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Abstract

We have demonstrated that 3D target-oriented human arm reaches can be represented as linear combinations of discrete
submovements, where the submovements are a set of minimum-jerk basis functions for the reaches. We have also
demonstrated the ability of deterministic feed-forward Artificial Neural Networks (ANNs) to predict the parameters of the
submovements. ANNs were trained using kinematic data obtained experimentally from five human participants making
target-directed movements that were decomposed offline into minimum-jerk submovements using an optimization
algorithm. Under cross-validation, the ANNs were able to accurately predict the parameters (initiation-time, amplitude, and
duration) of the individual submovements. We also demonstrated that the ANNs can together form a closed-loop model of
human reaching capable of predicting 3D trajectories with VAF .95.9% and RMSE #4.32 cm relative to the actual recorded
trajectories. This closed-loop model is a step towards a practical arm trajectory generator based on submovements, and
should be useful for the development of future arm prosthetic devices that are controlled by brain computer interfaces or
other user interfaces.
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Introduction

We are interested in understanding the process by which people

accurately reach with their arms to objects in the environment.

Such movements are typically made smoothly and accurately to

targets throughout the reachable volume of the arm despite

obstacles that must be avoided and/or perturbations due to

unknown masses being held in the hand or to external forces.

Better understanding the movement parameters relevant for

successfully producing these three-dimensional reaches would

provide insight into natural neural control mechanisms, as well as

suggest artificial control methods for rehabilitation (e.g., prosthetic

limbs, functional electrical stimulation) and robotic systems.

Human reaching movements have symmetric bell-shaped

velocity profiles when no accuracy constraints are present [1],

but tend to become asymmetric as the required accuracy at the

target increases [2]. This phenomenon may be a result of feedback

processes [3,4] responding to variability caused by noise in the

nervous system [5].

In order to reach a target, the nervous system must perceive the

states of the hand and target, plan motor commands based on

these perceived states, and execute the commands using the

musculoskeletal system. Variability during these three phases [6–

10] all cause variability in the final movement. The motor system

may plan and execute movements such that the cost of errors due

to movement variability is minimized in the movement dimensions

where the task imposes constraints [11,12].

As a movement progresses, error detected by sensory feedback

in conjunction with internal models of afference and efference is

evaluated, and the remaining portion of the trajectory is modified

accordingly [3]. These trajectory modifications may occur at

discrete points in time, or may occur as a continuous process [13].

Several models hypothesize that reaching is composed of a series

of submovements, where each submovement represents a discrete

modification to the overall trajectory [3,4,14–21]. Neural corre-

lates of submovements have been found [17,22–24], lending

support to this hypothesis. In addition, overlapping submovements

have been used to describe human arm movements in able-bodied

adults [25,26], infants [27], and in adults recovering from stroke

[28,29]. Overlapping submovements have also been used to

describe handwriting [30], wrist movements [16], and head

movements [31].

Our motivation was to develop a model of human reaching

sufficiently realistic to allow for corrections during the movement.

Such a model could be used to simulate reaching trajectories and

aid in development of future arm prosthetic devices. We have

assumed that the current movement state is evaluated continu-

ously [32] and that appropriate trajectory modifications are

initiated at discrete points in time as overlapping submovements

that add to the overall reaching movement.
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In the first part of this study, we determined whether the

submovement initiation process that would be necessary for a

discrete-submovement model of human reaching could be

captured and mimicked using deterministic Artificial Neural

Networks (ANNs) that extract relevant parameters from ongoing

movement kinematics. In the second part of this study, we

determined whether these ANNs could together form a submove-

ment-based ‘‘closed-loop’’ model (i.e., one that includes ongoing

corrections for movement errors) that accurately predicts exper-

imentally recorded arm reaching trajectories made to arbitrary

targets.

To accomplish this, we decomposed experimentally recorded

reaching movements into their submovement components using

an optimization procedure, assuming that each submovement was

a minimum-jerk trajectory [1,25,26,33]. Then, separate ANNs

were trained to learn the relevant parameters of the decomposed

submovements: (1) initiation times, (2) durations, and (3) ampli-

tudes. Finally, the ANNs were combined to form a closed-loop

model that generated accurate reaches with trajectories similar to

experimentally recorded trajectories. An early version of this work

has been presented at a conference [34].

Methods

A. Ethics Statement
This experiment was approved by the MetroHealth System

Institutional Review Board with protocol number IRB10-00126.

Five able-bodied right-handed adult human participants were

enrolled in this study. None of these participants were from

vulnerable populations. Capacity to consent was determined over

the course of multiple discussions with each potential participant,

who verbally indicated that they understood the study and

expressed interest in enrolling. Then, the participants provided

written informed consent. This process was consistent with

requirements DHHS 45 CFR Part 46, FDA 21 CFR Parts 50

and 56, and HIPAA 45 CFR Part 164.

B. Experimental Setup
Each of the five participants (labeled A, B, C, D, and E) made

right-hand reaching movements from a starting arm position to a

series of targets randomly positioned in the 3D reachable

workspace in front of them (Fig. 1). Participants wore a rigid

index-finger brace that completely immobilized the interphalan-

geal joints and partially immobilized the metacarpalphalangeal

joint. The starting position mimicked the posture of the arm when

resting on the armrest of a chair or wheelchair, and was cued using

a sphere displayed holographically via two concave mirrors

(Mirage, Opti-Gone International, Ojai, CA USA).

The target cue was a hollow sphere octant with an inside radius

of 1.59 cm attached to a robotic actuator (HapticMaster, Moog in

The Netherlands, Nieuw-Vennep, The Netherlands) with the

concave side facing the participants. In spherical coordinates, the

target cue encompassed a range of h~ 0,p=2
� �

and Q~ 0,p=2
� �

, and

allowed participants to estimate the center of the sphere as the

intersection of the three orthogonal planes that ‘‘sliced’’ the

sphere. This physical sphere octant provided enough visual cues

for the participants to imagine the rest of the sphere. In software, a

virtual spherical target of radius 1.27 cm was co-aligned with the

center of the physical sphere octant. This arrangement enabled

(and required) participants to move to the target without physically

touching it. Performance in the task was judged relative to the co-

aligned virtual target.

Three-dimensional fingertip and target positions were sampled

at 100 Hz using an optical tracking system (Optotrak 3020,

Northern Digital Inc., Waterloo, Ontario, Canada), with infrared

markers placed at the fingertip and on the robotic actuator.

Throughout the experiment, custom Simulink (Mathworks Inc.,

Natick, MA USA) software (1) recorded fingertip and target

position data in real time from the Optotrak and (2) controlled the

positioning of the robotic actuator.

The robotic actuator positioned the target at a series of random

locations in the reachable workspace. When the actuator stopped

for each target, an audible cue instructed the participant to initiate

movement from the starting position to this target. Whenever the

fingertip entered the virtual target, another audible tone sounded.

Following a one second dwell period, an audible cue then signaled

the participant to return to the starting position. The participant

dwelled again for one second at the start position. Then, the

robotic arm repositioned the target, which took approximately

3.560.25 seconds (mean and standard deviation). Then, an

audible cue signaled the next reach. Participants were instructed

to reach as quickly and as accurately as possible. Each participant

made 375 reaching movements.

Post-processing was done offline in MATLAB (Mathworks Inc.,

Natick, MA, USA). Trials where participants did not appropriately

follow the audio cues or physically touched the experimental

apparatus, and trials where markers were occluded for more than

five consecutive time steps (i.e., for .50 ms), were dropped from

further analysis. After this process, participant datasets included

258, 332, 321, 351, and 353 reaches, respectively. The remaining

data were digitally resampled to provide uniform time steps and to

interpolate for occlusions less than 5 time steps, and smoothed with

a zero-phase low-pass digital filter at 10 Hz to remove any artifacts

unrelated to the movements. These datasets are available for

download in Data S1.

C. Submovement Decomposition through Optimization
An optimization procedure [33,35,36] was performed to find

the set of minimum-jerk submovements whose summation closely

approximated the measured trajectories. Minimum-jerk trajecto-

ries [1] have the form:

Figure 1. Experimental setup (left) and recorded position
trajectories (right) for one participant. Participants made reaching
movements from the start position (A) to a target presented on the end
of a robotic actuator (B). The start position was a holographic sphere in
an arm-rest-like position. The target position was displayed to the
participants as a hollow sphere octant, one eighth of a sphere. From the
displayed portion of the sphere, participants were required to imagine
the rest of the sphere (inset, C). The recorded position trajectories (black
traces) to each target (green spheres) were measured using an optical
tracking system. The reaches shown in the figure were recorded from
participant D.
doi:10.1371/journal.pone.0103387.g001

Characterizing and Predicting Submovements during Human 3D Arm Reaches

PLOS ONE | www.plosone.org 2 July 2014 | Volume 9 | Issue 7 | e103387



_xx tð Þ~ 30Dx

td

t{t0

td

� �4

{2
t{t0

td

� �3

z
t{t0

td

� �2
 !

t0ƒtƒ t0ztdð Þ
_xx tð Þ~0

otherwise

ð1Þ

where _xx tð Þ is the x fingertip velocity, Dx is the x amplitude of the

submovement, t0 is the initiation time, and td is the submovement

duration. For this study, the minimum allowable value of td was

set to 0.1 seconds, or the approximate duration of the force

transient generated by a muscle twitch [37].

The summation of a discrete number of minimum-jerk

submovements represents the reconstructed trajectory:

Fx tð Þ~
XN

i

_xxi tð Þ ð2Þ

where N is the total number of submovements and _xxi tð Þ represents

the x velocity of the i-th submovement.

Submovements are three-dimensional, so similar expressions

exist for _yyi tð Þ and _zzi tð Þ. Therefore, each submovement can be

completely described using five parameters: Dx, Dy, Dz, t0, and td .

An optimization was performed to find the parameters that

minimized the following cost function:

Cost~
X

t

Fx tð Þ{Gx tð Þð Þ2

z
X

t

Fy tð Þ{Gy tð Þ
� �2

z
X

t

Fz tð Þ{Gz tð Þð Þ2

z
X

t

Fspeed tð Þ{Gspeed tð Þ
� �2

ð3Þ

where Fx, Fy, and Fz represent the x, y, and z velocity

components of the reconstructed trajectory, and Gx, Gy, and Gz

represent the x, y, and z velocity components of the measured

trajectory. The term that includes Fspeed and Gspeed was

introduced to prevent simultaneous submovements of opposite

amplitudes from occurring [36]. These two parameters are defined

as follows:

Fspeed tð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fx tð Þ2zFy tð Þ2zFz tð Þ2

q

Gspeed tð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gx tð Þ2zGy tð Þ2zGz tð Þ2

q ð4Þ

Since the number of submovements n used in a particular reaching

trajectory is unknown a priori, for each trajectory the decompo-

sition was repeated with n~ 1,:::10f g, which encompasses the

range of submovements decomposed in similar studies

[29,36,38,39]. As the number of submovements n increases, the

cost function Costn decreases but at a decreasing and, eventually,

functionally insignificant rate. The optimal number of submove-

ments nopt was determined using an algorithm that detects the

point of maximum curvature in the optimization cost-per-

submovement curve [40], selecting the minimum number of

submovements required for near-asymptotic performance in

predicting the actual movement:

nopt~ argmax
n[f1,:::10g

11{n

10
{

Costn{ min Costð Þ
range Costð Þ

	 

ð5Þ

An example of this process is shown in Figure 2. The top panel is

the velocity trace of a single reaching movement. The second row

of panels shows the cost-per-submovement curve Costn for this

movement, which was normalized to range from 0 to 1. The point

furthest from the diagonal line was picked as the optimal number

of submovements (Eqn 5). Across all participants and all reaches,

the decomposition process indicated between 2 and 5 submove-

ments per reach, with averages of 2.94, 2.91, 2.79, 3.02, and 2.93

submovements per reach for the five participants.

D. Submovement Initiation-Time Prediction
We trained the first of three ANNs to predict the initiation time

t0 of each of the submovements, using kinematic and timing

features that could be derived causally from the current and past

movement states (see below) as the inputs [16]. The first

Figure 2. Submovement decomposition process. The top
subpanel shows the x, y, and z velocity profiles of a recorded reaching
movement. The second row of panels illustrates the results of the
submovement decomposition process, including the optimization cost
per number of submovements curve (left), the normalized version of
this cost curve (middle), and the selection of the optimal number of
submovements (right, see text for details). The next set of subpanels
show, in each dimension, the measured trajectory (thick), the three
optimal submovements (thin) that compose the measured trajectory,
and the reconstructed trajectory that is the sum of the submovements
(dotted white line). Finally, the timing of the three submovements is
shown at the bottom. The dark lines represent the time when no
correction is necessary, and the gray lines represent when a correction
is necessary.
doi:10.1371/journal.pone.0103387.g002
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submovement in each reach was assumed to begin at time t~0. At

each time step tw0 the network was trained to predict 1 or 0

corresponding to whether or not a subsequent submovement had

begun, as indicated by the submovement decomposition process

described above.

Table 1 summarizes the various movement features that were

used to generate inputs to the ANN. These inputs were derived

from the starting position, the target position, and the set of all

submovements that had already been initiated prior to the current

time step. Specifically, we used the Euclidean distance between

every pairwise combination of positions listed in Table 1 under the

Initiation Time column as inputs to this ANN. In addition to these

inputs, several features related to movement timing were derived

and used as inputs, as described in Table 1. These include an

exponential transformation of time since the start of the

submovement – a transformation that emphasized the early

period of each submovement and improved prediction perfor-

mance for corrections that occurred early in the submovement.

Two binary inputs were also included, corresponding to whether

the fingertip is (or will be) inside the target sphere.

These processed inputs were then used to train a feed-forward

ANN with a five neuron hidden layer, with tansig (tangent-

sigmoid) transfer functions. We found that this architecture

provided a compromise between generalizability and prediction

performance. With fewer than five hidden layer neurons, the

network was unable to learn the input-output relationship, while

performance did not dramatically improve with more than 5

neurons. We performed a 10-fold cross-validation with data

assigned 80:10:10 into training, validation, and testing sets.

Training data was used to compute the ANN parameters,

validation data was used periodically during the training

procedure to insure generality and to prevent over-fitting, and

the testing data was used for the final assessment of predictive

performance once the ANN was trained. The initiation time of

each submovement was determined by running the ANN at each

timestep of the immediately preceding submovement (of the same

reach) until the ANN output first exceeded a threshold of 0.5. This

timestep was then designated as the initiation time t0 for the

current submovement.

E. Submovement Amplitude Prediction
We trained the second of three ANNs to predict the amplitudes

Dx, Dy, and Dz of each submovement of each reach. The inputs to

this ANN were derived from the same set of features (Table 1)

described previously. Position features were converted to relative

distances by taking the pairwise differences in three dimensions.

The magnitudes of the decomposed submovement amplitudes

ranged from 0.46 cm to 56.24 cm. In order to prevent submove-

ments with large amplitudes from inappropriately biasing ANN

training, we applied an additional normalizing transformation.

Specifically, we divided the position input features and output

amplitudes by the ‘‘Distance To Target accounted for by All Prior

Submovements (DTTAPS).’’ For the k-th submovement of a

reach, it is defined as:

DTTAPSk~

xt

yt

zt

2
64

3
75{

xstartz
Pk{1

0

Dx,i

ystartz
Pk{1

0

Dy,i

zstartz
Pk{1

0

Dz,i

2
666666664

3
777777775

��������������

��������������
ð6Þ

where xt, yt, and zt are the target position, and xstart, ystart, and

zstart are the start position. For the first submovement of a reach

there were no prior submovements, so the DTTAPS was simply

the distance from start position to the target.

The instantaneous velocity and acceleration of the fingertip

were also used as inputs to the amplitude prediction ANN because

Table 1. Inputs for Submovement Parameter Prediction.

Category Input Name Initiation Time Amplitude Duration

Position Inputs* Position at start of reaching movement 1D 3D{ 1D

Position of target 1D 3D{ 1D

Current fingertip position 1D

Current submovement start position 1D 3D{ 1D

Current submovement end position 1D 1D

Position at end of all initiated submovements 1D 3D{ 1D

Other Inputs Fingertip currently in target? 1 or 0

Fingertip in target at end of all initiated submovements? 1 or 0

Remaining time in current submovement 1D

Remaining time in current submovement, normalized` 1D

Time since start of current submovement 1D

Time since start of current submovement transformed1 1D

Current fingertip velocity 3D1/4 1D1/4

Current fingertip acceleration 3D1/4 1D1/4

*Position inputs underwent an additional processing step, taking the pairwise differences of the indicated position inputs. For 1D position inputs, differences were
calculated as Euclidean distance. For 3D, the differences were calculated in three dimensions.
{Each 3D difference was normalized by the Distance To Target accounted for by All Prior Submovements (see text).
`Remaining time was normalized to the duration of the submovement.
1The transformed t was e220t.
1/4Velocity and acceleration were transformed by taking the 4th root.
doi:10.1371/journal.pone.0103387.t001
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they provide information about the state of the current movement

plan, the sum of the already-initiated submovements. We found

that the velocity and acceleration distributions ranged over several

orders of magnitude and were skewed with many small values and

a few very large values. We transformed the velocity and

acceleration by taking the 4th root, a power transformation that

simultaneously reduced dynamic range and skewness. These

prevent large-valued velocities or accelerations from biasing the

ANN training.

These inputs were used to train a feed-forward ANN with one

hidden layer containing 10 neurons with tansig transfer functions,

and three output neurons with logsig (log-sigmoid) transfer

functions. Again, we found that this network configuration was a

good compromise between generalizability and performance. The

amplitude ANN was trained and tested using the same cross-

validation used for initiation-time.

F. Duration Prediction
We trained a third ANN to predict the duration td of each

submovement from inputs derived from the same set of features

(Table 1). As before, absolute positions were made relative by

taking the Euclidean distance between each pair of positions.

Velocity and acceleration inputs were transformed using the 4th

root as previously described. However, because duration is a scalar

value, instead of using the three-dimensional transformed velocity

and acceleration as before, we used the respective scalar

magnitudes. These processed inputs were used to train a feed-

forward ANN with one hidden layer containing 10 tansig neurons,

and one logsig output neuron. Again, this network was found to be

a good compromise between generalizability and performance.

The ANN was trained and tested using the same cross-validation

as before.

G. Closed-loop Model for Simulated Trajectories
The three separate ANNs were incorporated into a single

closed-loop model (Fig. 3) of human arm reaching trajectory

generation. In this closed-loop configuration, rather than using

inputs derived from decomposition, the ANNs used inputs derived

from the trajectory generated by earlier ANN predictions. This is a

causal process that allows prediction errors to propagate to

subsequent ANN inputs, as they do in actual reaching movements.

The initial submovement of a target-oriented reach began at

time t~0. The amplitude and duration of this initial submove-

ment were predicted by the corresponding ANNs. With these

parameters, the first minimum-jerk submovement was initiated. At

subsequent 0.01 s timesteps, the initiation-time ANN determined

whether a corrective submovement should be initiated. If an

additional submovement was necessary, its amplitude and

duration were determined using the respective ANNs and the

input data available at that time (i.e., the process was causal). The

predicted trajectory was the sum of the minimum-jerk submove-

ments parameterized by the corresponding ANN predictions.

This process continued until the simulated reach succeeded (hit,

with one second dwell within a 1.27 cm target radius) or failed

(missed, due to timeout conditions of three seconds of simulated

time or 30 triggered submovements). The ratio of successes over

attempts was the Target Acquisition Rate (Table 2). The

performance of the closed-loop model was evaluated on each

target from the cross-validation testing sets.

H. Performance metrics
Each ANN was evaluated by comparing the ANN-predicted

submovement parameters (i.e., initiation time, amplitude, and

duration) to the corresponding parameters decomposed directly

from experimentally recorded trajectories. In addition, the

performance of the closed-loop model was evaluated by compar-

ing generated trajectories to the experimentally recorded trajec-

tories.

We used the metrics variance-accounted-for (VAF) and root-

mean-squared error (RMSE) to quantify the comparison. The

following formulation of VAF was used:

VAF~1{

X
i

yi{ŷyið Þ2X
i

yi{�yyð Þ2
ð7Þ

where yi is the i-th observed value (either directly observed or

decomposed from observed), ŷyi is the corresponding predicted

value, and �yy is the mean of the observed values.

Results

A. Predictions of movement parameters
Figure 4 illustrates the performance of the three ANNs in

predicting submovement initiation time (leftmost column), sub-

movement duration (middle column), and submovement ampli-

tude (rightmost column) for participant D. The top row of panels

represents the first submovement, the middle row represents the

second submovement, and the bottom row the third submove-

ment. In each panel, the blue points plot the ANN predicted

quantity (vertical axes) versus the corresponding experimentally

derived quantity (horizontal axes). Perfect prediction would be

represented by all blue points falling on a line of slope 1.0

(included for reference in each subpanel). The red points indicate

the magnitude of the prediction error, equivalent to the vertical

distance from each blue point to the diagonal line. The %VAF and

RSME for the prediction of the various parameters are indicated

for this participant in each panel. Note that the parameters for

submovements four and above are not shown in Figure 4 because

few movements contained more than three submovements.

Table 2 summarizes several performance metrics for offline and

closed-loop mode, for all participants. Figure 4 and Table 2 will

Figure 3. Schematic representation of the closed-loop model
for trajectory prediction. The initial submovement of each reach is
automatically triggered at time t = 0, when the target is presented. The
initiation time, amplitude, and duration of each submovement are
predicted using the respective Artificial Neural Networks (ANNs), and
the resulting minimum jerk submovement is added to the set of active
submovements until the target is reached.
doi:10.1371/journal.pone.0103387.g003
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be used below to illustrate the characteristics of one participant in

detail and a summary of properties across all subjects, respectively.

1) Initiation-Time. The leftmost column of panels in

Figure 4 illustrates the ability of the ANN to predict submovement

initiation time. In this figure, initiation times are expressed relative

to the start of the previous submovement. The initiation time of

the first submovement was 0 for all movements by definition, thus

the blank panel on the top left. The accuracy of the predictions of

initiation time for the 2nd and 3rd submovements is indicated by

distance of the blue points from the slope = 1.0 line. Errors in the

predicted initiation times were clearly smaller than the magnitude

of the initiation times (the blue points are larger than the red

points). Across all subjects (including the subject illustrated in

Figure 4), the VAF for initiation time predictions increased for the

3rd submovement relative to 2nd (compare the first two lines in

Table 2), and the overall VAF was at least 70% (Table 2, third

line). These VAF values were calculated by lumping together

predictions from all cross-validation folds.

The performance measures associated with Figure 4 are only

meaningful for True-Positive (TP) cases when the model predicted

a correction when there was a correction according to the

experimentally based submovement decomposition. False-Posi-

tives (FP, i.e., when the Initiation Time ANN predicted a

correction when a correction was unnecessary, according to

decomposition), False-Negatives (FN, i.e., when this ANN did not

predict a correction that was actually necessary according to

decomposition), and True-Negatives (TN, i.e., when this ANN did

not predict a correction when one was not necessary according to

decomposition) cannot be represented using VAF and RMSE. In

these cases, the performance of the model was quantified using

sensitivity and specificity.

Sensitivity is defined TP= TPzFNð Þ and is the percentage of

experimentally decomposed submovements that needed correc-

tions that were correctly predicted by the initiation-time ANN.

Sensitivity across participants for predicting corrections was at

least 98% (Table 2). These are the submovements represented in

the leftmost column of Figure 4. This sensitivity suggests that for

up to 2% of the submovements, the ANN did not make a

correction when it should have.

Specificity is defined TN= FPzTNð Þ and represents the

percentage of submovements that did not need corrections that

were correctly recognized as such by the initiation-time ANN. The

specificity was greater than 94% across all participant datasets

(Table 2), suggesting that for less than 6% of the submovements,

the ANN triggered corrections when it should not have.

2) Duration. The second column of panels in Figure 4

illustrates the predictive performance of the duration ANN. The

format and color-coding of these panels are the same as for the

Initiation Time predictions in the left column. As can be seen, the

duration predictions tended to fall close to the diagonal line. For

this particular participant, the errors in duration predictions were

less than the durations themselves, except for the shortest

durations where some red points exceed the diagonal. For longer

durations, the error increased but was less than the total duration.

For every participant, the %VAF for the 1st submovement

duration prediction was lower than the overall %VAF (Table 2).

The overall VAF ranged from 47.9% to 60.2% (Table 2, Duration

section, fourth line). As with initiation-time, these values were

calculated by lumping together predictions from all cross-

validation folds.

3) Amplitude. The rightmost column of Figure 4 illustrates

the predictive performance of the amplitude ANN for the same

Table 2. Performance.

Category Description A B C D E

Initiation
Time ANN

2nd Submovement VAF 67.10% 65.70% 62.27% 59.70% 55.59%

3rd Submovement VAF 84.45% 72.03% 78.18% 75.83% 87.55%

Overall VAF* 80.54% 70.07% 77.60% 72.76% 82.85%

Sensitivity 98.36% 99.36% 98.06% 98.00% 98.65%

Specificity 94.44% 97.40% 95.15% 98.06% 98.37%

Duration ANN 1st Submovement VAF 51.97% 37.99% 40.66% 54.81% 37.85%

2nd Submovement VAF 59.73% 40.74% 54.60% 63.41% 60.20%

3rd Submovement VAF 61.79% 65.97% 39.59% 49.40% 46.79%

Overall Prediction VAF 58.72% 50.96% 47.92% 60.19% 48.01%

Amplitude ANN 1st Submovement VAF 22.48% 34.41% 30.96% 29.26% 30.46%

2nd Submovement VAF 84.11% 79.93% 86.09% 72.71% 72.46%

3rd Submovement VAF 94.78% 89.79% 94.94% 93.75% 95.08%

Overall Prediction VAF 74.20% 67.64% 74.54% 67.32% 70.47%

Closed-Loop
Model

Target Acquisition Rate 91.47% 100.0% 91.28% 99.43% 96.88%

Dist. at Trajectory End{ 0.960.39 cm 0.660.27 cm 0.860.39 cm 0.760.31 cm 0.760.34 cm

Dist. at Failed Trajectory
End{

1.660.68 cm N/A 1.660.49 cm 1.360.80 cm 1.660.54 cm

RMSE vs Actual Trajectory 3.01 cm 3.09 cm 4.32 cm 3.23 cm 3.21 cm

VAF vs Actual Trajectory 97.94% 97.82% 95.95% 97.65% 97.50%

*Does not include first submovement that starts at t = 0 by definition. The Initiation-Time VAF calculations only include True Positives.
{Distance to center of target at end of predicted trajectory. Mean and standard deviation reported.
doi:10.1371/journal.pone.0103387.t002
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participant and for the first three submovements. The format and

color-coding of these panels are similar to the Initiation Time

predictions in the left column, with three exceptions. First, the blue

points represent the magnitude of the predicted amplitude vectors

(vertical axis) versus the magnitude of the corresponding exper-

imentally derived amplitude vectors (horizontal axis). This is

because the amplitude ANN predicted three dimensional ampli-

tude vectors, while the other ANNs predicted scalar values.

Second, the prediction errors indicated by the red points

correspond to the Euclidean distance between the predicted and

experimentally derived amplitude vectors. Note that perfect

prediction of amplitude magnitude does not imply perfect

prediction of amplitude vector direction. The %VAF and the

RMS errors, calculated based on the 3D vector amplitudes, are

indicated in each panel. Third, the green points in each amplitude

subpanel indicate additional information, the distance to target at

the moment of submovement initiation (vertical axis) versus the

magnitude of the experimentally derived submovement amplitude

(horizontal axis). This relationship is an indication of whether or

not submovements cover the remaining distance to target. If the

green points fall on the diagonal line, then the magnitude of the

experimentally derived submovement amplitudes match the

remaining distance to target.

As can be seen from blue points in Figure 4, amplitude

predictions became progressively more accurate (i.e., bunched

closer to the diagonal line) as the reach progressed through

successive submovements. The RMS error decreased with

increasing submovement index as well. The 1st submovement

amplitude predictions had much lower %VAF than subsequent

predictions. These trends were true across all participants

(Table 2). As before, %VAF was calculated by lumping together

predictions from all cross-validation folds.

The magnitude error, indicated by the vertical distance from

blue points to the diagonal line, is correlated with the Euclidean

error, indicated by the red points. This is especially noticeable in

the first submovement (Figure 4 top subpanel). These two errors

would be identical if the direction were predicted perfectly. For

this participant, for all submovements, 89.1% of the differences in

errors were less than 2 cm, and 97.1% were less than 4 cm. These

are small compared to the range of submovement magnitudes in

Figure 4. Prediction performance of initiation-time, duration, and amplitude ANNs for participant D. The columns of subpanels
correspond to the initiation time, duration, and amplitude predictions, respectively. The rows of subpanels correspond to predictions for the first,
second, and third submovements of each reach. Within each panel, the blue points indicate the relationship between the experimentally derived
value of a submovement parameter (x axis) and its ANN-predicted counterpart (y axis). The red points indicate the error in the prediction. For
amplitude, the plotted results represent overall 3D magnitudes and errors, not errors in single dimensions. The green points in the amplitude column
indicate the remaining distance to target when the submovement was initiated. The y values indicate the remaining distance, and the x values are
the corresponding amplitude of the submovement that was made at that time. Also indicated in each subpanel are the average %VAF and RMSE for
this participant.
doi:10.1371/journal.pone.0103387.g004
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Figure 4 and indicate that most of the prediction error can be

explained by magnitude error rather than direction error.

For the first submovement, very few of the experimentally

derived amplitudes covered the remaining distance to target, as

the green points fell above the diagonal line. This indicates that the

decomposed initial submovements tended to undershoot the actual

distance-to-target. The blue points were much closer to the

diagonal line than the green points were. This was also true for the

second submovement.

For the third submovement, many of the experimentally derived

amplitudes covered the remaining distance to target, as the green

points fell very close to the diagonal line. This is consistent with the

fact that, for many of the reaches, the decomposition process

produced three submovements and the third submovement

reaches the target.

B. Closed-loop Model for Simulated Trajectories
The three individual ANNs were combined into a closed-loop

model (Fig. 3) that predicted overall movement trajectories (Fig. 5)

based on previous movement characteristics. Figure 5 gives an

example of the trajectories predicted by the closed-loop model for

10 reach targets selected from participant D’s dataset. The

simulated x, y, and z position trajectories are shown as thin lines.

For comparison, the measured positions for the same reaches are

indicated in thick lines.

While there are minor differences between the experimentally

recorded and the simulated trajectories, the errors are very small

relative to the total distance from the starting location to the

targets. The errors typically manifest as overshoots or undershoots

in one or more dimensions. For the trajectories shown, the VAF

between the actual and predicted trajectories across the entire

movement was 98.48% and the RMS error was 2.47 cm. Across

participants, the overall VAFs of closed-loop model predicted

trajectories were quite high and very consistent (95.9%–97.9%),

and the RMS error was small and consistent (3.01–4.32 cm)

(Table 2, Closed-Loop).

Over all participants, the target acquisition rate of the predicted

trajectories ranged from 91% to 100%. The mean distance to the

centers of the targets at the end of predicted trajectories was less

than 1 cm, and the mean distance for missed targets was at most

1.6 cm. For comparison, the radius of the target sphere was

1.27 cm, and the distance from start position to target was

43.5611.2 cm (mean and standard deviation).

To evaluate the effect of ANN prediction error propagation in

closed-loop, the predicted parameter distributions were compared

to the experimentally derived distributions across all reaches

(Fig. 6). The three panels on the left represent the distributions of

submovement initiation time (shown relative to overall movement

start), duration, and amplitude for participant D. The three panels

on the right represent the distributions of overall number of

submovements, Movement Time (MT), and a plot of MT versus

Distance to Target. For the top four panels, the dark lines

represent the predicted distributions, and the light lines represent

the experimentally derived distributions. In the submovement

amplitude panel (bottom left), the x, y, and z components are

shown separately in red, green, and blue, respectively. For perfect

predictions, the predicted distributions should match the exper-

imentally derived distributions. For the MT vs Distance (bottom

right) panel, blue points represent the predicted data, and red

points represent the experimentally derived data. For perfect

predictions, the blue points should fall in approximately the same

regions as the red points.

Qualitatively, the initiation time, amplitude, submovement

number, and overall MT distributions closely matched their

experimentally derived counterparts. Duration predictions were

also close although there was a 0.06 s horizontal shift between the

peaks of the two distributions (Fig. 6). When the first submove-

ment of each reach was not included in the analysis, the peak shift

reduced to 0.02 s.

The predicted MT to Distance relationship is less variable than

the experimentally derived MT to Distance relationship. For this

figure the experimental MT was defined to start at the beginning

of the first decomposed submovement, and does not include the

one second dwell period. Both the experimentally derived and

predicted MTs increased as overall distance increased.

We also investigated the relationship between the predicted

submovement parameters and the overall distance to target

(Fig. 7), one of the inputs common to all three ANNs (Table 1).

The three panels of this figure correspond to the predicted

initiation times (shown relative to overall movement start),

durations, and amplitudes, respectively, plotted against the

distance to target. A small amount of jitter (,5 ms) was added

to the initiation times to facilitate visualization. The colors of each

point correspond to which submovement it represents, with red

corresponding to the first submovement, green to the second, and

so on (see legend in right panel). Note that only the first four

submovements are shown. The initiation times and amplitudes

were strongly related to submovement number, but durations were

not. Many of the second submovements began at around 50 ms

after movement initiation. In addition, some predictions were

strongly correlated to the distance to target. The four strongest

correlations were in the second submovement initiation time

(linear regression R2 of 45%), second submovement duration (R2

of 49%), and first and second submovement amplitudes (R2 of

56% and 88%, respectively). Many of the predictions were not

correlated to distance to target, such as the first submovement

duration (red points, middle panel) or the third submovement

initiation time (light blue points, left panel).

Discussion

We have found that three Artificial Neural Networks (ANNs)

can accurately predict the essential parameters (initiation time,

amplitude, and duration) of submovements that compose human

reaching movements, using continuous kinematic information

Figure 5. Example closed-loop simulated trajectories. Selected
position trajectories from participant D are shown. Thick lines represent
measured trajectories and the thin lines represent simulated trajecto-
ries. Error between the trajectories is shaded in light gray.
doi:10.1371/journal.pone.0103387.g005
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derived from preceding submovements. We have further demon-

strated these three ANNs can be combined into a closed-loop

model that sums predicted submovements into trajectories that

have similar shape, accuracy, and submovement parameters as

actual trajectories. This ANN-based model can thus be used to

simulate human reaching trajectories with error corrections. As

such, it could be used to simulate the command interface for

various rehabilitation interventions such as Brain-Computer

Interfaces (BCIs).

A. Decomposition of 3D Human Reaching Movements
into Submovements

The set of rapid and accurate radial (proximal to distal)

reaching movements we recorded (Figure 1) is a common first

component of many activities of daily living relevant for

rehabilitation of individuals with arm paralysis [41]. These

movements do not represent all potential directions or speeds of

reaching movements, but they do represent the most important

movements for upper-extremity prostheses. Our task was per-

formed in 3D, against gravity, and to non-repeated targets, with a

large range of distances to target (20 to 70 cm, Figure 6).

In order to train the ANNs, we needed to know the start times,

durations, and amplitudes of submovements that occur during

these 3D arm reaches. This information was determined by

decomposing experimentally measured reaching movements into

their constituent submovements. One common decomposition

method involves parsing movements at landmarks such as zero-

crossings in the velocity, acceleration, or jerk traces of the recorded

trajectory [16,19,21]. The second method relies on fitting a

number of overlapping basis function curves to the movement. An

advantage of the basis function method is that, by definition, each

submovement it decomposes has a consistent parameterization

that we leveraged to make trajectory predictions. The implemen-

tations of the basis function method differ in terms of whether the

trajectory is represented in terms of Cartesian [26,33], tangential

[39], or joint angle coordinates [38]. Rohrer & Hogan [33]

proposed 3D Cartesian velocity decomposition into minimum-jerk

submovements, but did not actually implement this. To our

knowledge, our study is the first implementation of 3D submove-

ment decomposition from Cartesian velocity trajectories.

While there are an infinite number of basis functions that could

have represented the reaching trajectories, velocity profiles of

rapid aimed movements are approximately bell-shaped [1] and

evidence from stroke recovery and developing infants suggest that

movements are composed of separate bell-shaped submovements

[27–29]. We used the minimum-jerk trajectory because it has been

shown to represent reaching trajectories [1] and it has a low

number of parameters per submovement (start time, duration, and

3D amplitude) with defined start and end times that reduce its

computational complexity relative to other basis functions such as

the lognormal support-bounded or Gaussian functions [42].

Rohrer and Hogan [33] showed that many characteristics of

submovements were consistent regardless of whether minimum-

jerk, Gaussian, or lognormal support-bounded basis functions

were used. This suggests the ANNs would have successfully

learned the relationships between the decomposed submovements

even if we had used a different basis function.

B. Prediction Accuracy
The predictions of the overall movement trajectories by the

combined three-ANN Closed-Loop Model were extremely accu-

rate, with high %VAF and low RMSE (Fig. 5, Table 2). Almost all

the targets were reached, and on missed reaches, the mean

distance to target centers (Table 2) was still only slightly larger

than the 1.27 cm target radius. The functional consequence of

such misses, for many real-world reaching tasks, would typically be

insignificant.

In addition, the predictions of the submovement parameters

were also quite good, especially for the initiation time and

amplitude (Fig. 4, Table 2, Fig. 6). Furthermore, the rates for

incorrectly predicting a submovement that did not actually occur

and NOT predicting one that did occur were very low (Table 2),

and led to realistic submovement numbers in the closed-loop

trajectory simulations (Fig. 6).

Interestingly, the predictions of the submovement parameters

tended to improve with the submovement number, i.e. the model

became more accurate as the hand approached the target. This

could arise in part simply because of the mathematics. As a

movement proceeds, subsequent submovements begin closer to the

target so the range of possible relevant parameters progressively

declines. However, the improvement in predictions with decreas-

Figure 6. Closed-loop movement and submovement parame-
ters, predicted versus experimentally derived. The three left
panels show the distributions of initiation times (top left), durations
(middle left), and amplitudes (bottom left) for participant D. Within each
panel, the dark lines represent the predicted distributions, and the light
lines represent the corresponding experimentally derived distributions.
Initiation times are shown relative to overall movement start. The three
right panels show the respective distributions for the number of
submovements (top right), the overall movement time (MT) (middle
right), and the MT versus Distance relationship (bottom right). For MT vs
Distance, blue points indicate ANN predictions and red points indicate
experimentally recorded values.
doi:10.1371/journal.pone.0103387.g006
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ing distance to the target may also reflect a movement strategy

where more variation is allowed early in the movement, but as the

arm approaches the target, the movement becomes more carefully

controlled. This view is very similar to the ‘‘two-phase’’ strategy

proposed by Rand & Shimansky [43]. As variation decreases, the

submovement parameters become more predictable.

C. Do submovements represent error corrections?
Human arm movements appear to (1) have early movement

variation and (2) compensate for this variation by planning

submovements that undershoot the target [44,45]. The amount of

undershoot is proportional to the amount of variation expected at

the end of the initial submovement [45] such that even with the

variation, target overshoots (and the associated energy-inefficient

movement-direction-reversing error correction) rarely occur. This

target undershoot was observed in the decomposed submovements

and in the predicted submovement amplitudes (Fig. 4).

An important feature of this description is that the amount of

variation expected can be learned over time [3] and allows for

strategies to develop where corrections are not necessarily made in

response to sensory feedback. In our results, the distribution of

experimentally derived initiation times peaked at approximately

50 ms for the featured participant (Fig. 6). The ANN predictions

also showed this pattern (Fig. 6 and 7) especially in the second

submovement. It is possible that the early (,50 ms) corrections of

each reach were made as part of a feed-forward strategy developed

in response to the early movement variation, while the later

corrections were made with sensory feedback. However, it is also

possible that the 50 ms peak is an artifact of our particular choice

of basis function – a different submovement shape could

potentially better fit the beginning of each reach and shift the

initiation time peak to a higher time. These possibilities could be

explored in a future study designed to systematically affect the

amount of feed-forward control during reaches. For example,

enforcing a short movement time requirement might encourage

feed-forward behavior, while making the target invisible until

movement start might discourage it. These, or related interven-

tions, would provide context for the interpretation of time intervals

between subsequent submovements.

Another question is whether corrections are implemented via

submovements at all. Elliot and colleagues [46] suggested that

corrections to reaching trajectories either occur as a series of

overlapping submovements that appear continuous when summed

together, or, that corrections are made continuously through

graded adjustments of muscle gain. Because these strategies could

result in similar continuous trajectory profiles, it is difficult to

distinguish between them solely based on kinematics. Several

groups have identified neural correlates of submovements in

single-unit [17], BOLD [24], and EEG recordings [22]. It has also

been shown that cortical neurons may represent movement

fragments that add to form trajectories [47], a necessary feature

of submovement-based motor control. Yet even with this evidence

it is possible that the neural activity represents not submovements

but instead continuous movement parameters that happen to be

correlated to the onset of decomposed submovements.

Using a kinematics approach with non-overlapping submove-

ments [19], Dounskaia and colleagues [48–50] suggested that

rather than directly mediating accuracy at the target, most

submovements were related to motion termination or were by-

products of slow movement speeds. Motion termination submove-

ments are potentially reconcilable with our view as they can also

be considered gross error corrections. However, the view that

submovements are by-products of slow movement speed suggests a

more continuous non-submovement-based control strategy that is

quite different from the various studies [14,16,27] on which we

based our model. Further work will be needed to explore these

hypotheses, especially in the context of overlapping submove-

ments.

Our closed-loop model incorporates overlapping submovements

that are assumed to represent distinct error corrections that the

motor system purposefully but subconsciously initiates at discrete

points in time [14]. The submovements could be initiated in

response to information derived from visual or proprioceptive

feedback, an internal model of expected afference and efference,

task constraints, or other criteria that the motor system may

optimize for [3,17], such as energy expenditure [51], smoothness

[1], or straightness [43], that could manifest as a feed-forward

correction. We did not assume that error corrections were solely

made in response to accuracy at the target.

Error corrections are difficult to model because their governing

processes are not directly observable. In the current study,

submovements decomposed from reaching trajectories provided

a framework in which to observe the error correction process and

allowed us to build a closed-loop trajectory prediction model. This

approach does not depend on whether or not the motor system

actually represents movements as submovements, and can be

extended to different sets of causal movement-related data, or to

Figure 7. Closed-loop submovement parameter predictions, plotted versus overall distance to target. The three panels represent the
initiation time (left), duration (middle), and amplitudes (right) of the submovements, respectively. The four colors represent the first four
submovements, labeled according to the legend in the rightmost panel. By definition, the first submovements initiated at time t~0, so these points
were omitted. Subsequent initiation times are shown relative to overall movement start. A small amount of jitter has been added to the initiation
times to facilitate visualization. The amplitude points plotted are the scalar magnitudes of the submovement amplitudes.
doi:10.1371/journal.pone.0103387.g007
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different kinds of reaching movements. For instance, decomposed

minimum-jerk submovements have been used to study noncon-

scious cognitive processes during reaching [35].

It was not a goal of the current study to prove or disprove the

hypothesis that submovements represent error corrections. We

assumed this model of error corrections based on literature, and

used it to build a model capable of making error corrections

during simulated arm reaches. Approaches that are not based on

submovements, such as the two-phase strategy of Rand &

Shimansky [43,52], could also work and deserve further investi-

gation.

D. Limitations
We demonstrated that ANNs trained on kinematic information

alone can accurately predict many aspects of reaching movements.

However, because the ANNs were deterministic, the predicted

trajectories did not exhibit the variation that is expected of

repeated reaching to the same target. This is a result of not taking

into account neuromotor noise [5] that causes variability, and

limits the prediction %VAF that the deterministic ANNs can

achieve. For example, for a particular measured reach, if the

participant’s neuromotor noise state initially biased the reach in a

certain direction, this would not be reflected in the corresponding

kinematic ANN inputs. This is likely why prediction of the initial

submovement amplitude and durations were worse than the

overall prediction performance (Table 2 Duration and Amplitude,

Fig. 4). The relatively poor initial duration predictions (Fig. 4)

were largely responsible for the difference between closed-loop

predicted and experimentally derived duration distributions

(Fig. 6). These limitations could be addressed in a future study

that incorporates neuromotor noise in the form of pre-movement

neural activity [8] and including these in the ANN inputs.

The ANNs used in our model were black boxes rather than

physiologically structured. By definition, the ANN outputs were

systematically but nonlinearly related to the inputs, making it

difficult to draw conclusions about the role of any particular input

in making predictions. For instance, the overall distance to target

appears in each set of ANN inputs (Table 1, the difference

between Position at start of reaching movement and Position of

target) but is only highly correlated to some predicted parameters

(Fig. 7). Further analysis is necessary to determine the nature of

the dependence of ANN predictions on the distance to target or

other particular inputs.

We adopted the ANN structure because it is capable of learning

nonlinear relationships, such as the submovement generation

process, in a general way. Future work could examine the

physiological mechanisms of such behavior and propose a more

specific, mechanism-based substitute for the ANNs.

E. Implications
Submovements decomposed from 3D Cartesian coordinates

provide enough kinematic information to predict subsequent

submovement parameters. While prediction quality would likely

improve with richer inputs either in the form of higher-

dimensionality kinematics (joint angles) or the addition of neural

information, we found that 3D Cartesian kinematics are sufficient

and are computationally simpler.

It has been shown that performance of potential rehabilitation

interventions in open-loop (i.e., offline predictions without error

correction) is often not a good predictor of closed-loop perfor-

mance [53,54]. The reason for the discrepancy is that a human

user in closed-loop would be able to correct for errors. The ANN-

based closed-loop model can be used to simulate human reaching

that incorporates error corrections and would allow interventions

that involve arm reaching, including BCIs, to be tested in

simulated closed-loop situations without a human user, prior to

being evaluated in vivo.

Conclusion

Given a set of kinematic input variables, individual ANNs can

predict the initiation times of subsequent submovements along

with their amplitudes and durations. Also, these ANNs can form

the basis of a closed-loop model that simulates trajectories that are

similar to their experimentally measured counterparts.

This work is consistent with, but does not prove, the hypothesis

that movements are composed of submovements that represent

error corrections. Also, this study produced a practical submove-

ment-based trajectory generator modeled after actual reaching

movements that is capable of making error corrections. We

anticipate that this type of model will be a useful development tool

for the rehabilitation community.

Supporting Information

Data S1 This zip file contains five .csv files correspond-
ing to the reaching kinematics recorded from each of the
participants. The .csv files are named according to participant,

labeled A through E.
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