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Abstract: Aiming to fi nd key genes and events, we analyze a large data set on diffuse large B-cell lymphoma (DLBCL) 
gene-expression (248 patients, 12196 spots). Applying the loess normalization method on these raw data yields improved 
survival predictions, in particular for the clinical important group of patients with medium survival time. Furthermore, we 
identify a simplifi ed prognosis predictor, which stratifi es different risk groups similarly well as complex signatures.

We identify specifi c, activated B cell-like (ABC) and germinal center B cell-like (GCB) distinguishing genes. These 
include early (e.g. CDKN3) and late (e.g. CDKN2C) cell cycle genes.

Independently from previous classifi cation by marker genes we confi rm a clear binary class distinction between the ABC 
and GCB subgroups. An earlier suggested third entity is not supported. A key regulatory network, distinguishing marked 
over-expression in ABC from that in GCB, is built by: ASB13, BCL2, BCL6, BCL7A, CCND2, COL3A1, CTGF, FN1, 
FOXP1, IGHM, IRF4, LMO2, LRMP, MAPK10, MME, MYBL1, NEIL1 and SH3BP5. It predicts and supports the aggres-
sive behaviour of the ABC subgroup. These results help to understand target interactions, improve subgroup diagnosis, risk 
prognosis as well as therapy in the ABC and GCB DLBCL subgroups.
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Introduction
Diffuse large B-cell lymphomas (DLBCL) are the most frequent B cell Non-Hodgkin’s lymphomas. Diag-
nosis relies at present on morphological, immune-phenotypic and laboratory parameters. Clinically, the 
International Prognostic Index (IPI; age, tumor stage, serum lactate dehydrogenase concentration, perform-
ance status, and the number of extranodal disease sites) (The International NHL Prognostic Factors Project, 
1993) is often used to predict outcome in DLBCL. On the molecular level, gene expression signatures 
have been defi ned that predict outcome in DLBCL independent of the IPI (Rosenwald et al. 2002).

Alizadeh et al. (2000) investigated the gene expression patterns of “diffuse large DLBCL, follicular 
lymphoma and chronic lymphatic leukemia. They identifi ed two novel distinct types of the DLBCL by 
gene expression profi ling. The “activated B cell-like DLBCL”(ABC) group has a lower overall survival 
rate than the “germinal centre B cell-like DLBCL” (GCB) group. Von Heydebreck et al. (2001) applied 
their class discovery method ISIS on a subset of 62 samples and 4026 clones of the data by Alizadeh 
et al. (2000) and confi rmed for these data the two entities ABC and GCB. The survival analysis of 
Rosenwald et al. (2002), assigned several genes to gene expression signatures and based on this an 
outcome predictor of survival. The constituents are the “Germinal-center B-cell signature”, “MHC class 
II signature”, “Lymph-node signature”, “Proliferation signature” and the gene “BMP6”. The predictor 
has a greater prognostic power in classifying patients into risk groups than the IPI (The International 
Non-Hodgkin’s Lymphoma Prognostic Factors Project 1993). Starting with 36 well known DLBCL 
prognosis genes from the literature, Lossos et al. (2004) found a six gene based outcome predictor and 
applied it to the data sets of Alizadeh et al. (2000) and Rosenwald et al. (2002). The latter one is an 
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ongoing study and thus an extension and revision 
of the old data from Rosenwald et al. (2002) was 
possible for us (see Material and Methods).

In this study we investigate fi rst the robustness 
of the data (Rosenwald et al. 2002) with respect to 
advanced and more appropriate normalization meth-
ods. For that, “loess” and “scale” are performed on 
the data set, as we are aware, for the fi rst time and 
the results are discussed. Next, unbiased statistical 
classifi cation analysis confi rms for this enlarged data 
set the classical subgroups ABC DLBCL and GCB 
DLBCL independent from hierarchical clustering. 
Furthermore it supports those subgroups being 
homogeneous entities in the data.

Our analysis includes the expression values for 
the above 36 DLBCL prognosis genes and we 
apply more adequate tools from the Bioconductor 
library (Gentleman et al. 2004) to derive better 
predictors than e.g. the six-spot predictor found by 
(Lossos et al. 2004). Moreover, we identify and 
demonstrate that expression of early and late cell 
cycle genes distinguishes well the pathological 
entities ABC and GCB DLBCL.

Finally, we show that the most signifi cant gene 
expression differences found including cell cycle 
genes, classical marker genes and all best separat-
ing genes are integrated into a compact key regula-
tory network with clear expression differences 
between both diffuse large B-cell-lymphoma sub-
groups. This fi nding is confi rmed comparing the 
average distribution of genes on the Lymphochip 
and the connection distances between them in the 
human interactome as well as by confi rming key 
gene expression differences found in our main data 
set from new analysis of further gene expression 
data by Shipp et al. 2002. A picture emerges where 
a central regulatory circuit tunes immune signa-
tures, apoptotic and proliferation pathways in dif-
ferent ways between ABC and GCB DLBCL. The 
introduced methods can also be applied to other 
studies of gene expression analysis in cancer to 
establish improved prognosis predictors, identify 
regulatory circuits and for proper group 
classifi cation.

Materials and Methods

Gene expression data and materials
Patient samples were obtained after informed 
consent and were treated anonymously during 
microarray analysis. DLBCL lymph-node biopsies 

were either snap frozen, frozen in OCT or disag-
gregated and frozen as a viable cell suspension. 
DLBCL gene expression was measured with cDNA 
arrays containing genes preferentially expressed 
in lymphoid cells or genes known or presumed to 
be part of cancer development or immune function 
(“Lymphochip” microarrays (Alizadeh et al. 
1999)). Our array includes spots to measure 
individual exons of the same gene which may be 
expressed differently in both lymphoma sub-
groups.

Microarray procedures
Fluorescent images of hybridized microarrays were 
obtained using a GenePix 4000 microarray scanner 
(Axon Instruments). Images were analysed with 
ScanAlyze (M. Eisen; http://www.microarrays.
org/software), and fl uorescence ratios (along with 
numerous quality control parameters; see ScanAlyze 
manual) were stored in a custom database. Single 
spots or areas of the array with obvious blemishes 
were flagged and excluded from subsequent 
analyses. Messenger RNA was extracted according 
to standard procedures (Sambrook and Russel, 
2001) from tumor biopsy specimens of DLBCL 
patients. All cDNA microarray analyses were 
performed using poly-(A)+ mRNA (Fast Track, 
Invitrogen). For each hybridization, fl uorescent 
cDNA probes were prepared from an experimental 
mRNA sample (Cy5-labelled) and a reference 
mRNA sample (Cy3-labelled) consisting of a pool 
of nine lymphoma cell lines (Raji, Jurkat, L428, 
OCI-Ly3, OCI-Ly8, OCI-Ly1, SUDHL5, SUDHL6 
and WSU1). The use of a common reference cDNA 
probe allows the relative expression of each gene 
to be compared across all samples.

The original data generated by Rosenwald et al. 
(2002), in which the subgroups were defi ned by 
hierarchical clustering was provided to us by the 
authors. In our study we analyse an enlarged data 
set as follows: more patients (a total of 248 patients, 
each patient array included 12196 gene spots cor-
responding to 3717 genes), including a more recent 
classifi cation. The outcome of this are 12.3% more 
ABC and 5.2% less GCB patients. 19 patients have 
been removed from the ABC and GCB groups. In 
detail, fi ve ABC patients were removed from the 
earlier ABC classifi cation, however, 14 other ones 
are now associated with it. From the earlier GCB 
group, 14 patients were assigned to other entities 
and 11 other patients were newly classifi ed as GCB. 
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Altogether, 25 patients were thus newly recruited 
into these two groups. Moreover, each spot is now 
analyzed in the new study individually. There was 
no pooling of data on datapoints (spots) as done in 
older analyses (Rosenwald et al. 2002). We further 
fully account for the changes in patients analysed 
(described above) by such an individual spot 
analysis. In summary this yielded about 3.3 times 
more data points per patient.

Statistical analyses were performed using the 
statistical software package R (R Development 
Core Team 2005) and Bioconductor (Gentleman 
et al. 2004). For normalization of gene expression 
data, methods such as vsn, loess and scaling meth-
ods were used. To detect differentially expressed 
genes, functions from the Bioconductor package 
“limma” were applied. Its special strength is the 
robust statistics based on linear models and a mod-
erated t-test statistics including multiple testing 
correction methods (Smyth, 2005, pp 397–420; 
Smyth, 2004). Based on diagnostic plots we chose 
gene expression normalization using within-array 
and between-array normalization methods. The 
within-array normalization “loess” (Yang et al. 
2001, pp 141–152; Yang et al. 2002) adjusts expres-
sion log-ratios in the way that they average to zero 
within each array to make genes on one array 
comparable to each other. We applied the “scale” 
method (Yang et al. 2001, pp 141–152; Yang et al. 
2002; Smyth and Speed, 2003) for between-array 
normalization. It scales log-ratios to have the same 
median-absolute-deviation (MAD) across arrays. 
By this, log-ratios are normalized to show similar 
variance across a batch of arrays.

Unbiased class discovery was performed using 
the ISIS method (identifying splits with clear 
separation; von Heydebreck et al. 2001). It searches 
for binary class distinctions in the gene expression 
levels in an unsupervised fashion. The diagonal 
linear discriminat score (DLD) quantifi es for every 
found bipartition how strongly the two classes are 
separated. A maximum sample size of 150 patients 
for each ISIS run considered 3000 measurements 
and delivered 50 best separating genes.

Cox regression hazard models were done 
applying the R package “survival” (Andersen 
et Gill 1982; Therneau et al. 1990), to calculate the 
infl uence of gene expression values on the survival 
time and Kaplan Meier estimates. The outcome 
predictor score is calculated with the coeffi cients 
of the Cox model and the gene expression 
values.

Supervised class analyses were performed 
using “Prediction Analysis of Microarrays” (PAM) 
(Tibshirani et al. 2002). PAM performs a nearest 
shrunken centroid method to identify a subset of 
genes that best characterizes samples as ABC or 
GCB DLBCL. It computes a standardized centroid 
for each class and shrinks the prototypes for a given 
classifi cation error threshold. In the resulting list 
the obtained optimal (for the given error) shrunken 
centroid identifi er is followed by the number of 
genes it contains. The chosen classifi er is validated 
by ten-fold cross-validation.

Smaller gene sets typically show larger error 
rates. However, if almost equally good performing 
classifi ers existed, we parsimoniously chose the 
one containing the smallest number of genes. The 
proposed best gene set used for our analysis had 31 
spots (labelled by an ‘x’ character in Fig. 2).

Protein association networks were identifi ed 
by the STRING database, version 6.3 (von Mering 
et al. 2005), of known and predicted protein-
protein interactions. It combines information from 
genomic context, experiments, other databases, 
co-expression and text-mining. Homology predic-
tions transfer and extend these data further. We 
used the STRING database with a Bayesian con-
fi dence level of 0.400 (medium confi dence) and a 
custom limit of 0 (only direct interactions of pro-
teins are considered).

Results

Improving prognosis prediction 
and separation of DLBCL subtypes

Statistical validation of the DLBCL 
subgroups ABC DLBCL and GCB DLBCL
Both subgroups were originally introduced on the 
basis of gene expression profi ling. There has been 
some suggestion that certain diffuse large B-cell 
lymphomas form a third group (Hans et al. 2004). 
Furthermore, it was interesting to see whether this 
classifi cation is also valid for this data set by an 
unsupervised classification method. To decide 
independently of any pre-clustering of specifi c 
marker genes whether there are two, three or even 
more lymphoma subgroups and whether they 
overlap with groups according to other group 
defi nitions (e.g. pathology). ISIS (see Materials and 
Methods) systematically investigates unsupervised 
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all possible bipartitions of the gene expression data 
(excluding mediastinal lymphomas; see Materials 
and Methods) without prior knowledge of marker 
genes or signature pre-classification (Fig. 1). 
Nevertheless the bipartitions with the three highest 
separation scores support and identify the two 
pathological entities ABC and GCB. Distinct 
subgroups (splits) within the ABC or GCB entities 
are not validated by ISIS. In particular, no 
appropriate bipartition could be observed using 
previously putatively classifi ed Type 3 patients and 
the ABC or GCB samples (data not shown). 
The precise separation into exactly these two 
subgroups is thus well supported even by an 
unbiased statistical method independent of 
predefi ned expression signatures.

Survival prognosis detection on the updated 
data and after advanced normalization
The signatures by Rosenwald et al. (2002) are 
independent from the clinical IPI score (see Intro-
duction) and useful predictors within the low, 

medium and high IPI risk groups on their data set 
(Rosenwald et al. 2002). We now tested the per-
formance of advanced normalization methods, 
namely the methods “loess” (Yang et al. 2001; 
Yang et al. 2002) and “scale” (Smyth and Speed, 
2003; Yang et al. 2001; Yang et al. 2002) on our 
data set. The IPI score is considered here only as 
an independent and established clinical prognosis 
marker. On a normalized data set of 240 patients 
and considering all individual spots we utilised 
Kaplan Meier plots (Fig. S1) and reveal the good 
performance of the gene expression profiles 
(Rosenwald et al. 2002) also for this data set using 
the improved normalization procedure. The low 
risk IPI group in the renormalized data is not as 
well separated between the best and worst quartile 
as in Rosenwald et al. (2002). The separation of 
the high risk group is virtually unchanged. How-
ever, in the medium risk group a better separation 
was achieved by the renormalization and single 
spot analysis of the enlarged patient data. For the 
medium risk patients a better separation into high 
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Figure 1. DLBCL splits into sub-groups independent of signatures. Optimal bipartitions of patients are calculated by ISIS based on 
optimal bipartition subsets of genes (50). Every column of the x-axis represents a patient. On the bottom, the DLBCL-type of the patient is 
labelled. On the y-axis every row shows the bipartitions ranked in increasing score of separation quality. The three best bipartitions show a 
very consistent and clear signal separating the ABC- from the GCB-patients. The unsupervised method ISIS reveals the ABC-GCB classifi cation 
independent of proliferation signatures. No evidence for a previously suggested third group “Type 3” was found. Only a few patients are 
falsely assigned if compared to the DLBCL gene signature assignment.
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and low risk is particularly important for prognosis 
prediction. This method including the advanced 
normalization can also be applied to any other 
microarray data set.

An improved six-spot predictor for survival 
prognosis comparing multi- and univariate 
analysis
The immune signature requires the measurement 
of gene expression for many genes. We investi-
gated whether a combination of array spots 
achieves similar good classifi cation. Multivariate 
analysis (4 spots results in Table S1 and Table S2, 
they include immune genes) was computationally 
prohibitive for more than 4 spots. However, by 

univariate analysis we could systematically test the 
capability of gene expression values from indi-
vidual spots to separate patients with good or bad 
prognosis in Kaplan-Meier plots. We considered 
for all three IPI classes the separation of best 
patient quartile with good prognosis from the worst 
patient quartile with poor prognosis. Using all 
genes and the 160 patients from the training-set 
we identifi ed the spots predicting outcome best. 
Together, in a multivariate model, they form a 
predictor separating best and worst quartiles for 
all three IPI categories including the 80 patients 
from the validation-set. The fi ve-spot-predictor 
considers different splicing forms in HLA-DRB5. 
Five spots (HLA-DPa, Brca, HLA-DQa, and two 
clones of HLA-DRB5; details in Suppl. Material) 
are about equal to the six gene predictor of Lossos 
et al. (2004). However, six genes and spots (HLA-
DPa, HLA-DQa, HLA-DRb5, SEPT1, EIF2S2 and 
IDH3A genes, Fig. 2) show even an improvement 
for this classifi cation task. The separation of the 
best and worst quartiles in the three IPI classes is 
comparable (Fig. 3) to the prediction success of 
the complete signature of Rosenwald et al. (2002) 
and classifi es different patient quartiles better than 
the set proposed by Lossos et al. (2004; using 
LMO2, BCL6, FN1, CCND2, SCYA3 and BCL2 
for overall survival in DLBCL). Our predictor is 
delivered by bioinformatical analysis of gene 
expression measurements, whereas Lossos et al. 
used real time PCR. However, our method can also 
be applied to real time PCR data.

Moreover, we tested the infl uence of the high 
correlation between the genes HLA-DPa, HLA-
DQa and HLA-DRB5 on the quality of the predictor. 
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Figure 2. Prognosis prediction applying a molecular predictor of 6 gene spots after improved normalization. Kaplan-Meier plots 
show large differences in the survival rate for all risk groups. They are estimated by a Cox-Regression Hazard model of the genes listed in 
Table 1. Normalization was improved applying the “loess” method. x-axis: time (years); y-axis: probability of survival, predicted for the risk 
groups “low”, “medium” and “high”.

Table 1. Optimal molecular survival predictor applying 
six genes.

Gene name Gene description
HLA-DPa Major histocompatibility complex,
 class II, DP alpha 1
HLA-DQa Major histocompatibility complex,
 class II, DQ alpha 1
HLA-DRb5 Major histocompatibility complex,
 class II, DR beta 1
SEPT1 Serologically defi ned breast cancer 
 antigen NY-BR-24=Similar to DIFF6
EIF2S2 Eukaryotic translation initiation factor 2
 subunit 2
IDH3A Isocitrate dehydrogenase 3 (NAD+) alpha
The gene symbol (left side) is followed by the gene description. 
Three of these genes are HLA major histocompatibility complex 
genes (HLA).
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The survival prediction with predictors of non 
correlated genes from the univariate analysis yields 
no improvement in the results (data not shown).

Genes best distinguishing DLBCL subgroups
Nearest shrunken centroid analysis using the 
R-package PAM (“Prediction Analysis of Microar-
rays”) identifi es best separating genes for the two 
subgroups (ABC and GCB DLBCL) with smallest 
cross-validation error (Fig. S2). Gene numbers of 
classifi ers are plotted versus the resulting error 
rates. The optimal classifi er (Table S3) requires 
only 18 genes (31 spots) with an overall cross 
validation error of 6.2% (5 out of 82 ABC DLBCL 
samples were falsely predicted as GCB (6.1%); 
7 out of 112 GCB DLBCL as ABC (6.25%)). 

Larger gene sets show similar error rates (see 
Materials and Methods), smaller gene sets result 
in inferior classifi cation (Fig. S2). GCB DLBCL 
is correctly predicted even with fewer genes, how-
ever, the error for ABC DLBCL samples increases 
strongly (Fig. S2 lower plot). For clinical applica-
tion both entities have to be well separated.

Functional relationship of the genes 
differently expressed in ABC and GCB

Classical lymphoma gene-markers compared 
to the identifi ed best separating genes
We tested whether 35 classical lymphoma genes 
(listed in Table S4; as described in Monti et al. 2005; 

Table 2. Regulatory network of genes best distinguishing ABC and GCB.

Functional categories Gene Description
Proliferation CCND2 cyclin D2, regulates G1 to S transition of CDK4/CDK6; CTGF,
  fi broblast growth factor
 MAPK10 map kinase 10
 MYBL1 transcriptional activator in the proliferation of neurons, sperma-
  togenic and B-lymphoid cells (recognition sequence:
  5´YAAC(GT)G-3´)
 ASB13 ankyrin repeat and sox box-containing protein 13, mediates
  protein-protein interactions, sox box couples suppressors of
  cytokine signalling and binding partners with elongin B and C
  complex to target them for degradation
 SH3BP5 SH3 domain binding protein, targets protein-protein interaction

Block of proliferation MME synonyms CALLA, common acute lymphocytic leukemia
  antigen, the synonym CD10 stresses its properties as a tumor
  suppressor gene
 BCL7A putative tumor suppressor gene in T-cell lymphoma
  
Apoptosis BCL2 integral outer mitochondrial protein to block apoptosis
 BCL6 transcriptional repressor, necessary for germinal center forma-
  tion in lymph nodes

Differentiation CTGF fi broblast differentiation
 FOXP1 forkhead box P1
 LMO2 LIM domain only 2 transcription factor for hematopoetic
  development
 LAMP expressed in lymphoid cells during development
 COL3A1 collagen type III
 FN1 fi bronectin 1, cell adhesion
 NEIL1 base excision repair

Immune cell specifi c IGHM immunoglobulin heavy chain gene
 IRF4 interferon regulatory factor 4
The genes of the network in Figure 4 (suppl.) are associated to the functional categories “Proliferation”, “Block of proliferation”, “Apoptosis”, 
“Differentiation” and “Immune cell specifi c”, by their annotation. Most of them are part of the antagonists “Proliferation” and “Block of 
proliferation”. This indicates the complex regulation and importance of proliferation in the determination of ABC and GCB lymphomas. 
Classical lymphoma genes (see Table S4) known previously are given in italics.
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Lee et al. 2003; Willis et al. 1999; Polo et al. 2004; 
Rosenwald et al. 2002) separate well the two major 
subtypes of DLBCL. Three metabolic enzyme genes 
for LDH (IPI score prognosis marker), IDH and 
PDH were added. Altogether these 38 genes cor-
respond to 180 spots. PAM analysis identifi ed a set 
of 9 well classfying genes (21 spots) (Table S5 and 
S6), with an overall error rate of 14% (10% training 
set; 15% for the validation group). However, the 
classical genes require more spots and their separa-
tion is not as good as the optimal prediction set 
above (Fig. S2). After this we merged these classi-
cal lymphoma marker genes with the best separat-
ing gene set found above for classifi cation. We 
found, however, that here the best separating genes 
achieve all top ranks in this task (Table S7). Only 
mitogen-activated protein kinase 10 (MAPK10), 
the best classical lymphoma marker, reaches top 
ranks. BCL6 as the next best classical marker 
reaches only rank 31. Below we show that classical 
lymphoma genes are close to but not identical to 
the central regulatory network and genes best 
separating GCB and ABC DLBCL.

Cell cycle genes are differently expressed 
in ABC and GCB
Cell cycle is critical for cancer cell proliferation 
and we next investigated by PAM analysis (see 
Material and Methods) whether the functional 
group of cell cycle genes alone could separate the 
two B-cell lymphoma groups. We identifi ed 473 
spots, which correspond and are homologous to 
the cell cycle genes found by de Lichtenberg et al. 
(de Lichtenberg et al. 2005). These genes are anno-
tated according to expression in the cell cycle state 
(100 steps between 0 and 99 for a full cell cycle).

The separation between the lymphoma subgroups 
improves as more genes are used. 77 cell cycle 
genes (Table S8, Table S9; error rate of 15.4%) 
yield low error rates using a medium sized 
gene set (classifi cation optimum, see materials and 
methods). These include genes such as Butyrophilin-
like protein 9 (BTNL9), early B-cell factor 
(EBF), TSC22 domain family member 1, Cyclin-
G2 (CCNG2), Interleukin-6 (IL6), immediate 
early response protein 5 (IER5) and further 
homologues of typical cell cycle stage-specifi c 
genes (de Lichtenberg et al. 2005) such as TIMP 
metallopeptidase inhibitor 1(TIMP1) and v-maf 
musculoaponeurotic fibrosarcoma oncogene 
homolog (MAF), which mainly refl ect the late cell 

cycle states. Figure 3 compares the complete cell 
cycle genes in our data set with the subset of 77 
genes in a density plot. The black line indicates all 
cell cycle states of the whole chip and the blue line 
the subset of 77 genes. The densities of these gene 
sets clearly differ in the early (steps 0–18) and in 
the late steps (75–85) of cell cycle (p = 6.65·10−10; 
Wilcoxon one sided test).

Cell cycle spots, which show the biggest differ-
ence in gene expression values between ABC and 
GCB DLBCL, are in the late steps 72, 80, 84 and 
85 (Fig. S3; M/A plot, ie,middle intensity of the 
genes against difference in expression of both 
lymphoma subgroups). Moreover, these cell cycle 
states form a compact cluster in the plot. This data 
indicate a clear difference in cell cycle states 
regarding the two DLBCL subgroups.

Cell cycle genes, classical lymphoma genes 
and best separating genes form a compact 
network important for DLBCL subtype 
distinction between ABC and GCB
Are the genes differentially expressed in ABC and 
GCB DLBCL specially connected, and in particular, 
if so, how do their respective gene products interact 
with each other? To analyze this systematically, 
different large scale protein interaction databases 
were investigated such as the hand curated HPRD 
database (Peri et al. 2003). The large protein-
protein interaction database STRING (von Mering 
et al. 2005) allowed us to establish an interaction 
network (Fig. S4, Fig. S5). Note that this analysis 
focuses on the clearly differentially expressed 
genes in ABC and GCB (Table S7). Classical 
lymphoma gene markers (dark grey boxes) as listed 
in Table S5 combine and interact with the compact 
cluster of the most powerful differentiating genes 
(white boxes) for the whole data set (Table S3) 
as delivered by PAM. The connections are 
mainly found by text-mining; however, the two 
interactions between BCL6—IRF4 and between 
SH3BP5—MAPK10 are available from the HPRD 
data set (experimental/biochemical data) as a direct 
physical interaction (blue). The different article 
sources re-examine the interaction predictions for 
different cancer entities: “DLBCL”, “no cancer 
disease” and “other cancer”. Note that these 
categories support the interactions from three 
different view points (Fig. S5). We fi nd that 11 of 
the 18 best separating genes and 8 of the 9 
separating classical lymphoma genes are members 



406

Blenk et al

Cancer Informatics 2007:3 

of this dense interaction network. This is supported 
by the interaction data, the HPRD database and 
various specifi c interaction evidence types collated 
by the STRING database.

The remaining 8 genes, 7 from the first 
mentioned set and 1 from the latter one, are not 
part of the databases. Cyclin D2 (CCND2) occurs 
in both subsets and we obtain a protein association 
network of 18 nodes. Regarding network regulation 
the underlined genes are higher expressed in ABC, 
all others are higher expressed in GCB subtype: 
ASB13, BCL2, BCL6, BCL7A, CCND2, COL3A1, 
CTGF, FN1, FOXP1, IGHM, IRF4, LMO2, LRMP, 
MAPK10, MME, MYBL1, NEIL1 and SH3BP5 
(Table S10). The characteristics of the network are 
described in Table 2: Protein functions involved in 
the network include stimulation of proliferation, 
block of proliferation, apoptosis, differentiation 
and immune cell specifi c functions. Both DLBCL 
subgroups show clear differences in these specifi c 

pathways and sub-networks. Furthermore, the large 
collection of protein associations from the STRING 
database shows that all these different proteins 
separating the two subgroups are connected by fi rst 
order interactions. As a control for this fi nding of 
a compact regulatory network separating both 
entities regarding gene expression, we tested that 
all Lymphochip genes are equally distributed with 
regard to the human interactome and not pre-
clustered (Fig. S6). Moreover, the characteristic 
path length for randomly picked genes from the 
Lymphochip is 3.985 (Fig. S7) and clearly longer 
than the direct interactions (path lengths one or 
two) found for the differentially regulated network 
(Fig. S4).

Moreover, 5 of the 8 cell cycle genes, identifi ed 
in Figure S3 above, to be regulated differently are 
directly interacting with this regulatory network 
(Fig. S5). The genes with a signifi cantly higher 
expression in the ABC group are marked by a red 
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Figure 3. Early and late cell cycle genes are overrepresented in the best separating cell cycle gene set. The density plot compares 
the distribution of different cell cycle gene sets. x-axis: cell cycle states (from 0 to 99; complete cell cycle). y-axis: relative frequencies. Black 
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rectangle, whereas green ellipses mark higher 
expression in GCB. These differences are an 
interesting pointer for a more specifi c anti-cancer 
treatment.

Gene functions for well separating genes
The shorter survival of patients with ABC DLBCL 
is connected to pathways expressed differently 
from GCB DLBCL; thus the well known BCL2, 
as a central apoptosis blocker is higher expressed 
and allows cancer cell survival in ABC DLBCL. 
BCL6, a transcriptional repressor important for 
B-cell differentiation, is down-regulated in ABC 
DLBCL. Altogether, apoptosis genes are lower 
expressed in the ABC DLBCL subtype.

Furthermore, the low gene expression values of 
the gene MME, a proliferation blocker, CCND2 
and BCL7A, both genes which promote prolifera-
tion, and high values of SH3BP5 in the ABC 
DLBCL patients stimulate proliferation.

Both the immune cell specifi c genes IGHM and 
IRF4 are higher expressed in ABC DLBCL; how-
ever, all genes which are associated with differen-
tiation are down-regulated.

In conclusion, this network indicates down-
regulation of apoptosis and differentiation for the 
ABC DLBCL patients whereas the proliferation 
and immune cell stimulating genes are up-
regulated.

From the cell cycle genes which are connected 
to the network, IL6 and IER5 show higher values 
in the ABC group whereas BTNL9 and CCNG2 
show an up-regulation in the GCB group. For the 
latter it is known that CCNG2 and IL6 block the 
proliferation.

In order to further validate the found gene 
expression differences, we show that several of 
these are found again after analyzing further data 
from Shipp et al. (Shipp et al. 2002; Wright et al. 
2003; Table S12).

Do the clear gene expression differences 
between both subgroups refl ect only differences in 
B-cell specifi c regulation? In order to gain a fi rst 
impression regarding T-cell regulatory pathways 
from our data we tested whether notch genes, 
trans-membrane receptors important in T cell 
differentiation and repressed in many cancers 
(Reizis and Leder, 2002), regulate differently the 
target genes in the two groups. Target genes are 
regulated by GY-box-, Brd-box-, and K-box-class 
microRNAs in the 3’-UTRs e.g. in Drosophila 

(Lai et al. 2005). We mapped all genes of the 
Lymphochip to the transcripts annotated in 
ensembl. We screened these and found candidate 
notch target genes, whose transcripts bear the 
mentioned target sequences. All three boxes were 
found in the genes given in supplementary 
Table S11. From these transcripts the “Deoxycytidine 
kinase” gene (ENSG00000156136, DCK) and the 
“Translocation associated membrane protein 2” 
(ENSG00000065308, TRAM2) show clear gene 
expression differences between the ABC and GCB 
subgroups.

Discussion

Marker genes for DLBCL subtypes
This study improves marker gene detection for 
prognosis and subtype diagnosis of diffuse large 
B-cell lymphomas (DLBCL) applying a wide range 
of methods useful also for other gene expression 
measurements in cancer. A special patient group 
are primary mediastinal B-cell lymphomas. 
Patients recognized with this disease (6 cases) were 
excluded from the data set and hence are neither 
visible nor contained in the further analysis. This 
is in accordance with previous studies (Rosenwald 
et al. 2002) and other data sets (Alizadeh et al. 
2000; Shipp et al. 2002; Wright et al. 2003).

The classifi cation of all other diffuse large B-
cell lymphoma into two pathological entities has 
been established by marker genes and their expres-
sion (Alizadeh et al. 2000). A third entity has been 
discussed (Hans et al. 2004) but was disputed again 
in the light of recent data. Our statistical analysis 
by ISIS method (von Heydebreck et al. 2001) 
provides an independent method and validates and 
supports only these two subgroups. In addition to 
previous work (Rosenwald et al. 2002), ISIS 
analysis here clearly indicates for a large data set 
the bipartition of all patient data into the two sub-
groups ABC and GCB through an unbiased and 
independent statistical method. An adequate nor-
malization of the gene expression intensities apply-
ing the loess method (Yang et al. 2001; Yang et al. 
2002) allowed a better separation for best and 
worse outcome quartiles of survival, in particular 
for patients with medium IPI score where a better 
separation is important for accurate prognosis. We 
found a simplifi ed (6 instead of 17 gene spots) 
survival predictor useful for clinical monitoring 
e.g. applying RT-PCR (Lossos et al. 2003). 
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Multivariate analysis showed that a four-spot pre-
dictor does not perform well. However, univariate 
analysis found a six spot prognosis predictor which 
is superior to a previous six-spot predictor (Lossos 
et al. 2004) and to an alternative fi ve spot predictor, 
in particular regarding high risk patients.

Integrated picture of all gene 
regulation differences
Following this, the statistical analysis identifi ed all 
genes which well distinguish the ABC and GCB 
DLBCL subgroups including differences in early 
and late cell cycle which could be exploited for a 
differential cytostatic therapy in the two sub-
groups.

We considered all the identifi ed gene expression 
differences in order to obtain a detailed description 
of the differences between both DLBCL subgroups 
regarding regulation of the cellular network. We 
show that immune signatures, apoptotic and pro-
liferation pathways are tuned in different ways 
between ABC and GCB DLBCL. A central circuit 
of genes is formed by genes that distinguish both 
lymphoma subgroups and are regulated differently. 
We also verifi ed this for other data after completion 
of the fi rst analysis. For the data in Shipp et al. 
(2002) and Wright et al. (2003) once again key 
genes from the central network shown in Figure S4 
are confi rmed as having a signifi cant different 
regulation in this totally different data and patient 
set (Table S12). Classical lymphoma genes are 
either directly or indirectly interacting with it. 
Besides this central network other pathways are 
also implicated, we showed that two Notch path-
way targets are specifi cally up-regulated. PAM has 
been shown previously to be a powerful method 
for gene selection (Tibshirani et al. 2002).

The different predictors shown in this study 
were the best predictors according to PAM curves 
and statistical analysis and gave clear improve-
ments for prognosis prediction compared to previ-
ous studies (Rosenwald et al. 2002; Lossos et al. 
2004) including a six spot predictor for clinical 
application. Furthermore, our results are based on 
experimental gene expression data on 248 patients 
and individual analysis of 12196 array spots 
whereas pooled data and fewer patients were used 
in older studies (Rosenwald et al. 2002; Lossos 
et al. 2004). Interesting marker genes were found 
in this study by different statistical methods (PAM, 
ISIS, LIMMA). Clearly, using other methods 

(e.g. support vector machines) different gene sets 
can be obtained. In our study, the ISIS method is 
applied for explorative analysis and unbiased clas-
sifi cation without prior knowledge or gene signa-
tures. It supports independently the two distinct 
B-cell lymphoma subgroups. The different gene 
sets were further validated against each other by 
including classical marker genes. Moreover, we 
validate in our study key marker genes we found 
by analysis of additional and further data (Shipp 
et al. 2002; Wright et al. 2003). A new perspective 
from this study is that genes found differently 
expressed in the two B-cell lymphoma types form 
a compact interaction network including cell cycle 
genes. This is obtained by another independent 
analysis method (protein-protein interaction data-
base STRING). Furthermore, the delineated regu-
latory network adds biological data and data from 
large-scale interaction databases to show that the 
identifi ed marker genes are in fact members of a 
closely interacting regulatory network, with 
molecular functions that mirror the differences in 
pathology of the two subgroups GCB and ABC 
DLBCL.

The identifi cation of cell cycle genes expressed 
differently indicates here new possible targets for 
therapy. Differences between the ABC and GCB 
DLBCL subgroups are at the beginning and the 
end of the M-phase and the early part of the G1 
phase. Inhibiting early cell cycle genes, overex-
pressed in ABC and adding known cytostatic drugs 
such as mitosis inhibitors and early G1 blocker 
may be particularly useful for ABC DLBCL 
patients. A more detailed therapy profi le would 
take the further differences in regulation into 
account.

Conclusion
The present analysis reveals through the use of an 
array of methods a detailed picture of molecular 
markers differentiating cancer subtypes. We apply 
it to GCB and ABC DLBCL for clinical use in 
determining prognosis and diagnosis. This included 
effi cient six spot predictors for prognosis and 
clinical application. The entities ABC and GCB 
DLBCL have been confi rmed by statistical analy-
sis independent of gene expression signatures, a 
third entity could not be supported. The resulting 
genes with altered expression were found to 
form a tightly connected regulatory network 
including cell cycle genes, apoptosis and immune 
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differentiation implicated in the aggressive behav-
iour of ABC DLBCL compared to the GCB 
DLBCL subtype.
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Germinal Center B Cell-Like (GCB) and Activated B Cell-Like 
(ABC) Type of Diffuse Large B Cell Lymphoma (DLBCL): 
Analysis of Molecular Predictors, Signatures, Cell Cycle 
State and Patient Survival
S. Blenk1, J. Engelmann1, M. Weniger1, J. Schultz1, M. Dittrich1, A. Rosenwald2, 
H.K. Müller-Hermelink2, T. Müller1 and T. Dandekar1

Supplemental Methods
To systematically identify spots which describe the outcome and  cooperate well with each other in the 
Cox regression hazard model a multivariate analysis is desirable. However, this requires a huge search 
space of combinations to be tested. To reduce this we considered only four spot combinations of (i) the 
gene spots suggest by Rosenwald et al. (Rosenwald et al. 2002), (ii) the 36 important genes for diffuse 
large B-cell lymphoma chosen by Lossos et al. (Lossos et al. 2004) or (iii) the LDH-, IDH-, and PDH 
gene spots  (the latter to better refl ect IPI-scores). Cox Regression Hazard analysis was performed on 
all possible four tuples of these 153 indicator spots testing 160 patients (several days of calculation time 
on a LINUX cluster with 20 nodes of Pentium IV CPUs). Table S1 shows the gene content of the ten 
best multivariate four-spot-predictors (the next best combinations after removing these spots is found 
in Table S2). The best multivariate four-spot combination is compact and small, but neither as good as 
the fi ve spot predictor in results nor as the signatures from Rosenwald et al. (Rosenwald et al 2002). 
The analysis further shows that there is a correlation with survival prediction for the clinical parameter 
LDH (Table S2), but the prediction based on this well known parameter (part of the IPI score) is even 
worse then the results shown in Table S2.

In contrast (see below), the new fi ve-spot and six-spot predictors identifi ed by univariate analysis will 
be useful heuristics for diagnosis and clinic, e.g. to identify risk quartiles and subgroups (Fig. S1). 

Figure S1. Kaplan Meier plots of the IPI groups. The Kaplan Meier plots estimated by the molecular predictor of Rosenwald et al. (Rosenwald 
et al. 2002) applied on the new normalized gene expression data of the 240 diffuse large B-cell lymphoma patients. The plots show different 
groups according to their IPI risk and the training set as Training, Validation and all patients. The left column represents the training-group, 
the middle one the validation group and the right one all patients. The rows show the IPI risk groups. The fi rst line shows low risk, the second 
one the medium risk and the last line the high risk patients. The x-axis is the time in years and the y-axis the probability of survival.
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Figure S2. PAM misclassifi cation error of the ABC and GCB subgroups over all genes. The upper plot shows the overall error while 
the lower one shows the subgroup specifi c errors. In both, the various thresholds on the lower x-axis correspond to different numbers of 
genes, labelled on the upper x-axis. The y-axis represents the error and ranges from 0 to 1. The good overall performance of PAM requires 
only few genes to decrease the error dramatically. The error rate decreases strongly between the thresholds of 6 and 5, which represent the 
amount of shrinkage. Hence we chose a threshold below 5 with the corresponding set of best separating genes (an optimal choice with few 
errors and a low number of genes). The performance for the single subgroups shows a big difference between ABC and GCB. Whereas 
GCB shows a good performance even with few genes, the prediction quality of ABC decreases dramatically in the case of ABC patients. 
This indicates a complex pattern of gene expression in ABC patients which is defi ned in more than 15 genes.
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Figure S4. Regulatory network differently regulated in ABC and GCB B-cell lymphomas. This fi gure shows the resulting network and 
interaction pattern with each other for the best separating genes applying data from the STRING meta-database of protein interactions. 
Classical lymphoma genes and best separating gene set form a tight network with the best separating genes in the centre. Shown are the 
strongly connected network members. They consist of (i) classical lymphoma marker genes (grey boxes), and (ii) the most powerful predic-
tive genes in the PAM analysis (white boxes). Genes which show a signifi cant higher expression in the ABC subgroup are marked by a red 
rectangle. They are associated to proliferation, block of proliferation, apoptosis, differentiation and specifi c for immune cells, as most of the 
remaining ones. Green ellipses mark higher expression in GCB. The almost fully connected gene network demonstrates that both classes 
of genes are well participating in the interaction network according to the STRING meta-database. Furthermore, the STRING analysis shows 
that almost all connections between both classes – the yellow colored edges - are based on literature (mainly Medline reports). Only the 
interaction of “interferon regulatory factor 4” (IRF4) and “B-cell CLL/lymphoma 6” (BCL6) is confi rmed by large-scale interaction screen 
experiments.
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Figure S5. Regulatory network differently regulated in ABC and GCB B-cell lymphomas. Functional protein association network using 
interactions predicted by the STRING database: the most powerful predictive genes in the PAM analysis (white boxes; see Figure 4S), clas-
sical textbook lymphoma genes (dark grey boxes), additional the cell cycle genes (light grey boxes; see Figure 3S: 5 of these 8 cell cycle 
genes are connected directly with the network. TIMP1 even connects the so far uninvolved classical lymphoma gene CTGF with the network. 
This indicates how well the cell cycle genes fi t to the existing graph). The new connections are confi rmed by text mining of PubMed 
abstracts(circles: DLBCL, diamonds: “no cancer disease”, empty square: “other cancer”); these different data complement each other. The 
genes with a signifi cantly higher expression in the ABC group are marked by a red rectangle. Green ellipses mark higher expression in GCB. 
Black hexagons mark genes which have a very high average gene expression value in both entities and are an important part for the 
network.
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Figure S7. Histogram of the protein interaction distances. The genes of the Lymphochip were mapped to the protein interaction graph 
in the human interactom. The histogram shows the occurring distances of these genes in the interactome. The longest distance is 11 whereas 
the characteristic path length is 3.985.
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Figure S6. The Lymphochip genes in the human interactome. This plot shows the human interactome as a protein interaction network. 
The proteins(circles) of the lymphochip are fi lled out. Interactions are drawn as a line.  Characteristic path length and the longest path are 
4.642 and 15, respectively.
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Table S1. Multivariate Cox regression hazard models.

Nr Multivariate Cox regression hazard model
1 HGAL Germ-S ACTa1 HLA-DRA
2 HGAL CD54(2) ACTa1 HLA-DRA
3 HGAL CD54(2) HLA-DRA(2) ACTa1
4 HGAL CD54(2)  HLA-DRA(3) ACTa1
5 HGAL ACTa1  HLA-DRA CD54
6 HGAL MHCIIDQa1 CD54(2) ACTa1
7 HGAL CD54(2) MHCIIDRb ACTa1
8 HGAL Germ-S MHCIIDRb ACTa1
9 HGAL Germ-S HLA-DRA(2) ACTa1
10 HGAL Germ-S HLA-DRA(3) ACTa1
A heuristic search of multivariate Cox regression hazard models revealed this 10 best fi tting models. All possible multivariate Cox 
regression hazard models of four 4 genes from 36 important genes for diffuse large B-cell lymphoma and the metabolic genes LDH, IDH 
and PDH were calculated and these ten gene sets fi t best. Genes are abbreviated according to GenBank nomenclature.

Table S2. Next best multivariate Cox regression hazard models.

Nr. Multivariate Cox regression hazard model
1 CD10 IRF4 HLA-DRb5 LDH(2)
2 IRF4(2) BCL7A HLA-DRb5 LDH(2)
3 MYC IRF4(2) HLA-DRb5 LDH
4 MYC IRF4(2) HLA-DQa1 LDH
5 PLAU IRF4 BCL7A HLA-DRb5
6 IRF4 BCL7A HLA-DRb5 LDH(2)
7 PLAU IRF4(2) BCL7A HLA-DRb5
8 IRF4 BCL6 BCL7A HLA-DRb5
9 CD10 IRF4(2) HLA-DRb5 LDH(2)
10 MYC IRF4(2) HLA-DRb5 LDH(2)
If the genes appearing in Table S1 are removed, and the heuristic search of multivariate Cox regression hazard models is redone, these 
ten models are the next best fi tting. The genes are represented by their GenBank abbreviation. The metabolic marker LDH from the IPI 
score occurs in the four best fi tting models as well as in the the majority of the models.
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Table S3. Genes which distinguish best between ABC 
and GCB according PAM analysis.

Nr. Gene
1 MYBL1
2 *Centerin
3 FOXP1
4 LOC96597
5 SH3BP5
6 KIAA0864
7 IRF4
8 ASB13
9 *Similar to human endogenous 
 retrovirus-4 Clone=417048
10 NEIL1
11 MME
12 IGHM
13 LMO2
14 LOC152137
15 KIAA1039
16 LRMP
17 FLJ123633
18 CCND2
From all twelve thousand spots from the lymphoma 
chip, the listed genes distinguish best between ABC 
and GCB according to PAM analysis. The best 
separating genes are written on the top.

Table S4. Classical lymphoma genes.

Nr. Gene
1 BCL6
2 BRAF
3 ARAF1
4 RAF1
5 RAS
6 MEK
7 MAP
8 HLA-DPα
9 HLA-DQα
10 HLA-DRα
11 HLA-DRβ
12 α-Actinin
13 COL3A1
14 Connective-tissue
 growth factor
15 FN1
16 KIAA0233
17 PLAUR
18 E2IG3
19 NPM3
20 BMP6
21 CASP10
22 POU2AF1
23 CDKN2A
24 MYC
25 BCL2
26 FCGR2B
27 CyclinD1
28 NFKB2
29 PAX5
30 BCL10
31 CDK6
32 DDX6
33 BCL7A
34 CyclinD2
35 IL-10
36 LDH
37 IDH
38 PDH
Lymphoma associated genes were collected from literature and 
were also found in the data set. Furthermore we added the 
metabolic enzymes “lactate dehydrogenase”(LDH), “isocitrate 
dehydrogenase” (IDH) and “pyruvate dehydrogenase”(PDH). The 
latter are represented in the data by the genes PDHB, PDHA1, 
IDH3A, IDH3G, IDH3B, IDH1, IDH3B, IDH3A, LDHB and LDHA.
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Table S5. Classical marker genes of lymphoma disease 
distinguish between ABC and GCB lymphoma subtype 
(PAM analysis; error rates for this gene set: TR:10% 
VAL:15.38%; F:CV:14%))

Nr. Gene
1 FN1
2 BCL6
3 CTGF
4 BCL2
5 MAPK10
6 CCND2
7 COL3A1
8 KIAA0233
9 BCL7A

Table S6. Lymphochip spots of known lymphoma 
genes.

SpotID Gene Name
19384 MAPK10
24787 CCND2
15914 MAPK10
24429 BCL6
28472 MAPK10
19268 BCL6
16858 CCND2
17646 BCL2
16789 BCL2
19361 COL3A1
26535 BCL6
28859 BCL2
24367 BCL2
17791 FN1
16016 FN1
16732 FN1
31398 FN1
19379 FN1
27499 KIAA0233
24415 BCL7A
29222 CTGF
180 spots, which are known to deal with lymphoma were tested to 
distinguish between ABC and GCB subtype by PAM analysis. 
Successful genes are given in descending order (gene set error 
rate:TR:10% VAL:15.38%; F:CV:14%)

Table S7. Combined classifi er for lymphoma sub-
types.

SpotID Gene Name
24376 *Centerin
17496 MYBL1
28014 MYBL1
19326 IGHM
19254 MME
33991 FOXP1
19384 MAPK10
19375 FOXP1
16049 IGHM
26454 SH3BP5
22118 KIAA0864
24787 CCND2
24787 CCND2
28979 LMO2
15914 MAPK10
19346 SH3BP5
15864 MME
19238 LMO2
30263 ASB13
19291 MYBL1
19312 NEIL1
25036 FLJ12363
26385 MME
19227 LOC96597
22122 IRF4
16886 LRMP
24480 KIAA1039
27378 LRMP
27379 LRMP
24729 IRF4
27673 LRMP
19348 *Similar to
24429 BCL6
28472 MAPK10
26516 *Similar clone=417048
19268 BCL6
 @Homo sapiH08 (LOC152137) 
 Sur_clone=232
32529 2321
17646 BCL2
The resulting gene list that distinguishes ABC and GCB if the PAM 
analysis is performed only on the 31 best spots merged with the 
well known lymphoma genes. Marked in grey are the 31 best spots 
from all twelve thousand spots compared. Remarkably, the two 
classical lymphoma marker genes MAPK10 and CCND2 reach a 
similar quality in distinguishing ABC and GCB as the best separat-
ing ones.
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Table S8. Cell cycle gene set that best distinguishes ABC and GCB subgroup. The genes are annotated by their 
spot ID, ensembl gene-ID and their gene name. Additionally the cell cycle states are given. The latter parameter 
shows a strong signal in the early and late cell cycle states compared with all available cell cycle states in the 
data set.

SpotID Ensembl ID cell cycle state Gene
24927 ENSG00000165810 85 BTNL9
33929 ENSG00000165810 85 BTNL9
26913 ENSG00000138764 72 CCNG2
24750 ENSG00000136244 80 IL6
32430 ENSG00000162783 56 IER5
24491 ENSG00000165810 85 BTNL9
30172 ENSG00000138764 72 CCNG2
24930 ENSG00000187837 69 HIST1H1C
24725 ENSG00000011007 59 TCEB3
24908 ENSG00000118515 83 SGK
30355 ENSG00000164330 84 EBF
32096 ENSG00000164330 84 EBF
31931 ENSG00000164543 18 STK17A
26081 ENSG00000180447 80 GAS1
19374 ENSG00000124762 21 CDKN1A
24969 ENSG00000164330 84 EBF
24647 ENSG00000164330 84 EBF
34708 ENSG00000118515 83 SGK
27774 ENSG00000134058 92 CDK7
26401 ENSG00000118515 83 SGK
26725 ENSG00000164330 84 EBF
28881 ENSG00000163918 52 RFC4
17786 ENSG00000102804 1 TSC22D1
24613 ENSG00000102804 1 TSC22D1
33901 ENSG00000100644 2 HIF1A
27538 ENSG00000171656 96 ETV5
27952 ENSG00000179583 76 CIITA
34557 ENSG00000052841 2 TTC17
30021 ENSG00000099953 95 MMP11
27704 ENSG00000164330 84 EBF
26992 ENSG00000102804 1 TSC22D1
26344 ENSG00000138764 72 CCNG2
24832 ENSG00000163918 52 RFC4
26080 ENSG00000163739 76 CXCL1
33329 ENSG00000179583 76 CIITA
17290 ENSG00000134058 92 CDK7
30922 ENSG00000185658 5 BRWD1
26162 ENSG00000135541 91 AHI1
34288 ENSG00000134884 48 NA
33646 ENSG00000185658 5 BRWD1
26951 ENSG00000102804 1 TSC22D1
24977 ENSG00000153936 92 HS2ST1
16661 ENSG00000123080 75 CDKN2C
25942 ENSG00000145050 49 ARMET
22163 ENSG00000169926 6 KLF13
17405 ENSG00000178573 30 MAF
27275 ENSG00000100644 2 HIF1A
30415 ENSG00000164330 84 EBF
34484 ENSG00000151150 50 ANK3
33221 ENSG00000065809 2 FAM107B
32218 ENSG00000179583 76 CIITA
29637 ENSG00000145632 99 PLK2PLK2
27939 ENSG00000179583 76 CIITA
27328 ENSG00000108984 44 MAP2K6

(Continued)
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Table S8. (Continued)

SpotID Ensembl ID cell cycle state Gene
28792 ENSG00000099326 53 ZNF42
30725 ENSG00000175455 65 CCDC14
16736 ENSG00000136244 80 IL6
30874 ENSG00000081320 77 STK17B
28707 ENSG00000123080 75 CDKN2C
33336 ENSG00000175455 65 CCDC14
15871 ENSG00000168310 7 IRF2
28640 ENSG00000100526 0 CDKN3
28748 ENSG00000136244 80 IL6
28430 ENSG00000168310 7 IRF2
26084 ENSG00000128590 38 DNAJB9
30859 ENSG00000117650 93 NEK2
28674 ENSG00000138061 66 CYP1B1
16127 ENSG00000138061 66 CYP1B1
24868 ENSG00000012963 52 C14orf130
30508 ENSG00000081320 77 STK17B
34108 ENSG00000169926 6 KLF13
16053 ENSG00000173757 83 STAT5B
16091 ENSG00000100526 0 CDKN3
33594 ENSG00000179583 76 CIITA
32924 ENSG00000185658 5 BRWD1
32766 ENSG00000135164 74 DMTF1
16597 ENSG00000109971 0 HSPA8

Table S9. The cell cycle genes, which were chosen to distinguish the ABC and the GCB group.

Ensembl gene ID cell cycle state Gene symbol
ENSG00000011007 59 TCEB3
ENSG00000012963 52 C14orf130
ENSG00000052841 2 TTC17
ENSG00000065809 2 FAM107B
ENSG00000081320 77 STK17B
ENSG00000099326 53 ZNF42
ENSG00000099953 95 MMP11
ENSG00000100526 0 CDKN3
ENSG00000100644 2 HIF1A
ENSG00000102804 1 TSC22D1
ENSG00000108984 44 MAP2K6
ENSG00000109971 0 HSPA8
ENSG00000117650 93 NEK2
ENSG00000118515 83 SGK
ENSG00000123080 75 CDKN2C
ENSG00000124762 21 CDKN1A
ENSG00000128590 38 DNAJB9
ENSG00000134058 92 CDK7
ENSG00000134884 48 NA
ENSG00000135164 74 DMTF1
ENSG00000135541 91 AHI1
ENSG00000136244 80 IL6
ENSG00000138061 66 CYP1B1
ENSG00000138764 72 CCNG2
ENSG00000145050 49 ARMET
ENSG00000145632 99 PLK2PLK2
ENSG00000151150 50 ANK3

(Continued)
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Table S9. (Continued)

Ensembl gene ID cell cycle state Gene symbol
ENSG00000153936 92 HS2ST1
ENSG00000162783 56 IER5
ENSG00000163739 76 CXCL1
ENSG00000163918 52 RFC4
ENSG00000164330 84 EBF
ENSG00000164543 18 STK17A
ENSG00000165810 85 BTNL9
ENSG00000168310 7 IRF2
ENSG00000169926 6 KLF13
ENSG00000171656 96 ETV5
ENSG00000173757 83 STAT5B
ENSG00000175455 65 CCDC14
ENSG00000178573 30 MAF
ENSG00000179583 76 CIITA
ENSG00000180447 80 GAS1
ENSG00000185658 5 BRWD1
ENSG00000187837 69 HIST1H1C
The cell cycle genes annotated by their ensembl gene-ID and their gene name. Additionally the cell cycle states are annotated. The latter 
parameter shows a strong signal in the early and late cell cycle states compared with all available cell cycle states in the data set.

Table S10. Gene expression values of the main regu-
latory network distinguishing ABC and GCB.

Gene ABC GCB
ASB13 − +
MYBL1 − +
MME − +
MAPK10 − +
LRMP − +
LMO2 − +
FN1 − +
CTGF − +
COL3A1 − +
BCL6 − +
BCL7A − +
NEIL1 − +
SH3BP5 + −
BCL2 + −
CCND2 + −
IRF4 + −
IGHM + −
FOXP1 + −
Genes from Figure 2 and their gene expression values in the 
subgroups ABC and GCB are shown. The symbol “−” indicates a 
lower gene expression than “+”. In this network, more genes of the 
more aggressive ABC type have a lower gene expression than the 
GCB type.
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Table S11. List of potential Notch target transcripts.

Gene ID Transcript ID Description
ENSG00000156136 ENST00000286648 Deoxycytidine kinase
ENSG00000148158 ENST00000277244 Sorting nexin family member 30
ENSG00000179388 ENST00000317216 Early growth response protein 3
ENSG00000198833 ENST00000361212 Ubiquitin-conjugating enzyme E2 J1 
ENSG00000198833 ENST00000361333 Ubiquitin-conjugating enzyme E2 J1 
ENSG00000065308 ENST00000182527 Translocation associated membrane protein 2
ENSG00000170584 ENST00000302764 NudC domain containing protein 2 
ENSG00000074706 ENST00000265198 phosphoinositide-binding protein PIP3-E 
ENSG00000134108 ENST00000256496 ADP-ribosylation factor-like 10C)
For all genes of the Lymphochip, all available transcripts annotated in ensembl were screened for the GY, Brd and K boxes. Only these 
transcripts bear all three boxes, GY, Brd and K in the 3’-UTRs. They are possible candidates to be regulated by the Notch signalling 
pathway. Moreover, the Deoxycytidine kinase (ENSG00000156136) and the Translocation associated membrane protein 2 
(ENSG00000065308) show different gene expression values between the ABC and GCB subgroups.

Table S12. T-test result of network genes in another 
data set.

Genes P-value T-value
CCND2 6.260705e-06 5.56939706
BCL6 2.490035e-02 −2.34449786
BCL2 1.843571e-03 3.43618678
IRF4 2.082072e-07 6.49044833
LMO2 3.820841e-07 −6.66162303
MAPK10 3.888633e-02 −2.15403094
The genes from the proposed STRING-network in Figure 4 were 
used to apply a T-test between the ABC and the GCB group in the 
gene expression data of Shipp et al. The authors Wright et al. 
found some evidence for these DLBCL groups in there.
The most obvious rejection of the null hypothesis is delivered by 
IRF4, LMO2, CCND2, BCL2, BCL6 and MAPK10, which are also 
part of the predictor of Wright et al.
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