Keywords Car-like robot . Motion planning . Online trajectory optimization . Potential field collision avoidance

1 Introduction

Mobile robots can assist manual tasks in areas such as un-
manned delivery and road cleaning. When mobile robots per-
form tasks such as delivery and disinfection (especially in
special periods such as the outbreak of the COVID-19), they
can significantly reduce the probability of contact between
people. TheMCRs have advantages in stability, load capacity,
etc., which are often used as the primary mobile platform in
the scenes described above. In addition, the MCRs run mainly
on structured roads, which are characterized by limited lane

width and long lane look-ahead. The MCRs need to realize
complex tasks in complex environments, which have extreme-
ly high requirements on the performance of navigation sys-
tems. The motion planning component plays a critical cardinal
role in the navigation system, whose core function is to gen-
erate the trajectory based on the road map.

Because of MCRs’ poor flexibility, they have high require-
ments on trajectory quality. Therefore, to improve the practi-
cality of the motion planning model for the MCRs, the fol-
lowing five aspects need to be considered comprehensively:

1) Path Curve Quality. Under the constraints of road and
robot kinematics, the path is required to have excellent
smoothness, ample clearance, and long length.

2) Speed Profile Quality. Under the dynamic constraints, it
is required to generate a speed profile with fast response,
excellent tracking stability, and fine controllability.

3) Computation Efficiency. Under the premise of the tra-
jectory quality, the model complexity needs to be reduced
to guarantee real-time performance.

4) Coupling Relationship. The motion planning model is
the bridge between the perception and control process in
the navigation system, so it is necessary to consider the
coupling relationship to enhance navigation performance.
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5) Modifiability. The motion planning model should meet
the requirements of easy adjustability, easy controllabili-
ty, (sub-)optimal solution, good providentness, and re-
planning performance.

Some algorithms have been proposed to solve the above
problem, which can be divided into the following three
categories:

1) Action-space sampling-based approaches. Typical algo-
rithms are the dynamic window approach (DWA) [1],
curvature-velocity method (CVM) [2], etc., which select
the lowest cost trajectory. Although the computation effi-
ciency of these approaches is incredibly high, the simple
trajectory type results in divergence of candidate trajecto-
ries. For the indoor corridor scene, LCM [3] combines the
speed space and the corridor direction space, thereby im-
proving its providentness. However, if these action-space
sampling-based approaches are applied to the MCRs, the
practical providentness will be reduced due to the steering
constraint. To solve this shortcoming, one means to inte-
grate the global path planner, such as the integrated DWA
and A* algorithm [4]. However, the global path planner
will increase the computation cost significantly. In sum-
mary, the above action-space sampling-based motion
planning approaches have excellent real-time perfor-
mance, but the trajectory quality is average and relies
heavily on the global planner.

2) State-space sampling-based approaches. This category of
approaches utilizes the flexibility and diversity of polyno-
mial curves to extend the trajectory length, improving
providentness significantly. Werling et al. proposed the
Frenet Planner (FP), the polynomial curves are used to
connect adjacent states smoothly on the Frenet frame.
Finally, the trajectory is selected with the lowest overall
cost [5]. Similarly, the anticipatory kinodynamic motion
planner(AKMP) proposed by Talamino et al. uses the
path-speed decoupling method, and optimization param-
eters are reduced by the symmetrical characteristic of tra-
jectory [6]. In addition, Xu et al. proposed a path-speed
loop iterative optimization method to approximate the
optimal trajectory in a limited time [7]. In summary,
the above approaches can generate trajectory with
good quality, trajectory expression with polynomials
and path-speed decoupling is worthy of reference.
However, they require complete probability assur-
ance to decrease randomness. Besides, the computa-
tion cost increases significantly with the increase in
sampling density.

3) Optimization-based approaches. Sattel et al. built an arti-
ficial potential field model to generate an initial path, and
the Elastic Band (EB) model was applied to smooth the
path [8]. Dolgov et al. used the conjugate gradient method

to optimize the initial path [9]. In the meantime, Rösmann
et al. proposed Timed Elastic Band (TEB) algorithm to
describe the robot state with constraints in the sparse
graph, and then used Levenberg-Marquardt solver to ob-
tain a low-cost trajectory [10, 11]. Gu et al. proposed the
decoupled space-time trajectory planning framework to
reduce the optimization cost, using the improved EB
model optimization to obtain a smooth path based on
the initial path [12]. The Convex Elastic Smoothing
(CES) algorithm proposed by Zhu et al., decomposing
the trajectory optimization into the path and speed opti-
mization. The best path is generated by the EB model.
The iterative optimization model is repeated within a lim-
ited time to approximate the optimal trajectory [13]. In
summary, optimization-based approaches can explicitly
deal with various constraints, with the advantages of ad-
justability and controllability, and can generate good
quality trajectories. However, the optimization cost and
effect depend highly on the math model, resulting in un-
stable real-time trajectory planning. And it may fall into
the local minimum.

The potential field method (PFM) is widely used for mobile
robot navigation because of its simplicity and elegance com-
pared to the high computational cost of high-density sampling
of the sampling-based methods described above. However,
the PFM has problems such as local minima, and many
scholars have made improvements. Ge et al. proposed the
new repulsive potential functions by taking the relative dis-
tance between the robot and the goal into consideration, which
ensures that the goal position is the global minimum of the
total potential [14]. Ren et al. adopted Modified Newton’s
method in continuous navigation functions to reduce the os-
cillation of the PFM in principle [15]. Ratliff et al. proposed
the CHOMP (Covariant Hamilton Optimization Motion
Planning) algorithm for the high-dimensional motion plan-
ning problem and introduced the use of the Hamilton Monte
Carlo algorithm to apply perturbations to restart the optimiza-
tion process when local minima are encountered [16]. Asadi
and Atkins et al. adopted a potential field planning strategy to
obtain trajectories from the motion primitives library to rapid-
ly generate a safe landing trajectory for Damaged Airplane
[17] and transformed the motion planning multi-objective op-
timization problem into a single-objective cost function based
on the above basis, and proposed a novel approach to translate
the subjective information provided by Pareto analysis into a
weighted cost function using an entropy-based weight selec-
tion method [18].

At present, the part of the above methods that are used to
solve the problem of on-road motion planning for MCRs do
not balance the relationship well between the trajectory qual-
ity and the computation cost, etc., and the information
contained in the road is not dug out fully.
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To make a balanced trade-off, an online motion planning
algorithm based on the hybrid potential field is proposed,
which combines the improved artificial potential field model
with optimization models to generate a high-quality trajectory
in real-time. The main contribution of this paper is as follows:

1) The eye model is proposed to improve path smoothness
effectively generated by artificial potential field model.

2) The path optimization efficiency is improved by the ro-
bot’s geometric pose and the initial value of the optimi-
zation variable generated by the least-squares method.

2 Motion Planning

As shown in Fig. 1, the HPFM includes three parts: firstly, an
improved artificial potential field method is designed to gen-
erate a safe initial path. Then, the constraints such as kinemat-
ics and obstacle avoidance are integrated into the path optimi-
zation model to generate the best path. Finally, the dynamic
constraints are transformed into an objective function to get
the analytical solution of the optimal speed profile. The best
trajectory is converted into the motion command sequence.

2.1 Initial Path Generation

To obtain a safe and adjustable initial path, an improved arti-
ficial potential field model is proposed by optimizing the ob-
stacles model and combining the environmental constraints.

2.1.1 Analysis and Modeling of the Original Motion Scene

Figure 2a shows the scene of the i-th motion planning. By
making a vertical line segment of the road centerline through
the geometric center point oct (yellow dot) of the robot in the
current state, the road coordinate system ori-xriyri is estab-
lished with their intersection ori as the origin, yri points to
the front (the longitudinal direction of the road), xri points to
the right. The starting point of the initial path sequence is the
same as the starting point of the state sequence.

In the initial path planning model, the MCR is treated as a
point, so the obstacles are viewed as inflated. And the motion
scene model is composed of boundary obstacles (OL) and
road obstacles (OC), OL range is:

OL ¼ xol; yolð Þf j xolj j≥D2; xol∈ −D1;D1ð Þ; yol∈ℝ
o

ð1Þ

Here, (xol, yol) is the point in the OL area in ori-xriyri; D1 =
wrd/2, where wrd is the road width; D2 = wrd/2- rex, where rex
is the inflation radius.

The dark gray circles represent original road obstacles,
while light gray areas indicate expanded areas in Fig. 2a , so
the j-th road obstacle ocj is expressed as:

oc j ¼ x joc; y
j
oc

� � jP j
oc−P

j
cj≤D3

� � ð2Þ

Here, Pjoc = (xjoc, y
j
oc) is the point in the ocj area in ori-x-

riyri; P
j
c = (xjc, y

j
c) is the center of the obstacle; D3 = rjc + rex,

where rjc is the furthest distance from Pjc to the edge.
The OC can be expressed as:

OC ¼ oc jj j ¼ 1; 2;…;m
� � ð3Þ

2.1.2 Eye Model of Road Obstacle

Because the artificial potential field is sensitive to the outline
shape of the obstacles in the discrete road scene, the eye model
is designed instead of the circle outline in the initial path
generation model to improve the smoothness of the initial
path.

Figure 2b shows the eye model, the local coordinate system
ocj-xcjycj of eye model in Fig. 2a is established with Pjc as the
origin, where the xcj direction is the same direction as yri, the
ycj direction is opposite to xri. The contour of the eye model is
an axisymmetric quartic polynomial curve, and polynomial
curve shape can be adjusted adaptively with the change of
the radius of the road obstacle, taking the upper boundary of
the eye model in oc-xcyc as an example, the derivatives of the
quartic polynomial curve at the vertices and side endpoints are
all 0, so the objective equation with constraints are expressed
as

Road info. Obstacles info.Robot pose info.

Environment
perceptor

Obstacles

detection

Road

detection

Motion
planner

Obstacles&

Kinematic constraints

Time, Energy&

Dynamic constraints
Best speed profile

Collision 
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Motion scene model

Path optimization

Initial path

Speed profile generation

Best path

Motion controller

Initial path generation
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Fig. 1 Detailed operation of the proposed motion planner
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f e xð Þ ¼ Ax4 þ Bx2 þ C −kwrc≤x≤kwrcð Þ
s:t: f e 0ð Þ ¼ khrc

f e kwrcð Þ ¼ 0
f e

0
kwrcð Þ ¼ 0

8>><
>>: ð4Þ

The polynomial coefficients are expressed as:

A B C½ � ¼ khrc
kwrcð Þ4 −

khrc
kwrcð Þ2 khrc

� �

Here, [kh kw] are the top and side gain coefficient, respec-
tively, and rc is the circle’s radius (road obstacle).

The contour of the eye model can be changed by adjusting
the parameter gain coefficient [kh kw]. To make the eye model
boundary fit well to the boundary of road obstacle ocwell, [kh
kw] needs to be determined. The optimal gain evaluation func-
tion with geometric constraints is designed as:

bestEyeDist kh; kwð Þ ¼ min μhkh þ μwkwð Þ
s:t:0≤x≤ rcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ f e xð Þ½ �2
q

−rc
				

				≤demax

8>><
>>: ð5Þ

Here, [μh μw] represents the weight value of [kh kw]. demax
represents the maximum allowable fit distance.

As shown in Fig. 3, through numerical traversal, condition
judgment methods to select the results that meet the require-
ments, the colored area indicates all the gain coefficient [kh kw]
that satisfies the constraints of Eq. (5). Because kh has a more
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Fig. 3 Eyemodel gain coefficient optimization results. a The relationship
between kh and rc. b The relationship between kw and rc

7    Page 4 of 12 Journal of Intelligent & Robotic Systems (2022) 105: 7



significant influence on the intersection of eye model and
circle, μh = 0.8 and μw = 0.2 are set to Eq. (5), and the optimal
gain coefficient value (black dots) tends to be horizontal in
Fig. 3. Therefore, the sum of mean and standard deviation of
the optimal gain coefficient value set (black dots sequences)
are used as the best estimate value (black straight lines): kh* ≈
1.1, kw* ≈ 2.0. The eye model of ocj is only a univariate
function of ocj radius, expressed explicitly as:

eye oc j
� � ¼ x je; y

j
e

� � j jx je ≤j j kwD3; y je ≤j j f e x je
� �		 		� � ð6Þ

Here, point (xje, y
j
e) is inside the eye model of ocj in ocj-x-

cjycj. Thus, the shape of the eye(oc) is automatically adjustable
with the change of the radius of oc.

Therefore, the eye model of OC can be expressed as:

EOC ¼ eoc j
� 		eoc j ¼ Trd

ocj eye oc j
� �

; j ¼ 1; 2;…;m
o

ð7Þ

Here, eocj is eye model area of the j-th road obstacle, Trd
ocj is transformation matrix from ocj-xcjycj to ori-xriyri.

2.1.3 Initial Path Planning Model

Taking ori-xriyri as the starting coordinate system in Fig. 2a,
and picking n points in sequence with the step lengthΔl as the
origin along the road centerline (yri direction) to establish a
local coordinate system set {olk-xlkylk | k = 1, 2, …, n}, then
the initial path sequence is expressed as:

Path ¼ xpk ; ypk

 �

j; k ¼ 1; 2;…; n
n o

ð8Þ

Here, (xpk, ypk) is the coordinate of the k-th initial path point
Prk in ori-xriyri, ypk = Δl(k-1) + yp1, and the resultant force Flk

mix

xpk
� �

at Prk can be expressed as:

Flk
mix xpk

� � ¼ Flk
EOC xpk

� �þ Flk
OL xpk
� �þ Flk

ATT xpk
� � ð9Þ

Here, Flk
EOC xpk

� �
and Flk

OL xpk
� �

present the repulsive force
along the xlk axis direction generated by EOC and OL at Prk,
respectively (calculate the repulsive force only for obstacles

that intersect with the xlk axis). Flk
ATT xpk

� �
present the attrac-

tive force between Prk-1 and Prk, and the resultant force Flk
mix

xpk
� �

is the scalar sum of the absolute values of the above
three components.

Specifically, As shown in Fig. 2c, all potential field force
curves can be obtained by Eq. (9), the closer the position to the

obstacles, the greater the obstacle repulsion force Flk
EOC �ð Þ and

Flk
OL �ð Þ, and vice versa, the smaller, where, the Flk

OL �ð Þ func-
tion curve is symmetric about the road centerline, the repul-
sion force in the inner region of the obstacle is set to infinity,
and the direction of the obstacle repulsion force will only be

parallel to the xlk axis; the smaller the distance between Prk-1

and Prk, the smaller the attraction force Flk
ATT �ð Þ, and vice

versa, the larger it is, the Flk
ATT �ð Þ function curve is symmetric

about Prk-1, and the green dot represents theminimum value of
the resultant potential field force, which corresponding to the
abscissa position xP2 (the red square dot) on the xl2 axis. Then
the path points inPath can be sequentially calculated based on
known Pr1 measured by sensors.

Different from the PFM, the resultant force Flk
mix xpk

� �
in

Eq. (9) has no attraction force of goal point, and the resultant
force is not the vector sum of each component force. The
proposed method only needs to successively calculate the ab-
scissa xpk of the smallest resultant force point in the olk-xlkylk,
and the ordinate ypk of Prk is calculated in advance, and the
path length is positively correlated with the set path number n,
so the improved artificial potential field model proposed does
not have the problem of falling into local minima due to the
combined force vector being zero as in the PFM.

As shown in Fig. 4, the initial path based on the eye model
has no mutation, which verifies that the eye model can im-
prove the smoothness of the path curve generated by the arti-
ficial potential field model while ensuring safety.

To sum up, the proposed improved artificial potential field
model can adaptively and quickly generate smooth and safe
initial path curves of arbitrary length in road scenes (including
obstacles) without falling into local minima.

Fig. 4 Different types of trajectory planning result. The initial state: xs1 =
0.1 m, ys1 = 0 m, θs1 = 0.45π, ρs1 = 0.1215m−1, vs1 = 0.1 m/s. The best
path is generated by LSQ-QN solver, LSQ path is generated by LSQ
solver, actual motion path is simulation motion based odometry model
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2.2 Path Optimization

Path satisfies the obstacle avoidance constraint but does not
fully meet the requirements of curvature constraints.
Therefore, a path optimization model considering multiple
constraints is designed to generate a new optimal path based
on Path.

2.2.1 State Sequence with Constraints

The motion state sequence is expressed as:

State ¼ Srkf jk ¼ 1; 2;…; n
o

ð10Þ

Here, Srk = [xsk, ysk, θsk, ρsk, vsk]
T, is the k-th state of oct in

ori-xriyri. (xsk, ysk) is the position of the oct; vsk, θsk, and ρsk
represent the speed, direction angle, and steering curvature
of oct.

Path optimization constraints at Srk include obstacle avoid-
ance, curvature, and path curve deviation constraint:

osk ≥omin
ρskj j≤ρmax
dρskj j≤dρmax
odsk ≤odmax

8><
>: ð11Þ

Here, osk is the nearest distance between the inflation line
footprint (ILF) model (the IFL model is composed of a
straight-line segment and a circle in Fig. 2d, which is more
suitable than the circumscribed circle) and the obstacles,
which should be over the set safety distance omin. The curva-
ture ρsk and its derivative dρsk need to be within the maximum
curvature ρmax and curvature change rate dρmax, respectively.
The distance odsk between Srk and Prk cannot exceed the set
value odmax.

2.2.2 Optimization Objective Function

To consider the complexity of the path curve, the standard
fifth-degree polynomial curve q(x) is applied. The multi-
constrained path optimization problem is transformed into an
unconstrained optimization model by transforming the in-
equality constraints Eq. (11) into 4 monotonically increasing
sub-cost functions, where, sub-cost function conversion at Srk
is expressed as χ(ek, em, eλ) = eλ||max(0, (|ek| - em))||

2. The

comprehensive cost function eV að Þ is obtained by summing up
the above sub-cost functions of each waypoint (k from 2 to n),
and when the comprehensive cost eV að Þ reaches the lowest
value, the optimal path curve polynomial coefficient is obtain-
ed, as follows:

a* ¼ argmineV að Þ ð12Þ

eV að Þ ¼ ∑
n

k¼2

χ osk ; omin;λoð Þ þ χ ρsk ; ρmax;λρ

� �þ
χ dρskdρmax;λdρ
� �þ χ odsk ; odmax;λodð Þ

� �
ð13Þ

Here, a = [a0, a1, a2, a3, a4, a5], is coefficient of q(x), [λo,
λρ, λdρ, λod] is penalty factor matrix.

2.2.3 Optimization Model Solution

Initial condition: the Sr1 is calculated by the perception sys-
tem; so the low-order coefficient al of q(x) is expressed as:

a0
a1
a2

2
4

3
5 ¼

xs1
−cot θs1ð Þ

ρs1 1þ cotθs1ð Þ2

 �3=2

=2

2
64

3
75 ð14Þ

So the variables that need to be optimized are re-
duced to ah = [a3, a4, a5], which reduces the optimi-
zation computation cost.

Solution method: the LSQ-QN solver combines the least-
square method and the quasi-Newton method. First, the least-
squares method is used to fit Path to obtain the coefficient of
q(x) and take the higher-order term coefficient ah0 = [a30, a40,
a50]. Then, the quasi-Newton method is used to solve Eq. (12)
and set ah0 as the initial value to iteratively obtain the local
optimal solution ah*. If the path curves corresponding to the
optimal solution a* = [al, ah*] bothmeet the constraints in Eq.
(11), the optimal solution is retained; otherwise, it is calculated
and optimized again from the initial path model.

In summary, it can be seen that the best path is a suboptimal
solution near the initial path and is comprehensively influ-
enced by the penalty coefficients of each sub-cost function.
As shown in Fig. 4, the best path curve is discretized into the
best path sequence according to step length Δl, which is
expressed as

xsk ; ysk ; θsk ; ρsk½ �T
n 		k ¼ 1; 2;…; n

o
ð15Þ

2.3 Speed Profile Generation

The speed profile generation model based on Eq. (15) is de-
signed by considering the motion constraints, etc. Similar to
the path optimization model, the optimal speed change
Δvk,k + 1* is obtained by an unconstrained optimization
model, as follows:

Δvk;kþ1
* ¼ argminJ k Δvk;kþ1

� � ð16Þ
J k ¼ λwΔw2

k;kþ1 þ λvΔv2k;kþ1 þ λTΔT−1
k þ λtgΔvtg2 ð17Þ

Here, Jk represents the speed cost function from Srk to Srk
+ 1; [λw λv λT λtg] represents the weight coefficient matrix;
Δwk,k + 1, andΔvk,k + 1 represent the velocity change inΔTk;
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Δvtg = |vtg - vsk + 1| represents the target speed following error,
where vtg and vsk is target velocity and actual velocity, respec-
tively. The high-level decision planner can adjust the actual
speed of the robot by changing the target velocity vtg.

Jk is a quadratic function aboutΔvk,k + 1, derivate Jk to get
the minimum value:

Δvk;kþ1
* ¼

2λwρskþ1 ρskþ1−ρsk
� �

−2λtg−
λT

Ed Srk ; Srkþ1ð Þ
� �

vsk þ 2λtgvtg

2λwρskþ1
2 þ 2λv þ 2λtg þ λT=2Ed Srk ; Srkþ1ð Þð Þ

ð18Þ

Here, Ed(Srk, Srk + 1) denotes the Euclidean distance be-
tween Srk and Srk + 1. Combining the Eq. (15) and initial
velocity vs1, the best speed profile sequence V can be calcu-
lated, as follows:

V ¼ Vs1;ΔT 1;Vs2;…;ΔTn−1;Vsn½ �T ð19Þ

Here, Vsk = [vsk, wsk]
T is the velocity vector at oct.

Finally, combining Eqs. (15) and (19) to get Statewith time
intervals. Based on the Ackermann model, the motion control
command sequence is transformed from V can drive MCR.
The actual motion path is shown in Fig. 4, the path length is
about 4 m, but the tracking error is within 2 mm at the xr
direction.

3 Experiments and Results

3.1 Numerical Experiments

The robot motion simulation experiments in two typical sce-
narios of straight and arc are designed based on the analysis in
Chapter 2. The parameters of the numerical simulation envi-
ronment refer to the parameters of the actual scene in
Chapter 3-B. The robot geometric size, steering curvature lim-
it, and motion model parameters are the same as those of the
actual prototype, road width, obstacle size, and motion speed
refer to the actual scene. The performance of the HPFM with-
out global path reference is tested, as shown in Figs. 5 and 6.

As shown in Fig. 5, in the straight and curved roads sce-
narios, there are two shapes of road obstacles: circle obstacle
oc and rectangle obstacle op, where the rectangle obstacle will
be decomposed into multiple circles, and each circle is proc-
essed using eye model, as in Fig. 5a where op2 is decomposed
into two circle obstacles, similarly, obstacles of arbitrary
shape can also be decomposed into multiple circles of differ-
ent sizes, just to ensure that the area occupied by these circles
can envelop the corresponding obstacles. Pink snapshots re-
cord the relative posture of the robot and the adjacent dynamic
road obstacles at the specified time. The dynamic obstacles
move at a uniform speed in the direction of the light blue
arrow, where the beginning and end of the arrow indicate

the start and end positions of the obstacle; the geometric center
point oct of the robot is used as the starting point of the re-
planned trajectory. The robot moves along the path curve of
the i-th plan, and the total time required is Trti (start time tsi to
end time tei). The actual moving time is Trp, where the actual
motion path is represented by the color curve.

According to the simulation results, the HPFM can dynam-
ically adjust the trajectory in real-time so that the robot can
avoid all static obstacles and dynamic obstacles in lateral mo-
tion, oblique motion, conjugate motion, and opposite motion
effectively, and the scene change is small, the adjacent re-
planned path curves have good coincidence and consistency
in Fig. 5.

The re-planned path length is about 3-4 m, whose curvature
is within the range [−0.59, 0.59], and the change is uniform
and stable. The difference is that the curvature of the curve
road (0.2 m−1, road centerline radius rrd = 5 m) itself forces
the curvature of the robot’s movement to be maintained near
0.1 m−1.

The axis of the eye model changes with the trend of the
road centerline. The eye model contour can automatically de-
form to adapt to the road, and the outer contour curve remains
smooth, which has a positive effect on the smoothness of the
path curve in different road scenes and has good practicability.

Figure 6a and b describe the speed profile of the point oct in
Fig. 5a and b, the re-planned path in Fig. 5 is coupled with the
corresponding re-planned speed profiles, orange and green
point express the start point of re-planned speed profiles. As
shown in Fig. 6, the actual linear speed of the robot is posi-
tively correlated with the target speed change, and the actual
speed responds quickly. In the steady-state phase, the adjacent
re-planned linear velocity profile has a high degree of coinci-
dence, and the steady-state error ess is due to the limitation of
other penalty terms in the speed cost function.

The above simulation experiment uses the Intel(R)
Core(TM) i5-3230M 2.60GHz computing platform. After
more than 30 re-planned tests, the average re-planned period
is about 184 ms, whose three main parts are: initial path
planning(92 ms), path optimization(90 ms), speed
planning(1.8 ms).

3.2 Practical Robot Results

As shown in Fig. 7, the dimensions of the experimental pro-
totype are 1085 × 616 × 925 (mm3), the total mass is about
80 kg, and the total power of the drive motor is about 550 W.

The experimental prototype is equipped with a ZED Stereo
camera and RPLidar A2 lidar to collect environmental infor-
mation, ZED camera mainly collects 3D point cloud data in
the front area of the robot, while lidar mainly collects 2D point
cloud data in 360 degrees around the robot. According to the
geometry, color, and other features of the obstacles, the above
point cloud is cut into a collection of point cloud clusters using
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a threshold segmentation method, and then each point cloud
cluster is fitted to an approximate geometry (such as circle,
straight line segment, rectangle, etc.) according to its features
in turn to obtain a collection of road obstacles and boundary
obstacles.

The above algorithms for sensor data processing, trajectory
planning, autonomous positioning, and motion control are de-
veloped based on the Robot Operating System, and the
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autonomous navigation system running on the Jetson TX2
development board sends speed commands to the Arduino
microcontroller. The Arduino converts the command into
the control signal to drive the motor rotation and collects data
from the IMU and encoders mounted on both rear wheels in
real time, and feeds it to the autonomous navigation system.
The positioning subsystem combines the IMU data, encoders
data, and the relative position information between the proto-
type and the boundary obstacles, and then uses the EKF algo-
rithm to fuse and calculate the relationship diagram of the state
(pose and speed) of the prototype (point obs) and time (See
Figs. 8b, d and 9).

As shown in Fig. 8, subfigures (a) and (c) describe the
experimental effects of the indoor and outdoor straight
road scenes, respectively. Subfigures (b) and (d) respec-
tively record the actual motion path curve of the obs of the
robot and the process of robot posture (light gray arrow)
over time.

As can be seen from Fig. 8, the robot moves longitudinally
along the road and passes through the obstacles (subfigures (c)
and (d) contain two dynamic obstacles oc1 and oc2). After that,
the robot returns to the road centerline. The curvature of the
path curve changes steadily within the limit range [−0.59,
0.59]m−1, which can be verified from the changing trend of
the front wheel rotation angle and attitude.

As shown in Fig. 9, subfigures (a) and (b) describe the
speed profile of the point obs on the robot in the subfigure
(a) and (b) of Fig. 8, respectively. As shown in Fig. 8, the
actual linear speed can follow the target speed effectively,
and the actual speed profile changes more smoothly than the
simulation result curve. During 3–16 s in Fig. 9a, the average
linear speed is 0.28 m/s, and the standard deviation is
0.049 m/s; during 2–16 s in Fig. 9b, the larger the target speed,
the larger the steady-state error, which is consistent with the
above simulation results.

3.3 Methods Analysis and Summary

Five motion planning algorithms with high similarity in the
road scene are selected and compared from five aspects. The
evaluation indicators [19] are: ①scene complexity (SC),
including the types of road scenes and obstacles; ②path
quality (PQ), including the smoothness, clearance, length,
and flexibility of the path; ③speed profile quality (SPQ),
including response speed, tracking error, stability, and ad-
justability; ④computation efficiency (CE), including
model complexity, real-time performance; ⑤experimental
level (EL), including completion about numerical simula-
tion and prototype experiments. According to the data
provided in the references, the evaluation results in
Fig. 10 are as follows.

1) SC & EL: HPFM, AKMP [6], and FP [5] have complet-
ed simulation tests in a variety of road scene types that contain
a certain number of dynamic and static obstacles, but the
AKMP [6] has a relatively low obstacle density in the scene
and the remaining methods only complete part of the scene
tests.

2) PQ: the path length of the LCM [3] is short and improv-
ident, and the smoothness of the motion path is poor. The
path quality of the remaining algorithms is all good, and
the path length and clearance generated by HPFM are
adjustable.

3) SPQ: AKMP [6] and FP [5] perform very well in this
respect, HC-TEB [10] and CES [13] cannot directly adjust the
speed. Although HPFM’s speed profile smoothness is slightly
weaker, it is better than LCM [3].

4) CE: HPFM has good real-time performance without
considering hardware performance and the significant differ-
ences in the environment map.

4 Conclusion

A new on-road motion planning algorithm for the MCRs in
straight/curve road scenes containing dynamic and static ob-
stacles is proposed. Conclusions are as follows:

1) The potential field method integrated with the eye
model can improve the initial path more smooth and
safer sufficiently, and path optimization model based
on the fifth-degree polynomial curve, which can adapt
to the dynamic road scenes effectively, and has good
real-time performance(182 ms), smoothness, and safety.
This method can reduce the complexity of path planning
and significantly improve the quality of the path curve.
The speed profile generation method provides an analytic so-
lution that can deal with any fifth-degree polynomial curve,
which has good real-time performance (1.8 ms) and tracking
effect.

Fig. 9 The speed profile. a Speed profile in the indoor scene, b Speed
profile in the outdoor scene
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2) The robot can move autonomously and steadily in the
experimental scene, which verifies that the HPFM has excel-
lent dynamic adaptability. Besides, the HPFM is also applica-
ble to the motion planning of differential-drive mobile robots
and omnidirectional mobile robots in road scenes, where only
the curvature constraints need to be modified. HPFM provides
a practical and feasible solution for wheeled mobile robots to
move on indoor and outdoor roads.

In future works, we will further explore the coupling rela-
tionship between the parameters in the motion planning mod-
el, and reduce the difficulty of adjusting the model parameters
by analyzing the environmental conditions. In addition,
follow-up research on the design of the perception system
for curve road and other scenes is carried out to broaden the
application scope of the robot in the road scenes.
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