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Simple Summary: Ovarian cancer is a lethal disease due to its late phase discovery. Any steps
towards improving early diagnostics will dramatically increase survival rates. To identify new
ovarian cancer biomarker panels, we need to focus on early-stage disease and all histologic subtypes.
In this study we have, based on prior discoveries, constructed a multiplexed targeted selected-
reaction-monitoring assay to detect peptides from 177 proteins in only 20 µL of plasma. The assay
was evaluated in patients with a focus on early-stages and all ovarian cancer histologies in separate
groups. With multivariate analysis, we found the highest predictive value in the benign vs. low-grade
serous (Q2 = 0.615) and mucinous (Q2 = 0.611) early stage compared to all malignant (Q2 = 0.226) or
late stage (Q2 = 0.43) ovarian cancers. The results show that each ovarian cancer histology subgroup
can be identified by a unique panel of proteins.

Abstract: Epithelial ovarian cancer (OC) is a disease with high mortality due to vague early clinical
symptoms. Benign ovarian cysts are common and accurate diagnosis remains a challenge because of
the molecular heterogeneity of OC. We set out to investigate whether the disease diversity seen in
ovarian cyst fluids and tumor tissue could be detected in plasma. Using existing mass spectrometry
(MS)-based proteomics data, we constructed a selected reaction monitoring (SRM) assay targeting
peptides from 177 cancer-related and classical proteins associated with OC. Plasma from benign,
borderline, and malignant ovarian tumors were used to verify expression (n = 74). Unsupervised and
supervised multivariate analyses were used for comparisons. The peptide signatures revealed by the
supervised multivariate analysis contained 55 to 77 peptides each. The predictive (Q2) values were
higher for benign vs. low-grade serous Q2 = 0.615, mucinous Q2 = 0.611, endometrioid Q2 = 0.428
and high-grade serous Q2 = 0.375 (stage I–II Q2 = 0.515; stage III Q2 = 0.43) OC compared to benign vs.
all malignant Q2 = 0.226. With targeted SRM MS we constructed a multiplexed assay for simultaneous
detection and relative quantification of 185 peptides from 177 proteins in only 20 µL of plasma. With
the approach of histology-specific peptide patterns, derived from pre-selected proteins, we may be
able to detect not only high-grade serous OC but also the less common OC subtypes.

Keywords: epithelial ovarian cancer (OC); targeted selected reaction monitoring (SRM); proteomics;
biomarkers; early-stage diagnostics

1. Introduction

High-grade serous ovarian cancer (HGSC) accounts for 65–70% of all ovarian cancers
(OC) and, consequently, are the ones that define the poor prognosis of the disease [1]. The
earlier cancer can be detected, the better the chance for a successful treatment. OC’s 5-year
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survival increases from approximately 30% to 90% if diagnosed in early stages. The local-
ized cancer can be treated with surgery alone, leaving adjuvant chemotherapy superfluous.
OC is a highly diverse disease with several histologic subtypes. Supported by new insights
in molecular genetics, OC was nearly 20 years ago designated two major groups, Type 1
and Type 2, revised in 2014 [2]. The Type 1, which included low-grade serous carcinoma
(LGSC), endometrioid, clear-cell and mucinous OC, is in fact very heterogenous, while
Type 2, dominated by HGSC, is more homogenous. Regardless of histological subtypes,
improved diagnostics in early stages alone hold great potential to save many lives.

Independent of type, all OC require surgery but to a varying degree, based on stage
and histologic subtype [3]. Difficulties in identifying the malignant tumors among the
many benign ovarian cysts that present with symptoms or incidentally using various
imaging technologies are ever-present in today´s clinical routines [4]. The incidence of OC
is low, with a life-time risk of 1.5%, while benign cysts are common, particularly before
menopause, with a prevalence of 36%. Symptoms may be absent and are vague. Patients
with suspicious ovarian cysts are typically examined using transvaginal ultrasound. There
are a couple of serum biomarkers that are occasionally used in OC diagnostics, serum
marker cancer antigen 125 (CA125), human epididymis 4 (HE4) and algorithms based on
the above: Risk of Ovarian Cancer Algorithm (ROCA), the Risk of Malignancy Algorithm
(ROMA), Risk Malignancy Index (RMI) and Multivariate Index Assay (MIA) [5–9]. The
lack of specificity and sensitivity in all early stages and in women below 50 years drives
the continued development of better tools for OC diagnostics or screening. The above-
mentioned biomarkers and algorithms have been discovered in mixed OC cohorts where
HGSC stage III in an elderly population has been the dominating histologic tumor type.
Accordingly, both CA125 and HE4 have acceptable sensitivity for ovarian cyst/pelvic
tumor differential diagnostics, especially for late-stage HGSC in postmenopausal women.

Improved molecular classification of OC provides better opportunities for biomarker
discovery comparing more relevant histologic subtypes in the search for novel biomarkers.
Our hypothesis is that each tumor group can be identified by a subset of proteins specific for
each OC histology subtype. In earlier studies, we explored ovarian tissue and early-stage
ovarian cyst fluid for the discovery of biomarker candidates [10–14]. The findings from
these studies, together with selected literature references [15–18] were the basis for the
current study. Candidate proteins were selected, and peptides were tested for analysis
in a mixed cohort of OC histologies primarily in early stages. We applied a state-of-the-
art liquid chromatography tandem mass spectrometry (LC-MS/MS) workflow to screen
for these markers in the plasma samples followed by the development of a multiplexed
targeted selected reaction monitoring (SRM) assay for the candidates.

2. Materials and Methods
2.1. Study Design—Workflow

Phase I—Discovery—Biomarker discovery was performed in OC tumor biopsies and
ovarian cyst fluids using shotgun mass spectrometry (Figure 1) [10,12,13]. Data from a total
of 9 studies, our own previous work and selected literature references, were compiled to
create a biomarker target list of 284 proteins. Phase II—Verification—Proteins differentially
expressed comparing OC histology subgroups and benign subjects were evaluated in
patient plasma using targeted mass spectrometry applying SRM [19]. The results from the
SRM analysis were explored using state-of-the-art bioinformatic approaches.
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Figure 1. Study workflow showing the discovery phase with protein selection based on ovarian 
cancer (OC) tissue and cyst fluid, together with selected literature references and relevant data 
deposited in repositories. Meanwhile, the study population was selected, with inclusion of samples 
from benign, early-stage and late-stage OC. To verify if the potential biomarker targets identified in 
the discovery phase were possible to identify in patient plasma samples, synthetic peptides 
corresponding to the biomarker targets were ordered, and a selected reaction monitoring (SRM) 
assay was built. Peptides with stable identification in a group of pooled plasma samples were 
included in the final SRM assay, which was run on plasma samples from the complete study 
population. In the final step of this study, multivariate analyses were used to retrieve information 
on OC subgroup differences. NIST = National Institute of Standards & Technology, n = number of 
samples, OPLS-DA = Orthogonal Projection to Latent Structures - Discriminant Analysis, PCA = 
Principal Component Analysis 

  

Figure 1. Study workflow showing the discovery phase with protein selection based on ovarian
cancer (OC) tissue and cyst fluid, together with selected literature references and relevant data
deposited in repositories. Meanwhile, the study population was selected, with inclusion of samples
from benign, early-stage and late-stage OC. To verify if the potential biomarker targets identified in
the discovery phase were possible to identify in patient plasma samples, synthetic peptides corre-
sponding to the biomarker targets were ordered, and a selected reaction monitoring (SRM) assay
was built. Peptides with stable identification in a group of pooled plasma samples were included
in the final SRM assay, which was run on plasma samples from the complete study population.
In the final step of this study, multivariate analyses were used to retrieve information on OC sub-
group differences. NIST = National Institute of Standards & Technology, n = number of samples,
OPLS-DA = Orthogonal Projection to Latent Structures - Discriminant Analysis, PCA = Principal
Component Analysis.
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2.2. Study Population

Samples were collected prior to surgery from patients presenting with a suspected
malignant pelvic mass at the section for gynecology cancer surgery, Sahlgrenska University
hospital, Gothenburg, between 2012–2015 (Figure 1). A total of 74 patient plasma samples
were selected retrospectively from the gynecology tumor biobank (Biobank Väst). Of the
74 included samples, 16 were benign, 13 borderline type tumors, seven endometrioid
OC stage I–II, four LGSC stage I–II, nine mucinous OC stage I–II, eight HGSC stage I–II,
and 17 HGSC stage III (Table 1). All resected tumors were examined by an experienced
reference pathologist in gynecology for diagnosis, histology, grade and staging (I–III)
according to International Federation of Gynecology and Obstetrics (FIGO) standards.
All patients signed a written informed consent according to the requirements set by the
local ethics committee in Gothenburg, in accordance with the Declaration of Helsinki (Dnr
445–2008-08-18; 139–2013-04-25).

Table 1. Study population overview.

Histology n Grade 1 Stage 1 Mean Age
(Years)

SD Age
(Years)

Serous benign 16 N/A N/A 69 8.7
Serous borderline 13 N/A I 51.7 18.4

LGSC 4 low I–II 52.3 5.7
Mucinous 9 low I–II 67.3 7.3

Endometrioid 2 3 low I–II 76.3 9.1
Endometrioid 2 4 high I–II 59 16.2

HGSC 8 high I–II 59.3 5.1
HGSC 17 high III 61.5 12.1

1 According to FIGO (International Federation of Gynecology and Obstetrics 2014). 2 All endometrioid OC, n = 7,
mean age is 66.4 (±15.7) years. n = number of samples, N/A = not applicable, LGSC = low-grade serous cancer,
HGSC = high-grade serous cancer.

2.3. Plasma Sample Preparation

Six milliliters (mL) of blood was collected in EDTA plasma vacutainers after anesthesia
but before surgery using standardized procedures and stored at 4 ◦C within 15–30 min. Af-
ter centrifugation, plasma was collected and directly aliquoted into Eppendorf tubes, frozen
and stored at −80 ◦C within 30–60 min after withdrawal. All patient samples included
were handled and processed according to standardized procedures. Prior to analysis, the
samples were thawed on ice and depleted (according to the manufacturer´s specification)
using the Agilent 14 protein depletion spin cartridge (HU-14 5188–6560, Agilent, Santa
Clara, CA, USA) resulting in up to 96% removal of the 14 abundant blood proteins albu-
min, IgG, antitrypsin, IgA, transferrin, haptoglobin, fibrinogen, alpha2-macroglobulin,
alpha1-acid glycoprotein, IgM, apolipoprotein A1, apolipoprotein A2, complement C3 and
transthyretin. Peptides from eleven of those (all except IgG, IgA, IgM) were included in
the SRM MS analysis to verify that the depletion procedure was successful for all samples.
After depletion, samples were reduced, alkylated, and digested with 10 µg/mL sequencing
grade modified Trypsin (Promega, Madison, WI, USA) ON at 37 ◦C, then separated by
RP-C18 chromatography (Waters, Milford, MA, USA), dried on a Speed-vac (Thermo
Scientific, Waltham, MA, USA) and frozen in −80 ◦C until MS analysis.

2.4. Selection of Target Peptides and Transitions

A spectral library was built into the SRM management software Skyline (PMID:
20147306) from in-house over time accumulated shotgun MS-MS/MS spectra obtained from
plasma analyses on a QExactive mass spectrometer (Thermo Electron, Bremen, Germany) as
described in [20,21]. The list of target proteins generated from our previous studies [10–14]
and literature [15–18,22] (see below) was imported and in-silico digested in Skyline. The
in-house generated plasma library was used as the primary library for selection of peptides
and transitions. Peptide quality was based on total intensity in MS1 spectrum and % of
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total spectrum intensity contributed by identified transitions in the MS2 spectrum. The top
3 unique peptides per protein identified with highest MS1 spectrum intensity were selected.
Out of these, the 1–2 peptides with the cleanest MS2 spectrum, meaning the highest % of
total MS2 spectrum intensity contributed by identified peptide fragments were selected.
Any protein where two peptides met the criterium of five good transitions (y- and b-ion
signals) was selected for ordering a synthetic peptide. For any protein where only one
peptide met this criterum, only one peptide was selected. Peptide identity and quality
and final transition selection was subsequently verified using the synthetic peptides. For
proteins not represented in the plasma library, a public library of human plasma analyses
was downloaded from National Institute of Standards and Technology (NIST) and peptides
were selected using the above criteria. For proteins not represented in the NIST library, the
SRM atlas was scanned for peptides and 2–3 representatively unique peptides per protein
were considered for the assay.

2.5. Protein Selection

Protein candidates were selected based on candidate markers from our previous
biomarker discovery studies in tissues and in ovarian cyst fluids, clinically used biomarkers
CA125, HE4 and the MIA panel, biomarker candidates from the literature and unpublished
data, prioritizing markers that are suggested in more than one study. Briefly, all proteins
identified as significantly regulated between benign and malignant subgroups and the
above given proteins constituted a first selection (Supplementary Table S1). Among these,
a subset of proteins was further selected based on whether they could be confirmed as
proteins able to separate benign versus malignant OC tumors in one or more of the selected
literature studies [15–18,22]. In total, 284 proteins, for which protein-specific peptides
could be identified when matched against the human background proteome, were selected.
For these, 388 synthetic unique peptides were ordered from JPT (Berlin, Germany). Two
peptides were ordered from 104 proteins and one peptide was ordered from 180 proteins,
respectively, based on estimated peptide quality. Of the 388 peptides, 185 peptides from
177 proteins were selected for the final scheduled SRM assay with a minimum of four
transitions per peptide based on their performance in the plasma background (transition
list can be found in the PASSEL repository) [23] with ID PASS01544. No addition of
peptides has been done to compensate for unidentified proteins, in line with the purpose
of the study.

2.6. Selected Reaction Monitoring Mass Spectrometry

The SRM measurements were performed on a TSQ Quantiva triple quadrupole mass
spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) equipped with a nano electro-
spray ion source (EASY-spray, Thermo Fisher Scientific, San Jose, CA, USA). TSQ global
parameters were: polarity: positive; spray voltage: 2000 V; and transfer tube tempera-
ture: 325 ◦C. TSQ scan parameters were: quadrupole resolution: 0.7 FWHM in both Q1
and Q3; cycle time: 1.7 s; CID gas (argon) 2 mTorr; source fragmentation: 10V; Chrom
filter: 3 s; and 1084 transitions were measured simultaneously. Peptides were loaded on
an Easy-nLC II system (Thermo Fisher Scientific, San Jose, CA, USA) with 15 cm, 3 µm
columns (Thermo Fisher Scientific, San Jose, CA, USA). Peptides were eluted with a linear
gradient from 95% solvent A (0.1% formic acid in water) and 5% solvent B (0.1% formic
acid in acetonitrile) to 35% solvent B over 60 min at a constant pressure of 280 bars and a
flow rate of 300 nL/min. Retention times of the scheduled LC-SRM assays were calibrated
by measuring the iRT-peptides (Biognosys, Schlieren, Switzerland) in non-scheduled LC-
SRM [24]. The resulting data were analyzed in the Anubis SRM analysis software v.1.4.4
with a q-value of 0.05 [25]. The SRM data were visualized for QC purposes using the
software Skyline v3.6.0.10162 (MacCoss lab, University of Washington, Seattle, WA, USA).
Only peptides with stable performance of both the synthetic and native peptide across
samples were included. Data from synthetic peptides spiked into plasma background
were used to create the reference file. Data were plotted in GraphPad (Prism) and linear
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regression was performed including all data points down to a concentration when linearity
would be greatly obscured by including that concentration or providing a linearity be-
low 0.5. No weighting was used. The raw data were deposited and are available at the
server: https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/PASS_View (accessed
on 10 November 2021) or access www.peptideatlas.org with dataset ID PASS01544 [23].

Subsequently, Loess Global normalization was performed using Normalyzer v.1.0
(Dep. of Immunotechnology, Lund University, Lund, Sweden) and all further analyses
were done on normalized data [26]. The normalized data can be seen in Supplementary
Table S2. After QC of depleted proteins, peptides for the 11 proteins were removed from
the analysis set and all subsequent data analyses have been performed on 166 peptides
from 159 proteins, which were identified in 85% or more of all samples. Nine samples
had one missing value, three samples had five to eleven missing values and the remaining
62 samples had no missing values.

2.7. Multivariate Analyses

To evaluate differences between subgroups included in the study, both multivariate
unsupervised and supervised approaches were used. Principal component analysis (PCA),
t-Distributed Stochastic Neighbor Embedding (tSNE) and heatmaps with hierarchical
clustering, (Qlucore Omics Explorer v.3.5, Qlucore, Lund, Sweden) [27], were used for
initial data exploration to assess sample and variable separation and distribution in the
investigated groups. PCA was assessed using floating levels of variance (for noise reduc-
tion) and p-values (two-group t-test, assuming no difference in variance) for visualization
of the different subgroups (examples in Supplementary Figure S1). p-values < 0.05 are
reported in the Supplementary Table S3, but during the data exploration, no fixed p-value
was used. The number of overlapping peptides between subgroup comparisons with
cut-off of p < 0.05, is illustrated in Venn diagrams. The main tool for analysis, supervised
orthogonal projection to latent structures—discriminant analysis (OPLS-DA), was used
to compare subgroup separation using predictive (Q2-value) discriminant models based
on all or subsets of peptides [28]. In the OPLS-DA, the parameters R2X(cum), R2Y(cum),
and Q2(cum) describe the fit of each model. The predictive value Q2(cum) is based on
seven-fold cross validation and the value varies between 0 to 1, where a high Q2 value
(>0.5) is indicative of good prediction for the specific model. However, there is no sharp
cutoff for the Q2 value. In this study, Q2 values were used to compare how well groups
were separated. For each subgroup comparison, the peptides identified as variables of
importance for the projection (VIP) of the model (defined as VIP values above 1) in the
initial model calculation including all peptides, were selected and an OPLS-DA model was
calculated based on peptides with VIP > 1. As a quality control, permutation plots (with
100 permutations per model, used to assess the risk that the model just fits the training set
but cannot be used for prediction of new observations) was performed to assess the risk of
a model being spurious. None of the models with Q2 > 0.3 were found to be spurious.

2.8. Evaluation of Predictive Value vs. p-Value

The peptides with p < 0.05 in the unsupervised analysis and with a predictive Q2 > 1
in the supervised analysis were assessed for the number of coinciding peptides within each
subgroup comparison. To create a simple overview of the different analysis approaches,
OPLS-DA and p-values in PCA, and compare these, a color (heatmap) ranking was done in
Excel using the predictive Q2 values for the models with VIP > 1 and number of peptides
with p < 0.05 (Supplementary Table S3).

3. Results
3.1. Main Results

The primary aim of this study was to investigate whether proteins identified in OC
cyst fluids and primary tumor tissues, with the potential to separate benign ovarian tumors
and OC histology subgroups, could also be identified in OC patient plasma samples and

https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/PASS_View
www.peptideatlas.org
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could be used for creating predictive models for differentiating tumor subtypes (Figure 1).
Protein-specific peptides were analyzed in a cohort of benign and malignant ovarian
tumors of different histology subtypes and stages (benign n = 16; borderline type stage I,
n = 13; malignant stage I–II, n = 28; malignant stage III, n = 17) (Table 1).

3.1.1. Histology Specific Peptide Patterns

In total, 177 selected proteins were analyzed by targeted SRM MS in plasma. Out
of these, 16 peptides from 11 proteins were derived from abundant plasma proteins as
a quality control of the plasma depletion. All samples were satisfactorily depleted. Of
the 166 peptides included in the further analyses, 91 peptides had a p-value < 0.05 in
any pairwise benign to OC subgroup comparisons using PCA. Comparing the group of
less common OC, including borderline type tumors to the more abundant HGSC, it was
clear that few peptides with p-values < 0.05 were shared between the two groups and
the majority of peptides with p < 0.05 were specific to each comparison (Figure 2a). The
three separate comparisons of early stage endometrioid, mucinous and LGSC also had few
common peptides with p < 0.05 while most peptides were unique (Figure 2b). Similarly,
for the serous OC of different stages and grade, the majority of peptides were unique, and
few were shared (Figure 2c). In summary, PCA renders the different histological subtypes
of OC included in this study highly heterogenous, as measured by a highly multiplexed
SRM assay.

The targeted SRM MS analysis data of plasma samples from benign ovarian tumors
vs. OC were analyzed using both supervised and unsupervised multivariate approaches.
The unsupervised approaches were used for data exploration (Supplementary Figure S1).
These analyses revealed histology-specific peptide profiles in OC and in benign samples
(Table 2). Simple overviews of the supervised OPLS-DA subgroup analysis models A–C
are found in Figure 3a. Comparing the benign group to all malignant samples as one group
with OPLS-DA resulted in a poor predictive model for separation, with and without the
borderline type tumors included in the OC group Q2 = 0.138 (model A1) and Q2 = 0.226
(model A2). In this supervised analysis, between 55–77 of the 166 peptides in the SRM
assay contributed to the separation of each model (column 5, Table 2). Despite 30 and 41,
respectively, peptides having p < 0.05, the OPLS-DA analyses still provided poor separation,
in the respective comparison (A1 and A2; Table 2, last column). All OPLS-DA analysis is
also in Supplementary Tables S4–S7.
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Figure 2. Venn diagram of benign and OC subgroups with number of overlapping peptides with
p < 0.05 (t-test). (a) Benign vs. less common low-grade OC including borderline type tumors
compared to benign vs. high-grade OC; (b) comparison of benign vs. OC low-grade subgroups;
(c) comparison of benign vs. all included low-grade OC, HGSC stage I–II or HGSC stage III. 3.1.2.
Multivariate Analysis of Benign Versus Malignant Tumors.

Table 2. Overview of comparisons of benign vs. malignant subgroups including borderline type tumors.

Benign vs. Subgroup n
OPLS-DA

Model-Name
(also Figure 2a)

Q2, VIP > 1.0
#Peptides VIP >

1.0 Unique 1

Peptides

#Peptides p < 0.05
(% Shared with

VIP > 1)Unique 2 Peptides

All malignant incl. Borderline 74 A1 0.138 63 30, q = 0.26
All malignant excl. Borderline 61 A2 0.226 61 41, q = 0.184
Low-grade 1 incl. Borderline 45 B1 0.221 63 22, q = 0.298
Low-grade 1 excl. Borderline 33 B2 0.624 59 37, q = 0.219

Borderline type tumor 29 B2.4 0.247 65, 1 0 11 (45%) 2 6
q = 0.688

Stage I–II (all histologies) 44 E1 (B2 + C1.1 + C2.2) 0.369 66 39, q = 0.194

Endometrioid stage I–II 20 B2.1/C1.1 0.428 61, 1 5 17 (100%) 2 5
q = 0.447

Mucinous stage I–II 25 B2.2 0.611 77, 1 8 41 (95%) 2 9
q = 0.190
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Table 2. Cont.

Benign vs. Subgroup n
OPLS-DA

Model-Name
(also Figure 2a)

Q2, VIP > 1.0
#Peptides VIP >

1.0 Unique 1

Peptides

#Peptides p < 0.05
(% Shared with

VIP > 1)Unique 2 Peptides

LGSC stage I–II 20 B2.3 0.615 63, 1 15 11 (100%) 2 5
q = 0.567

High-grade 1 45 C1 0.333 55 33, q = 0.234
HGSC stage I–III 41 C2 0.375 59 42, q = 0.193

HGSC stage I–II 24 C2.2 0.513 62, 1 9 34 (94%) 2 9
q = 0.206

HGSC stage III 33 C2.3 0.43 65, 1 8 39 (95%) 2 12
q = 0.212

For the subgroups listed in Table 1 (endometrioid as one group), comparisons have been made to the benign group as follows; total number
of peptides included in comparison (peptides with VIP > 1), 1 number of unique peptides in that comparison, 2 number of unique peptides
with p-value < 0.05 that also are part of the VIP > 1 peptides (in %) for the specific subgroups. For more information see Supplementary
Table S3. OPLS-DA = orthogonal projection to latent structures-discriminant analysis, Q2 = predictive value, VIP = variables of importance
for the projection, 1 as defined in Table 1.
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Figure 3. Multivariate OPLS-DA models of OC subgroups. (a) Overview of included OC subgroups.
The models with higher predictive Q2 values are seen when the OC malignant samples are further
divided into subgroups depending on grade, histology and stage. Q2 is the predictive value of
the model and varies between 0–1, where > 0.5 indicates a good predictive value for the model.
(b) OPLS-DA model B2 of benign vs. low-grade OC stage I–II samples (without borderline type
tumors) with VIP > 1 (59 variables) and a Q2 value of 0.624, indicating reliable predictability. The
individual low-grade samples have been colored according to subgroup for visualization purposes
only but were grouped in the analysis. (c) Benign vs. HGSC stage I–II (OPLS-DA model C2.2) had
a Q2 of 0.513 and (d) benign vs. HGSC stage III (model C2.3) had a Q2 of 0.43. For visualization,
additional components have been added in c–d, as the optimal Q2 value had 1 + 0 + 0 components.
OPLS-DA = orthogonal projection to latent structures-discriminant analysis, OC = ovarian cancer,
VIP = variables of importance for projection of plot, LGSC = low-grade serous cancer, HGSC = high-
grade serous cancer.

The OC were then analyzed in groups based on FIGO 2014 grade and stage and
histology (Table 1). Comparing benign to LGSC, endometrioid and mucinous OC together
provided a poor predictive value of Q2 = 0.221 when including borderline type tumors.
However, a good predictive value of Q2 = 0.624 was obtained when excluding borderline
type tumors (model B1 and B2; Figure 3b). The benign vs. borderline type tumors alone
also achieved poor predictive separation, Q2 = 0.247 (model B2.4). Taken together, these
analyses demonstrate that borderline type tumors are similar to benign adenomas as they
cannot successfully be separated from these by the targeted SRM MS assay. Based on this
initial analysis, the borderline type tumors were excluded from further sub-group analyses.

When designing the SRM MS assay in this study, proteins were selected from studies
focusing on early-stage disease including all OC histologic subtypes. Early-stage OC
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(stage I-II) as one heterogenous group including all histological subtypes (endometrioid,
mucinous, LGSC and HGSC) could not be adequately separated from the benign tumors,
Q2 = 0.369 (model E1, Table 2). However, when separating the early-stage (I-II) OC into
each histological subgroup and comparing these to benign separately, the predictive value
increased for all differential diagnoses; mucinous Q2 = 0.611 (model B2.2), endometrioid
Q2 = 0.428 (model B2.1/C1.1), LGSC Q2 = 0.615 (model B2.3) and HGSC Q2 = 0.513 (model
C2.2; Figure 3c). The benign tumors, compared to HGSC in late stage (stage III), resulted in
a predictive value of 0.430 (model C2.3; Figure 3d). With the addition of HGSC stage I-II,
the Q2 value decreased to 0.375 (model C2).

3.1.2. Multivariate Analysis of the Ovarian Cancer Subgroups

The histology-specific diversity in plasma was also evident when analyzing the dif-
ferent OC subgroups alone, excluding the benign tumors from the OPLS-DA analysis.
Models D and E are found in Table 3. Comparing the less common low-grade OC (LGSC,
mucinous, endometrioid stage I-II) versus high-grade OC, with and without borderline
type tumors included in the low-grade OC group, provided weak separations, Q2 = 0.175
(model E4) and Q2 = 0.356 (model E5), respectively. Likewise, comparison of all early-stage
OC with late-stage OC with or without borderline type tumors included to the early-stage
OC provided fairly weak separations, Q2 = 0.374 (model E7) and Q2 = 0.299 (model E8).
This created relatively poor predictive models which could be anticipated based on the
inherent molecular differences within the low-grade OC group and high-grade OC. How-
ever, comparisons of different histologic subgroups (Table 3) provided higher predictive
values for the LGSC vs. mucinous, Q2 = 0.468 (model D1) and LGSC vs. endometrioid,
Q2 = 0.654 (model D3), confirming that the distinct molecular differences within the histo-
logic subgroups increase group heterogeneity, which explains why modelling such diverse
groups as one entity fails to provide clear separation.

Table 3. Comparison between malignant subgroups.

Subgroups in Comparison n OPLS-DA
Model

Q2,
VIP > 1.0

#Peptides
VIP > 1.0

#Peptides
p < 0.05

LGSC stage I–II vs. Mucinous stage I–II 13 D1 0.468 71 25, q = 0.313
Endometrioid stage I–II vs. Mucinous stage I–II 16 D2 0.356 69 14, q = 0.465

Endometrioid stage I–II vs. LGSC stage I–II 11 D3 0.654 66 7, q = 0.761
LGSC stage I–II vs. HGSC stage I–II 12 D4 0.41 72 9, q = 0.569

Endometrioid 1 stage I–II vs. HGSC stage I–II 15 D5 0.354 70 9, q = 0.579
Mucinous stage I–II vs. HGSC stage I–II 17 D6 0.356 63 17, q = 0.436

LGSC stage I–II vs. HGSC stage III 21 D7 0.634 65 25, q = 0.302
Endometrioid 1 stage I–II vs. HGSC stage III 24 D8 0.388 61 25, q = 0.33

Mucinous stage I–II vs. HGSC stage III 26 D9 0.379 60 10, q = 0.658
HGSC stage I–II vs. HGSC stage III 25 D10 0.592 66 18, q = 0.404

Low-grade incl. Borderline vs. High-grade 58 E4 0.175 57 24, q = 0.329
Low-grade vs. High-grade 45 E5 0.356 63 16, q = 0.489

LGSC and HGSC stage I–II vs. HGSC stage III 29 E6 0.612 69 34, q = 0.241
All stage I–II incl. borderline vs. stage III 58 E7 0.374 60 47, q = 0.168

All stage I–II vs. stage III 45 E8 0.299 57 29, q = 0.272
1 Endometrioid subgroup, n = 7. Low-grade = LGSC, mucinous and endometrioid OC. High-grade = HGSC and HG endometrioid OC.

All early-stage OC were compared to all late-stage OC, with and without borderline
type tumors. The separation from stage III was increased when borderline type tumors were
included with the stage I–II OC, which may be due to the similarities between the benign
and the borderline type tumors, Q2 = 0.374 (model E7) and Q2 = 0.299 (model E8). OPLS-
DA analysis of different stages of the same histological subtype provided good predictive
models; early-stage HGSC vs. late-stage HGSC, Q2 = 0.592 (model D10; Figure 4), as well
as early-stage LGSC and HGSC vs. late-stage HGSC, Q2 = 0.606 (model E6; Figure 4)
indicative of a distinct heterogeneity between stage I–II and stage III disease in plasma.
Further division into the different histologic subgroups increased the predictive model for
LGSC alone vs. late-stage HGSC, Q2 = 0.634 (model D7; Figure 4).
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Figure 4. Multivariate OPLS-DA model where LGSC and HGSC stage I–II are grouped and com-
pared to HGSC stage III, resulting in a predictive value of 0.612 (model E6, Table 3). Coloring
has been done according to subgroup and not the OPLS-DA classes for visualization purposes.
OPLS-DA = orthogonal projection to latent structures-discriminant analysis, LGSC = low-grade
serous cancer, HGSC = high-grade serous cancer.

In summary, we found a detectable heterogeneity between grade, stage I–II and stage
III disease in plasma with the multiplexed SRM MS assay. The study identifies subgroup-
specific peptides and demonstrates how subgroup-specific classification improves the
separation of each OC histology in plasma samples. Better separation between groups was
achieved when samples were stratified into grade, stage and histology compared to all
malignant versus all benign tumors (summarized in Figure 3a, Tables 2 and 3). The best
separation was obtained for early-stage OC vs. benign tumors, which could be expected, as
patients with early-stage disease were represented more in the original cyst fluid selection
of proteins and intentionally used to build the basis for this study.

4. Discussion

Candidate diagnostic biomarkers for OC have mainly been primarily discovered from
studies of serum or plasma dominated by the high-grade serous ovarian cancer subtype in
late stages. This has provided a selection of HGSC late-stage-specific biomarkers [15,29,30].
The wide-spread use of cancer antigen 125 (MUC 16/CA125) is a good example of such a
biomarker, having acceptable sensitivity for HGSC but only in late-stage OC and preferably
in women over 50 years of age [6]. New diagnostic or screening biomarkers for early-stage
disease are vital to lower mortality in OC. To overcome this problem, we scrutinized
not only discovery sets with traditional OC composition cohorts but also biomarkers
discovered in early-stage low-grade (LGSC, mucinous, endometrioid) and HGSC cyst
fluids and tumor tissues [12,22]. The study population in this study included benign
tumors and a large group of early-stage OC of low-grade, which we could compare to
HGSC in both early and late stages. With this approach, we demonstrate that protein
composition in plasma samples representing these histological subtypes and stages is
diverse and peptide signatures are indeed different for each subtype. Multivariate analysis
separate benign tumors from each OC histological subtype with better accuracy than the
combined OC cohort. The same is shown for separation within each histologic subgroup
and stages.

Ovarian cancer is classified into five major histotypes, including HGSC, endometrioid,
mucinous, clear cell and LGSC, where HGSC is by far the most common. These histo-
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types differ with respect to appearance, genetic molecular alterations, therapy response
and outcome [31,32]. While immunohistochemistry (IHC)-based classification of tumor
biopsies is the most superior and efficient diagnostic technique today, the ability to stratify
each histologic subgroup with the help of a simple blood test using a protein signature
has several important advantages and potential uses. Pre-diagnostic knowledge of OC
histology may affect the choice of surgical technique, neoadjuvant and adjuvant treatment.
A blood test is convenient and would spare the patient from the procedure of acquiring a
tumor biopsy, which in OC requires anesthesia and surgery. In addition, peptide/protein
analysis can be both quick and cheap as compared to other emerging platforms such as the
analysis of circulation tumor DNA with Next Generation Sequencing.

Numerous attempts to identify new diagnostic or screening protein biomarkers for
OC can be found in the literature [33,34]. The goal is to increase survival of this deadly
cancer by shifting the majority of newly diagnosed OC commonly found in stage III, when
the disease has disseminated in the abdomen, to be identified in stage I, when the disease is
still confined to its primary location (ovary or fallopian tube). Discovery cohorts from cell
lines, ovarian cyst fluids, ascites, urine, tumor tissue and, of course, serum or plasma have
been used without consideration of the heterogenous composition of OC, and therefore
biomarker signatures identified in such studies often fail in validation. We also have to
consider that a pre-surgical diagnostic sample has to be easily accessed (blood, urine or
cervical smear) and not impose any risk to the patient (fine needle aspiration of cysts).
Our hypothesis, that with a combination of candidate proteins from discovery studies that
focus on all OC subtypes, we can also define specific protein signatures for low-grade
early-stage OC, was confirmed in this study. Benign tumors were clearly separated from all
low-grade OC including mucinous, endometrioid and LGSC as well as HGSC in both early
and late stages. Interestingly, in the protein signatures defining the LGSC, endometrioid
and mucinous early-stage subgroup zero proteins were shared between these groups.

Large discovery studies on the gene or protein level not only discover single mutations
or proteins for diagnostic or therapeutic purposes, but common histologic traits can be
used to find gene or protein signatures that increase the possibility to characterize and
personalize each patient’s disease and treatment. For HGSC, molecular subtype classi-
fication through novel signatures and pathways has been suggested based on studies
within The Cancer Genome Atlas (TCGA) database [35]. This was followed by the Clin-
ical Proteomics Tumor Analysis Consortium (CPTAC) analyses of 169 HGSC tumors by
protein expression and correlated the results with the TCGA database to identify novel
signatures and pathways [36]. A study of the proteomes of OC and fallopian tube cell
lines could define three separate groups, epithelial, clear-cell and mesenchymal. They also
present a HGSC prognostic 67-protein signature for good or poor overall survival [37,38].
MS-MS was used to identify a new biomarker to separate endometrioid from HGSC by
immunohistochemistry, but authors suggest that a multiplex panel should be used [39].

Targeted SRM analysis provides several advantages and features important for clinical
application. An SRM assay can be made highly specific through ensuring the selection
of correct peptides (protein specific) and analyzing an adequate number of transitions. It
can be seamlessly multiplexed with hundreds of variables (peptides). In addition to high
specificity, SRM analysis provides sensitivity and linearity that offers the opportunity to
accurately quantify peptides. Absolute quantification is also possible to achieve through
the use of isotope-labeled synthetic peptides. Compared to many other types of mass
spectrometers, the instrumentation used for this type of analysis is relatively simple and
robust. Benchtop mass spectrometers have been used in clinics for decades to analyze
small molecules. Therefore, it is realistic to believe that a peptide SRM assay, as the one
developed here, could find its way to a clinical setting. Additionally, with the use of “Next
Generation Proteomics” like targeted SRM MS, an increasingly large number of different
proteins can be detected in only 5–20 µL plasma. This can be compared to the need for
10–20 mL plasma for the detection of mutations in circulating cell free tumor DNA (ctDNA)
in early-stage cancer. Proteomic technologies and protocols have the potential to be directly
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integrated into current clinical work flows since they are rapid, easy-to-use, robust and
economical [40].

In this quite complex study setup with numerous OC subclasses, multivariate dis-
criminant analysis (MVA) was used, as our aim was not to reduce the number of included
peptides in the analysis to an absolute minimum, but to use the possibilities of simultaneous
collection of hundreds of peptide values using SRM MS. One of the strengths with MVA is
that the result depends on the interaction and performance of numerous interdependent
variables, instead of relying on the readout of one or few variables, where their interaction
is of no importance (as with p-values). An important step in a validation study would be
to use a selection or ranking system, to decide which subgroup a random sample would
belong to, depending on the readout of approximately 100 to 150 peptides of interest.

Limitations of our study include a relatively small sample size in each histologic
subgroup and the lack of patients with clear-cell OC and mucinous adenoma. However,
this study should be considered more as an evaluation of the possibility to create histology-
specific protein signatures and use these for subgroup classification. Discriminatory single
biomarkers for this purpose are not likely to be found. With the area of proteomics moving
quickly towards high throughput, high-precision multiple target assays in small volumes
of plasma samples will be able to pursue these findings. The second limitation, due to
the study design with focus on low-grade OC in stage I–II and borderline type tumors, is
that the study population does not reflect a normal setting of OC presented in the clinic,
which would be required in a proper validation study. Third, a prior selection of proteins
may exclude ones that could have made an impact on the separation of groups. With
this strategy, we could still validate our hypothesis, that benign tumors and OC histology
subgroups can be separated by peptide signatures with unique peptide signatures specific
for each histologic subgroup in primarily early-stage disease.

5. Conclusions

In this study we have used prior mass spectrometry discovery sets of OC biomark-
ers, found in the literature and in-house results from ovarian cyst fluid and tumor tissue
proteomic studies, to explore plasma samples from different epithelial-derived ovarian his-
tologic subgroups in primarily early-stage disease. We found that unique specified peptide
signatures for each histologic subgroup had the highest predictive values, suggesting fast
multiple targeted protein analysis will be part of the next generation diagnostic platform.
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