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Abstract

Bipolar Disorder (BD) is a common mood disorder characterized by recurrent episodes of mania 

and depression. Both genetic and environmental factors have been implicated in BD etiology, but 

the biological underpinnings remain elusive. Recently, genome-wide association studies (GWAS) 

of neuropsychiatric disorders have identified a risk locus for BD containing the SYNE1 gene, a 

large gene encoding multiple proteins. The BD association signal spans, almost exclusively, the 

part of SYNE1 encoding CPG2, a brain-specific protein localized to excitatory postsynaptic sites, 

where it regulates glutamate receptor internalization. Here we show that CPG2 protein levels are 

significantly decreased in postmortem brain tissue from BD patients, as compared to control 

subjects, as well as schizophrenia and depression patients. We identify genetic variants within the 

postmortem brains that map to the CPG2 promoter region, and show that they negatively affect 

gene expression. We also identify missense single nucleotide polymorphisms (SNPs) in CPG2 
coding regions that affect CPG2 expression, localization, and synaptic function. Our findings link 

genetic variation in the CPG2 region of SYNE1 with a mechanism for glutamatergic synapse 

dysfunction that could underlie susceptibility to BD in some individuals. Few GWAS hits in 

human genetics for neuropsychiatric disorders to date have afforded such mechanistic clues. 

Further, the potential for genetic distinction of susceptibility to BD from other neuropsychiatric 

disorders with overlapping clinical traits holds promise for improved diagnostics and treatment of 

this devastating illness.
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INTRODUCTION

Bipolar disorder (BD) is a common, chronic mood disorder characterized by recurrent 

episodes of mania and depression. The lifetime prevalence is estimated at 1–3% of the 

population1 and high mortality rates2, mainly caused by suicide3, makes BD a major public 

health problem. Treatment for BD is limited, consisting mainly of pharmaceutical mood 

stabilizers, antidepressants, and antipsychotic drugs discovered decades ago. Their efficacy 

in only a subset of BD patients highlights the need for development of new drugs based on a 

molecular understanding of disease etiology4, 5.

The neuropsychiatric disorders BD, schizophrenia and major depression, as well as other 

neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit 

hyperactivity disorder (ADHD), substantially overlap in clinical traits6. For example, many 

BD patients suffer from cognitive deficits and psychotic symptoms qualitatively resembling 

those of schizophrenia patients7, and from depressed mood states resembling those of major 

depression patients. For this reason, precise diagnosing often requires extensive psychiatric 

evaluation based on clusters of symptoms6, and in some cases even erroneous 

pharmacological treatment attempts8. Although there is a wide consensus for differential 

brain structural and connectivity impairments9–11, there is little specific evidence describing 

neuronal substrates and mechanisms differentiating neuropsychiatric disorders at the cellular 

level. Consequently, in the absence of more conclusive biological markers, diagnosing is 

almost exclusively based on psychiatric evaluation12.

Despite robust evidence of genetic susceptibility to BD13, with heritability estimated as high 

as 70–80% based on twin studies13–16, only a few genetic susceptibility factors have been 

identified over decades of research13, 17, with little evidence for BD-specific risk genes17. 

Joint genome-wide association studies (GWAS) show substantial commonalities in risk loci 

for the major psychiatric disorders, especially between BD and schizophrenia18–20, 

suggesting they overlap not only in clinical symptoms but also in their contributing genetic 

factors20–22. A handful of common genetic variants, identified by GWASs as robustly 

associated with BD and replicated across independent studies, are single-nucleotide 

polymorphisms (SNPs) in the genes CACNA1C, ANK3, ODZ4, SYNE1, and 

TRANK123–28. Some of the identified loci show penetrance for two or more of the 

neuropsychiatric disorders, underlining a shared genetic etiology25, 29–31. The largest GWAS 

to date for identifying risk loci for neuropsychiatric disorders including BD, schizophrenia, 

and major depression, identified the region encompassing SYNE1 as the strongest BD 

association locus in the genome32. Meta-analyses included in the study identified SNPs in 

SYNE1 with genome-wide statistically significant association to BD at 

P=4.27×10−9 25–27, 32, 33.

Increasing evidence, mainly from genetic and pharmacological studies, has implicated 

abnormal glutamatergic neurotransmission and synaptic plasticity in the etiology of 

BD24, 25, 34–36. Notably, SNPs in GRIA2, which encodes the GluA2 subunit of AMPARs, 

have been associated with time to recurrence of mood episodes in BD patients37. Studies 

have also shown differences in glutamate levels as well as glutamate receptor expression or 

function between individuals with mood disorders and control subjects38–42.

Rathje et al. Page 2

Mol Psychiatry. Author manuscript; available in PMC 2019 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SYNE1 has thus far drawn less attention in relation to neuropsychiatric disorders compared 

to e.g. CACNA1C, which encodes voltage-gated calcium channels well-known to play a role 

in synaptic functions29. Human SYNE1 is a large gene comprising 145 exons with multiple 

transcripts43. The most described gene products of SYNE1, the nesprins, are mainly related 

to muscle function44, 45, and are unlikely to explain how this locus influences susceptibility 

to BD. Interestingly, the BD association signal in SYNE1 maps near the transcription start 

site for candidate plasticity gene 2 (CPG2). CPGs are activity-regulated genes identified as 

potential mediators of synaptic plasticity46. CPG2 is a brain-specific transcript of the 

SYNE1 gene. We recently reported the existence of two human CPG2 transcripts expressed 

in neocortex, hippocampus, and striatum, encoding proteins that localize to the postsynaptic 

endocytic zone of excitatory synapses in dendritic spines43, 47. Here they facilitate glutamate 

receptor cycling, consistent with a role in synaptic plasticity. The identification of CPG2 as a 

risk locus for BD and CPG2’s known function in regulating glutamate receptor 

internalization, suggest that variation in CPG2 function may affect glutamate receptor 

cycling in a way that would influence susceptibility to BD.

Here, we combine multiple strategies to identify genetic variations within the CPG2 locus of 

SYNE1 that influence expression or function of the CPG2 protein. Linking BD associated 

variation with an underlying cellular dysfunction is an opportunity afforded by only a few 

GWAS hits in human genetics for neuropsychiatric disorders to date. We show that CPG2 

protein levels are significantly decreased in postmortem brain tissue of BD patients as 

compared to schizophrenia and depression patients, as well as control subjects. By deep-

sequencing the CPG2 region of SYNE1 from the same human subjects, we identified genetic 

variants within promoter and enhancer regions that negatively affect gene expression. We 

further show that certain genetic variants in the CPG2 coding region identified by exome 

sequencing affect CPG2 expression, subcellular localization, and synaptic function.

MATERIALS AND METHODS

Human brain tissue

Fresh frozen human brain tissue samples from BA9/10 and hippocampus were kindly 

provided by the Harvard Brain Tissue Resource Center, the Stanley Medical Research 

Institute Neuropathology Consortium collection, Mount Sinai NIH Brain and Tissue 

Repository (schizophrenia patients), University of Maryland Brain and Tissue Bank 

(controls), and Massachusetts Alzheimer’s Disease Research Center (controls). Information 

on age, postmortem index (PMI), gender, partial information on medication history, and 

relative CPG2, Arc and PSD95 protein expression levels is summarized in supplementary 

table ST1. Informed consent was obtained from all tissue donors or legal signatories.

Western blotting

Protein extraction and Western blotting were performed as described previously43. Blots 

were incubated with guinea pig polyclonal anti-CPG2 (1:1000, A002396; np913, NEO 

Peptide), mouse anti-Arc (1:1000; Synaptic Systems), mouse anti-PSD95 (1:20,000; UC 

Davis) or mouse anti-β-actin (1:2000; SIGMA) antibodies and visualized using an Odyssey 

infrared imaging system (LI-COR). Western blot signal intensities were quantified using a 
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FIJI (ImageJ) gel lane plot profile tool and groups were compared using one-way ANOVA 

and Tukey’s post hoc test for multiple comparisons or t-tests (two groups). Sample lysates 

were loaded in a randomized manner and quantified blind to sample identity. For SMRI 

samples, subject identifying information was revealed to the experimenter only after 

submission of the final dataset to the SMRI consortium. One sample was below detection 

level and excluded from the protein level analyses. The Western blots for CPG2 showed two 

bands that were quantified in combination due to insufficient signal segregation and apparent 

co-regulation.

Targeted region deep-sequencing and variant calling

Genomic DNA was extracted from human brain tissue using a ChargeSwitch gDNA Mini 

Tissue Kit (Invitrogen) and purified by ethanol precipitation. High-quality gDNA samples 

were deep-sequenced in the extended CPG2 region of SYNE1 (NM_182961: exon 8–70 

incl. introns) by CD Genomics (sequencing depth: 30–100x).

The raw sequencing data was mapped to human genome assembly GRCh37 using BWA 

aligner48. The BAM-files were indexed and the mapped reads within the SYNE1 gene locus 

(chr6:152740704–152831506) were selected using the SAMtools view module49. The 

generated SYNE1 BAM-files were piled up using SAMtools mpileup module for union 

genotype calling using BCFtools with –mv and –Oz options50. Variant annotation was 

performed using ANNOVAR tool51. Human brain region-specific chromatin states were 

collected52 and visualized using the web-based NeuVar tool http://

bioinfo5pilm46.mit.edu:318/neuvar. Statistical correlation of genetic variants with CPG2 

protein expression was tested using Mann-Whitney binary tests.

Molecular cloning

Putative promoter DNA regions from purified control or patient gDNA samples were 

amplified using LongAmp Taq polymerase and proofreading Q5 polymerase (NEB). PCR 

products from promoter regions were separated on agarose gels, excised, purified and cloned 

into the pGL3-Basic vector (Promega) in front of the Firefly Luciferase (Luc+) gene using 

KpnI and XhoI restriction sites.

For rescue experiments in the absence or presence of CPG2 coding variants, full-length 

human CPG2 (hCPG2) was cloned into a lentiviral transfer vector for rat Cpg2 KD 

(pFUGW-Cpg2-shRNA), in which the stop codon after GFP was removed and hCPG2 
inserted using EcoRI and XhoI restriction sites yielding a GFP-hCPG2 fusion protein 

(pFUGW-GFP-hCPG2)43. Human CPG2 coding variants were introduced into pFUGW-

GFP-hCPG2 by site-directed mutagenesis. All constructs were validated by Sanger 

sequencing.

Neuronal cultures

Rat cortical or hippocampal cultures were prepared as described previously43, 53.
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Luciferase assay

At 8 DIV, cortical neurons were transfected by calcium phosphate precipitation for 1 hour 

with 1µg of various Firefly Luciferase plasmids and 1.2µg of the normalization control pRL-

TK Renilla Luciferase (RLuc) vector plasmid (Promega)54. At 14 DIV, neurons were lysed 

and assessed using a Dual-Luciferase® Reporter Assay System (Promega) according to the 

manufacturer’s protocol. Plates were read on an EnSpire® Multimode Plate Reader 

(PerkinElmer). Where indicated, neurons were activated with KCl stimulation solution 

(170mM KCl, 2mM CaCl2, 1mM MgCl2, 10mM HEPES (pH 8.3)) diluted in culture media 

1:6 for final concentrations of 28mM KCl and 50µM picrotoxin for 6 hours before cells were 

lysed and assayed. Relative Luciferase activity was statistically compared using one-way or 

two-way (KCl+PcTx) ANOVAs and Tukey’s post hoc tests for multiple comparisons.

Spine localization assay

At 8 DIV, neurons were infected with lentivirus for KD of rat Cpg2 (pFUGW-Cpg2-shRNA) 

or at 15 DIV with lentivirus for replacement of the endogenous rat CPG2 with the GFP-

hCPG2 fusion reference protein (pFUGW-GFP-hCPG2) or mutated variants. At 21 DIV 

cells were fixed in 4% formaldehyde for 15 min and then permeabilized for 25 min with 

0.2% saponin in PBS with 10% goat serum. Cells were then incubated for 3 h with primary 

antibodies; mouse anti-CPG2 (1:500; Nedivi lab) and rabbit anti-GFP (1:3000; Abcam), 

followed by 1 h incubation with secondary antibodies; goat anti-mouse IgG-Alexa Fluor 555 

(1:500) and goat anti-rabbit IgG-Alexa Fluor 488 (1:500; Molecular Probes). Coverslips 

were mounted using Fluoromount-G (Southern Biotech) and imaged using a Nikon Eclipse 

E600 upright microscope with a 40×/1.40 Plan Apo oil immersion objective (Nikon).

Quantification of immunocytochemistry was conducted using ImageJ software to obtain 

pixel intensity values in a linear range within regions of interest (ROI). ROIs were 

positioned over spine heads and dendritic regions based on GFP-stained neuronal 

morphology and the corresponding staining intensity was measured. Spine localization of 

GFP-hCPG2 or mutated variants was quantified as the ratio between fluorescence intensity 

in spine heads and adjacent dendritic shafts. For quantification of spine size, a threshold was 

applied to make the fluorescence signal binary, and signal areas were quantified and 

calibrated to the 40X objective specific pixel size (µm2). All quantifications were done blind 

to sample identity. Statistical difference from controls was tested using one-way ANOVA 

and Dunnett’s post hoc test.

Surface receptor internalization assay

The receptor internalization assay was performed as described previously47 with the 

following modifications: Cortical cultures were infected at 8 DIV with lentivirus for CPG2 

KD (pFUGW-Cpg2-shRNA) and at 10 DIV with lentivirus for GFP-hCPG2 (pFUGW-GFP-
hCPG2) reference protein or mutated variant molecular replacement. Western blots were 

probed with rabbit anti-GluA2 (1:1000; Abcam), mouse anti-GluN1 (1:2000; Temicula) or 

mouse anti-TfR (1:1000; Invitrogen) primary antibodies and developed using the Odyssey 

infrared system (LI-COR). Receptor internalization was quantified as described47 and 

groups were compared using one-way ANOVA and Tukey’s post hoc test for multiple 

comparisons.

Rathje et al. Page 5

Mol Psychiatry. Author manuscript; available in PMC 2019 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



General statistics and data analysis

All statistical analyses were performed with GraphPad Prism software (version 7). The data 

is graphed as the mean ± standard error of the mean (SEM). Appropriate statistical tests were 

chosen based on the experimental conditions (see assay specific methods). Gaussian 

distribution of non-normalized data was assumed in all but the genetic variant analyses. 

Here, non-parametric tests were used as described. Brown-Forsythe and Bartlett’s tests were 

included in the ANOVAs assuring similar variance between statistically compared groups. 

Statistical significance was defined as *p ≤ 0.05. For cell culture experiments, poorly 

transfected cultures were excluded from data analysis. Test conditions were randomized 

across culture wells/plates.

RESULTS

Low CPG2 protein expression in brains of postmortem BD patients.

To investigate if the CPG2 region of SYNE1 could play a role in susceptibility for BD, we 

first asked whether CPG2 protein expression was compromised in BD patients. To this 

purpose, we isolated synaptic protein fractions from postmortem human brain tissue of 

control subjects, as well as BD, schizophrenia, and major depression patients (see 

supplementary table ST1 for source information). Since fMRI and postmortem studies have 

implicated the prefrontal cortex in BD55–58, we ran Western blots on tissue from Brodmann 

Area 9/10 (Fig. 1A), and compared CPG2 protein levels in the three patient groups with that 

of control subjects (Fig. 1B). We found CPG2 protein levels to be significantly lower in the 

BD group as compared to control subjects (One-way ANOVA: F(3,95)=2.74, *p=0.047; 

Tukey’s post hoc: control vs. BD *p=0.032, n=102 subjects) but not in other patient groups 

tested (Tukey’s post hoc: control vs. depression p=0.96, control vs. schizophrenia p=0.76) 

(Fig. 1C). The Western blots for CPG2 show two bands, which we speculate could represent 

protein products from different CPG2 transcripts, or could be a result of, as yet, unidentified 

posttranslational modifications. Both bands are expressed in the synaptic protein fraction, 

and their relative signal intensity is constant independent of patient group or other variables, 

suggesting that expression of the two protein products is regulated by the same mechanism 

either at the transcriptional, posttranscriptional, or posttranslational level.

Neuropsychiatric disorders are generally associated with lower activity in the prefrontal 

cortex10, 11, 59. To confirm that low levels of CPG2 were not secondary to reduced neural 

activity and a resulting reduction in levels of this activity-regulated transcript46, we tested 

for levels of another activity-regulated gene product, Arc, a protein that like CPG2 is 

localized to glutamatergic synapses60. We observed a positive correlation of CPG2 and Arc 

levels (Fig. S1A; linear reg.: F(1,95)=52.4, p<0.0001 and Fig. S1B). However, unlike CPG2, 

which was reduced exclusively in the BD population, Arc was significantly decreased also in 

other patient groups (One-way ANOVA: F(3,94)=4.13, **p=0.0085; Tukey’s post hoc: 

control vs. BD *p=0.020, control vs. schizophrenia *p=0.022, control vs. depression p=0.14, 

n=102 subjects) (Fig. 1D). Levels of the postsynaptic density protein PSD95, a marker of 

glutamatergic synapses, was similar among the patient groups and as compared to control 

subjects (One-way ANOVA: F(3,95)=0.55, p=0.65, n=102 subjects). The correlation 

between CPG2 and PSD95 levels was slight enough (Fig. S1C; linear reg.: F(1,96)=16.2, 
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p=0.0001) to indicate that reduced CPG2 or Arc expression is not merely caused by synaptic 

loss in BD and/or Schizophrenia patients (Fig. 1E and Fig. S1D; One-way ANOVA: 

F(3,95)=4.51, **p=0.0083; Tukey’s post hoc: control vs. BD **p=0.0027, n=102 subjects). 

We did not observe significant correlation of Arc and PSD95 levels (Fig. S1E; linear reg.: 

F(1,95)=1.92, p=0.17 and Fig. S1F; One-way ANOVA: F(3,95)=4.83, **p=0.0036; Tukey’s 

post hoc: control vs. BD *p=0.012, control vs. schizophrenia **p=0.0017, n=102 subjects). 

Further, we found no statistically significant correlation between CPG2, Arc, or PSD95 

protein expression and variation in patient age (linear reg.: F(1,97)=0.64, p=0.43; 

F(1,97)=0.16, p=0.69; F(1,97)=2.0, p=0.16, respectively), postmortem index (PMI) (linear 

reg.: F(1,97)=0.023, p=0.88; F(1,97)=1.2, p=0.28; F(1,97)=3.2, p=0.079, respectively) or 

gender (t-tests: t(97)=1.7, p=0.094; t(97)=1.8, p=0.073 and t(97)=0.52, p=0.61, respectively) 

(Fig. S2). Thus, our findings show a specific correlation between low CPG2 levels and 

incidence of BD that is not shared with schizophrenia or major depression patients.

To test if low CPG2 protein expression in BD patients was specific to prefrontal cortex, we 

also isolated synaptic protein fractions from postmortem hippocampal tissue (Fig. 1F). 

Western blotting showed significantly lower CPG2 protein levels in hippocampal tissue from 

BD patients compared to controls (t-test: t(21)=2.5, *p=0.021, n=22 subjects) (Fig. 1G-H), 

with no change in level of either of the two control proteins, PSD95 (t-test: t(21)=1.1, 

p=0.29), or the loading control β-actin (t-test: t(20)=0.15, p=0.88) (Fig. 1I-J). Cortical and 

hippocampal CPG2 protein levels were well correlated between tissue samples from the 

same individuals (Fig. 1K). This suggests that lower CPG2 protein levels is a feature 

common across different brain regions of BD patients.

Low CPG2 protein expression correlates with the presence of common genetic variants in 
CPG2 regulatory regions

Low CPG2 protein levels in the BD patient group could derive from several factors, 

including reduced CPG2 gene expression. We hypothesized that genetic variation associated 

with BD might affect regulatory elements of the gene that are important for transcription, 

such as promoter/enhancer regions, transcription factor binding sites, or in the CPG2 
untranslated regions (UTRs). To test this hypothesis, we purified gDNA from all samples 

and performed targeted deep-sequencing in the SYNE1 region (NM_182961: exon 8–70 

incl. introns) encompassing the CPG2 locus. Our sequencing data yielded hundreds of 

genetic variants within the CPG2 locus (see supplementary information, ST5), most of 

which were common variants also represented in population databases (1000 genomes, 

HapMap). Of all the identified variants, five SNPs were previously shown to be BD 

associated (rs452309661, rs774796062, rs937160126, rs21497233, and rs21500633; 

supplementary table ST2).

Active promoter and enhancer elements within the CPG2 gene region were mapped based on 

histone methylation states seen in ChIP-seq data from human cultured neurons and from 

human prefrontal cortex43, 52 (Fig. 2A). Interestingly, three of the BD associated SNPs 

(rs4523096, rs7747960 and rs9371601) map in or near the proposed CPG2 promoter region. 

The two other SNPs (rs214972 and rs215006) map near the 3’UTR of a short CPG2 isoform 

and near the 3’UTR end of a long CPG2 isoform, respectively43.
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To quantify whether the identified BD associated SNPs correlate with low CPG2 expression, 

we defined mean CPG2 expression in the BD group as the threshold between high and low 

expression subjects. Within our limited sample set, we did not find statistically significant 

overrepresentation of any single SNP allele in the low CPG2 expression subjects when 

compared to the high CPG2 expression subjects (Fig. 2B). However, the BD associated 

alleles of the two SNPs (rs4523096[T] and rs7747960[T]) closest to the CPG2 transcription 

start site (TSS) trended towards higher frequency in the low, as compared to high, CPG2 

expression subjects. This prompted us to focus on the locus encompassing the CPG2 TSS 

region. From our sequence data, we identified ~25 genetic variants within this region 

(supplementary table S3). Based on allele frequencies from the 1000 Genomes database, we 

found that six SNPs (rs9478332, rs12055686, rs4343926, rs4318888, rs7771568, and 

rs6908747) within the CPG2 TSS flanking region were in linkage disequilibrium (LD) with 

BD associated SNPs (D’=~1, r2=>0.8) (Fig. 2C, and supplementary table ST2). One of the 

six SNPs, rs9478332 was also found in the UCSC database of annotated transcription factor 

binding sites based on ENCODE ChIP-seq data52, and mapped within a HFH-1 consensus 

motif upstream of the annotated CPG2 TSS.

We then tested whether any of the six CPG2 TSS flanking region SNPs in LD with the BD 

associated SNPs had alleles overrepresented in our low CPG2 expression subjects (Fig. 2D). 

Two of the non-reference alleles, rs9478332[T] and rs4343926[C]), trended towards higher 

frequency within our limited pool of low CPG2 expression subjects, when compared to high 

CPG2 expression subjects. When considering all four non-reference allele SNPs with higher 

frequency in low versus high CPG2 expression subjects, (rs4523096[T], rs7747960[T], 

rs9478332[T] and rs4343926[C]), we found a trend for low CPG2 expression subjects to 

have at least one, or more, of the four alleles (Mann-Whitney test: U=942, p=0.058, n=60 

(any of the four alleles) of 102 subjects) (Fig. 2E). Furthermore, ~75% of the low CPG2 

expression BD subjects had at least one of the identified alleles, as compared to ~50% of 

subjects in the control group (Mann-Whitney test: U=195, p=0.068, n=36 (any of the four 

alleles) of 50 subjects)) (Fig. 2F).

The representation of the non-reference alleles with higher frequency in low CPG2 

expression subjects is illustrated in Figure 2G for all patient groups. Here, CPG2 protein 

expression for individual subjects in the different patient groups is displayed on a continuum 

ranging from low to high expression, where each colored bar represents CPG2 levels in a 

single subject. Grey bars illustrate the presence of each of the four selected alleles in 

individual subjects. The dashed line demarcates the threshold between low and high CPG2 

expression (as defined above, mean CPG2 expression level for the BD group). Our data 

suggests that no single allele is associated with the low CPG2 protein expression found in 

the BD patient subjects. Nonetheless, the presence of a handful of common alleles in or near 

the proposed CPG2 promoter region might correlate with low CPG2 protein expression in a 

larger sample set and could potentially mark BD susceptibility loci within the gene.
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Non-reference SNP alleles within the CPG2 promoter region and their effects on gene 
expression.

To examine whether genetic variants in CPG2 regulatory loci can influence transcription, we 

first functionally mapped CPG2 regulatory domains. We cloned putative promoter and 

enhancer regions from human brain gDNA samples based on genomic mapping of the CPG2 
locus in SYNE1 (Fig. 3A), and tested their ability to drive expression of a Luciferase 

reporter gene in cultured cortical neurons. When plasmids, containing potential CPG2 
promoter regions cloned in front of the Luciferase gene, were transfected into primary 

neurons, we found a ~2kb region encompassing the CPG2 TSS with robust promoter activity 

(Figs. 3B and S3). Subsequent deletion analysis on this fragment resolved two regions with 

promoter activity: One within the CPG2 5’UTR, and one within the SYNE1 intron before 

exon 16 (i16), both downstream of the predicted TSS (One-way ANOVA: F(12,188)=167, 

****p<0.0001, Tukey’s post hoc tests, ****p<0.0001, n=6–15 transfections, 3–6 cultures) 

(Figs. 3B and S3).

Of the SNP alleles with higher prevalence in the low CPG2 population, SNP allele 

rs4523096[T] mapped within the i16 promoter region. To test whether its presence could 

influence promoter function, we introduced rs4523096[T] into the i16 promoter luciferase 

construct, and performed the luciferase reporter assay on transfected primary neurons (Fig. 

3C). Because CPG2 is an activity-regulated gene46, we used a protocol with mild 

depolarizing KCl in the presence of the GABA receptor inhibitor picrotoxin (KCl+PcTX) to 

stimulate activity in the cultures. This protocol increased the relative Luciferase activity 

promoted by the i16 construct (Two-way ANOVA: F(1,56)=19, ****p<0.0001, Tukey’s post 
hoc: *p=0.011, n=15 transfections, 5 cultures), but we found no effect of the rs4523096[T] 

i16 SNP allele, either on basal or activity-induced gene expression in our cell culture assay 

(Two-way ANOVA: F(1,56)=1.6, p=0.22, Tukey’s post hoc: control vs. rs4523096[T] 

p=0.89 (basal), p=0.73 (KCl+PcTx), n=15 transfections, 5 cultures).

Recent studies suggest that risk genes containing common variants with low effect often also 

contain rarer variants with larger effect63, 64. In our limited sample set, we could not use 

statistical methods to identify rare variants. Instead, from our deep sequencing data of 

patient gDNA we identified several genetic variants within the putative CPG2 promoter 

regions, and tested all observed non-reference alleles in our Luciferase reporter assay. One 

SNP allele, rs4530871[T], located within a mammalian conserved sequence of the 5’UTR 

CPG2 promoter region significantly attenuated activity-induced gene expression (Two-way 

ANOVA: F(1,56)=7.0, *p=0.011, Tukey’s post hoc: control vs. rs4530871[T] p=0.86 (basal), 

*p=0.022 (KCl+PcTx), n=15 transfections, 5 cultures) (Fig. 3D).

Since the rs4530871[T] allele does not exist in our dataset without rs4523096[T], we tested 

the combined effect of the two alleles on relative Luciferase activity of the 5’UTR i16 

promoter construct, which encompasses both SNP locations. We found that the combination 

of the two alleles significantly affects gene expression, even at basal activity levels of the 

cultured neurons (One-way ANOVA: F(2,30)=6.26, **p=0.0053, Tukey’s post hoc: control 

vs. rs4523096[T]+rs4530871[T] **p=0.0054, n=11 transfections, 3 cultures) (Fig. 3E).
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We also tested the effect of another rare non-reference SNP allele rs924872285[G] on 

promoter activity of the −0.2kb i16 construct. This allele was identified in a single BD 

patient with low CPG2 expression in our dataset, and is situated in a conserved enhancer 

region immediately upstream of the TSS. This allele too, is only present together with 

rs4523096[T]. When we tested the combination of both alleles in the context of the −0.2kb 

i16 promoter construct, we saw a significant reduction in gene expression at basal activity 

levels as compared to controls (One-way ANOVA: F(3,45)=6.83, ***p=0.0007, Tukey’s 

post hoc: control vs. rs4523096[T]+ rs924872285[G] *p=0.015, n=13 transfections, 3 

cultures) (Fig. 3F).

The protein expression data, together with the identification of genetic variants in CPG2 
regulatory regions from BD patients that negatively affect gene expression, implicate low 

CPG2 expression in susceptibility to BD.

Non-reference SNP alleles in the CPG2 coding region affect spine localization of the CPG2 
protein.

While low CPG2 levels could lead to dysregulation of synaptic glutamate receptor 

internalization43, 47, synapse dysregulation could also derive from CPG2 protein variants 

with reduced function.

From public databases (1000 Genomes, gnomAD), we identified 12 common missense 

SNPs within the CPG2 coding region (Table 1). The reference alleles for ten of the SNPs in 

the dataset are conserved among mammalian species.

To gauge the extent to which individual coding SNPs could influence CPG2 cellular 

localization and/or function in the general population, we tested seven representative 

mutations (corresponding to the identified missense SNP non-reference alleles). We used a 

previously described knockdown (KD)47 and replacement strategy43, where endogenous 

CPG2 was knocked down in cultured cortical rat neurons and replaced with human reference 

or mutated CPG2. We have previously used this molecular replacement strategy to show that 

human CPG2 can replace endogenous rat CPG2, both in terms of its cellular localization to 

dendritic spines and its ability to regulate internalization of synaptic glutamate receptors43. 

The seven representative mutations were individually introduced into the full length human 

CPG2 coding sequence and cloned as GFP fusion constructs into a lentiviral vector also 

expressing a previously validated rat Cpg2-specific small hairpin RNA (shRNA)47. These 

replacement viruses were used to infect cultured neurons, and mutated CPG2 localization 

was compared to human reference CPG2. As previously shown, uninfected neurons showed 

enriched CPG2 localization in dendritic spines (Fig. 4A), adjacent to the postsynaptic 

density protein PSD9543, 47. Consistent with previous findings43, neurons infected with the 

shRNA virus showed robust KD of CPG2 protein (Fig. 4B), and molecular replacement with 

plasmids co-expressing the Cpg2-specific shRNA and a shRNA-resistant GFP-hCPG2 
fusion construct showed a punctate anti-GFP staining pattern, resembling the spine 

localization of the endogenous protein (Fig. 4C).

Six of the seven tested GFP-hCPG2 protein variants were expressed at levels comparable to 

the WT GFP-hCPG2 protein (Fig. 4D-I). Interestingly, expression of the E515K variant was 
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very low and did not allow proper evaluation of spine localization (data not shown), 

suggesting this coding mutation could also impact CPG2 levels or protein stability. When 

compared to the WT GFP-hCPG2 protein, immunostaining with anti-GFP antibodies 

showed significantly decreased spine localization for the V551A and R904W GFP-CPG2 

protein variants (One-way ANOVA: F(6,193)=3.6, **p=0.002, Dunnett’s post hoc: WT vs. 

V551A **p=0.0089, WT vs. R904W *p=0.044, n=4 independent experiments) (Fig. 4J). 

Significant differences in spine size was not observed for the tested variants (One-way 

ANOVA: F(6,213)=2.1, *p=0.049, Dunnett’s post hoc: p>0.05, n=4 independent 

experiments) (Fig. 4K).

Non-reference SNP alleles within the CPG2 coding region affect glutamate receptor 
internalization.

Rat CPG2 is known to localize to the endocytic zone of dendritic spines, where it regulates 

endocytosis of synaptic glutamate receptors47, 65. We have recently shown that human CPG2 

is functionally equivalent to rat CPG2 in facilitating glutamate receptor internalization in 

cultured neurons, suggesting a conserved function for CPG2 in rat and human brain43. To 

test whether any of the six human CPG2 coding variants could affect the ability of human 

CPG2 to functionally replace endogenous rat CPG2, we used an internalization assay for 

biotinylated surface receptors. Consistent with previous data43, 47, 65, we found that 6.0 ± 

0.9% of GluA2 containing AMPARs were constitutively internalized after 30 min in 

uninfected neurons, and KD of CPG2 decreased GluA2 internalization by approximately 

half (3.5 ± 0.8%, *p< 0.05) (Fig. 5A-F). Viral replacement with the GFP-hCPG2 reference 

protein rescued GluA2 internalization to levels comparable to endogenous CPG2 (6.0 ± 

1.0%). When testing the six mutated CPG2 variants, we found significantly decreased 

GluA2 internalization rates for the R477Q (One-way ANOVA: F(3,37)=5.7, **p=0.0027, 

Tukey’s post hoc: WT vs. R477Q *p=0.014, n=8), T691I (One-way ANOVA: F(3,35)=5.6, 

**p=0.003, Tukey’s post hoc: WT vs. T691I *p=0.039, n=7) and R904W (One-way 

ANOVA: F(3,34)=7.2, ***p=0.0008, Tukey’s post hoc: WT vs. R904W *p=0.012, n=12) 

variants (Fig. 5B, D and F).

Similar to its effect on GluA2 internalization, CPG2 KD significantly decreased constitutive 

internalization of GluN1 containing NMDARs (*p<0.05), while viral replacement with 

human CPG2 also rescued internalization of GluN1 to control levels (Fig. S4A-F). GluN1 

receptor internalization rates were significantly decreased for the same CPG2 variants that 

affected GluA2 internalization (One-way ANOVAs: F(3,29)=6.2, **p=0.0022 (R477Q); 

F(3,37)=5.7, **p=0.0026 (T691I); F(3,36)=6.7, **p=0.001 (R904W), Tukey’s post hoc 
tests: WT vs. R477Q *p=0.035, n=8; WT vs. T691I *p=0.036, n=7; WT vs. R904W 

*p=0.025, n=12, respectively) (Fig. S4 B, D and F). Neither CPG2 KD, nor replacement 

with WT or mutated human CPG2 significantly affected the constitutive internalization of 

transferrin receptor (TfR) (p>0.05) (Fig. S3G-L). Our data suggest that low frequency but 

relatively common CPG2 coding variants (MAF>0.001 present in the population) can have 

significant effects on CPG2 synaptic function.
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DISCUSSION

Recently, large consortium GWAS studies have shed new light on the genetics of 

neuropsychiatric disorders. However, genetic variants identified so far account for only a 

fraction of disease liability, a phenomenon generally characteristic of complex genetic traits. 

Purely genomic approaches such as GWAS and linkage studies are only the first step in 

elucidating the complex neurobiology of BD. They need to be followed and complemented 

with molecular and cellular studies of defective neuronal function to obtain a more complete 

understanding of disease etiology.

Identification of risk loci for BD has firmly implicated dysregulated excitatory 

neurotransmission as a key component of BD etiology24, 25, 34–36. Given the role of CPG2, a 

SYNE1 gene product, in facilitating glutamate receptor internalization and regulating 

excitatory synaptic strength43, 47, 65, this gene might be an important player in the 

neurobiological underpinnings of BD. Here, we show that low levels of the CPG2 protein 

are more prevalent in BD patients as compared to controls and other patient groups, and use 

multiple strategies to identify genetic variants within CPG2 regulatory or protein-coding 

regions that negatively affect gene expression or disrupt protein function, respectively.

Our finding that CPG2 protein levels are significantly lower in postmortem prefrontal cortex 

from BD patients as compared to control subjects, a phenomenon not shared with 

schizophrenia or major depression patients, supports specificity of CPG2 perturbation in 

BD. This is consistent with GWAS findings that genetic variation in SYNE1 is more closely 

associated with risk for BD23, 26. Low CPG2 levels across brain regions of BD patients 

suggests it is likely to derive from genetic causes. The clustering of common genetic variants 

in CPG2 regulatory regions identified in the low CPG2 expression BD subjects further 

supports this notion, although we cannot exclude additional causes such as brain region-

specific reduced activity in BD disease state.

It is often noted that common risk variants identified by GWAS overwhelmingly reside in 

large introns and in sequences immediately upstream of the implicated genes66. This 

suggests that disease-associated variation may derive not mainly from disrupted protein 

function, but from dysregulated gene expression. For example, the largest number of disease 

associations found by GWAS in schizophrenia are in regulatory regions, such as promoter or 

enhancer sequences67, 68. Studies of expression quantitative trait loci (eQTLs) in human 

tissues69, 70 also show that disease implicated genetic variants tend to associate with 

quantitative differences in expression levels of the same genes, especially when gene 

expression is measured in the tissue relevant to the disease68, 69. Unfortunately, we were not 

able to find eQTL data for the CPG2 gene region in public databases (GTEx, ExSNP). 

Progress in the genome-scale analysis of chromatin states now reveals hundreds of 

thousands of sites across the genome that contain dynamic chromatin marks suggestive of 

tissue-specific promoter or enhancer activity, with the ability to regulate the expression of 

nearby genes in specific tissues52, 71. The regulatory elements mainly found in introns are 

often less conserved between humans and rodents, as well as across all of evolution. 

Interestingly, the CPG2 promoter region is highly conserved among mammalian species as 

compared to other intronic regions within the gene (see supplementary table ST4 and 
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sequence alignment for quantification), suggesting that this region has a conserved activity-

dependent regulatory function in mammalian brains.

Our data suggest that no single genetic variation is associated with the low CPG2 protein 

expression found in BD patient subjects. This is in accordance with the pleiotropic and 

polygenic nature of BD, and other neuropsychiatric disorders, where many genetic risk 

factors each contributing a small effect cumulatively add up to a larger disease susceptibility. 

Common regulatory variants can also result in milder phenotypes that reflect tissue- or cell 

type specific gene expression. For example, a common variant in a CACNA1C regulatory 

region associated with approximately 15% increased risk of schizophrenia and BD, has no 

apparent association to cardiac or immune phenotypes66. By analogy, common regulatory 

variants influencing expression of brain-specific CPG2 transcripts from the SYNE1 gene 

would confer increased risk for developing BD, without significant impact on muscular 

phenotypes associated with other SYNE1 transcripts.

GWAS and genetic linkage studies, with the intrinsic requirement for very large sample 

sizes, are best suited to identify relatively common genetic risk variants. We found that when 

tested alone, the common BD associated i16 SNP allele (rs4523096[T])61 had no apparent 

effect on gene expression. A suggested explanation for some of the ‘missing heritability’, 

not yet accounted for in the genetics of complex diseases, is that common disease-associated 

SNPs act as sentinels for other genetic risk factors adjacent within the same region with 

more penetrant effects63. From our deep sequencing data of patient gDNA, we identified 

several genetic variants within the putative CPG2 promoter and enhancer regions. One SNP 

allele (rs4530871[T]), situated within a mammalian conserved sequence of the 5’UTR 

CPG2 promoter region significantly attenuated activity-induced gene expression when tested 

alone. Interestingly, (rs4523096[T] and rs4530871[T]) in combination, reduced basal gene 

expression. Likewise, another SNP allele, rs924872285[G] identified in a putative CPG2 
enhancer, also reduced basal gene expression when combined with rs4523096[T]. This 

exemplifies the common notion for complex genetic diseases that cumulative effects of low 

penetrant variants can combine to a greater effect size. Further, the differential effect of 

specific SNP alleles on basal versus activity-dependent gene expression suggests that within 

the general population, there are low frequency but relatively common genetic variants in the 

CPG2 promoter region that influence neuronal activity-dependent gene expression without 

apparent effect on basal level gene expression. The activity-dependent requirement for gene 

expression could potentially provide one explanation for the influence of environmental 

‘stressors’ on development of BD associated psychiatric symptoms.

While low CPG2 levels have already been shown to disrupt synaptic glutamate receptor 

internalization43, 47, synapse dysregulation could also derive from CPG2 protein variants 

with reduced function. Thus, some patients with apparently normal CPG2 levels might 

suffer from risk for BD due to coding region mutations. In a recent report, six 

nonsynonymous SNPs were identified in the CPG2 region of SYNE1 using high-resolution 

melt analysis72, but only predicted effects were described. The four most common of the 

missense SNPs overlap with our findings, namely rs34610829[T] (R359C), rs17082709[G] 

(L401V), rs148346599[A] (E515K), and rs214976[C] (V551A), of which the former two are 

not conserved across evolution and were therefore not tested here. The two latter were 
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predicted by Polyphen and SIFT analyses to be tolerated in other SYNE1 products and 

likely damaging to CPG2, and benign to both gene products, respectively72. This agrees with 

our findings that E515K had an apparent effect on CPG2 expression or stability, and V551A 

had a small effect on CPG2 spine localization with no apparent effect on glutamate receptor 

internalization. We found three additional SNPs with significant negative effects on 

glutamate receptor internalization, rs76646638[A] (R477Q), rs116939102[T] (T691I), and 

rs34028822[T] (R904W), of which the latter also affected spine localization. The R904W 

variant is situated at the C-terminal of CPG2 in between two reported protein kinase A 

(PKA) phosphorylation sites important for CPG2 spine localization and protein function65. 

We speculate that the bulky tryptophan in the minor allele variant might interfere with PKA 

binding and CPG2 phosphorylation, and thereby disrupt CPG2 protein function. The two 

other functionally disruptive variants R477Q and T691I do not have apparent effects on 

spine localization. They are situated far from the CPG2 C-terminal f-actin binding site 

important for spine localization73 but might affect functional protein domains in ways that 

allows normal spine localization but disrupt binding to the endocytic machinery, which 

facilitates receptor internalization47.

In this study, we present protein functional data from a statistically significant and replicated 

BD associated risk locus. We show that levels of the brain-specific SYNE1 product CPG2 

are lower specifically in BD patients as compared to controls as well as schizophrenia and 

depression patients. We identify genetic variants in the CPG2 promoter region with negative 

effects on gene expression, as well as low frequency coding variants in CPG2 that 

significantly affect CPG2 protein function. Taken together, our data fit a genetic architecture 

of BD, likely involving clusters of both regulatory and protein-coding variants, whose 

combined contribution to phenotype is an important piece of a puzzle containing other risk 

and protective factors influencing BD susceptibility. The ultimate goal is to allow a more 

scientifically informed, evidence-based approach to measure, differentiate and treat 

neuropsychiatric disorders, preferably with the aid of genetic and other non-invasive 

biomarkers.
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Figure 1: CPG2 protein levels are reduced in postmortem brain tissue from BD patients.
A) Synaptic protein fractions were extracted from a total of 102 postmortem human brain 

tissue samples from Brodmann Area 9/10 (image adapted from commons.wikimedia.org). 

For SDS-PAGE, 20µg of total protein was loaded. B) Representative Western blots 

comparing CPG2, Arc, and PSD95 protein expression in controls, depression, schizophrenia, 

and BD patients. Arc is another glutamatergic synaptic protein that like CPG2 is the product 

of an activity-regulated gene, and the synaptic protein PSD95 serves as a positive marker of 

glutamatergic synapse presence. C-E) Quantification of CPG2, Arc, and PSD95 protein 
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levels, respectively, shows that CPG2 levels are significantly lower in the BD patient 

population as compared to control subjects, whereas Arc is decreased in both schizophrenia 

and BD groups. Comparable PSD95 levels in all groups indicates that reduced CPG2 or Arc 

expression does not reflect synaptic loss. (*p<0.05, One-way ANOVAs, Tukey’s post hoc 
tests). F) Synaptic protein fractions were extracted from a total of 22 postmortem human 

brain tissue samples from hippocampus (image adapted from commons.wikimedia.org). G) 

Representative Western blots showing CPG2 protein expression in controls and BD patients. 

The synaptic marker protein PSD95 and β-actin serve as controls. H) Quantification of 

CPG2 protein expression. I) Quantification of PSD95 protein expression. J) Quantification 

of β-actin protein expression. K) Direct comparison of CPG2 protein expression in cortical 

and hippocampal tissue samples from individual subjects (black dots represent controls and 

red dots represent BD patients). As in neocortex, CPG2 protein expression is significantly 

decreased in hippocampal tissue from BD patients. (*p<0.05, Student’s t-tests).
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Figure 2. Human CPG2 variants identified by deep-sequencing
Brain tissue gDNA was extracted from all patient and control subjects, and deep-sequenced 

in the CPG2 locus to identify genetic variants. Common BD associated variants identified 

from GWASs26, 33, 61, 62 were statistically tested for correlation with CPG2 protein 

expression levels. A) The genomic position (GRCh37 assembly) of five SNPs identified as 

BD associated by GWAS mapped onto the CPG2 region of SYNE1 (dark blue vertical bars 

represent exons) shown in the context of previously published ChIP-sequencing data from 

human neurons identifying active promoter (green) and enhancer (purple) regions43. The 
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five SNPs are rs4523096 (green*), rs7747960 (red*), rs9371601 (blue*), rs214972 (yellow*) 

and rs215006 (grey*). B) The allele frequencies of the five BD associated SNPs were 

quantified for high and low CPG2 expression subjects. C) Six LD proxies (rs9478332, 

rs12055686, rs4343926, rs4318888, rs7771568, and rs6908747) for the five BD SNPs map 

to the CPG2 TSS flanking region (color-matched to origin SNPs). D) The LD allele 

frequencies of the six SNP proxies were quantified for high and low CPG2 expression 

subjects. Four alleles (rs4523096[T], rs7747960[T], rs9478332[T] and rs4343926[C]) were 

trending towards higher allele frequency in low expressing subjects. E) The frequency of 

having at least one of the four non-reference alleles was compared between high and low 

CPG2 expression subjects, and F) between BD patients with low CPG2 and control subjects 

(Mann-Whitney binary tests). Note: rs4523096[T] and rs4343926[C] have high allele 

frequencies (>0.4) and were quantified for homozygous subjects in E, F and G. G) CPG2 

protein expression levels (from figure 1) are displayed on a continuum from low (red) to 

high (blue) expression, where each colored bar represents one subject and each of the four 

identified variants enriched in the low CPG2 population shown as dark grey bars. The 

threshold between high and low CPG2 expression (dashed red line) was defined at the mean 

CPG2 protein expression level of the BD group as displayed in Figure 1C.
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Figure 3. Non-reference SNP alleles in the CPG2 promoter region and their effect on gene 
expression.
CPG2 gene regions with promoter activity were identified using a Luciferase gene 

expression assay in cultured cortical neurons. A) Schematic depiction of the CPG2 promoter 

region in SYNE1 (−1.2kb to +850kb from proposed CPG2 transcription start site (~TSS)43). 

Dark blue arrows indicate SYNE1 exons and red dashed lines mark the approximate 

transcription start site (~TSS) and the translation start site (start ATG). Green and purple 

ovals mark identified regulatory regions with promoter or enhancer activity, respectively. 

Light blue boxes indicate mammalian conserved intronic regions and black vertical lines 
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mark identified variants within the region. B) Overview of constructs with CPG2 promoter 

region fragments and their relative activity in the Luciferase expression assay. C) Effects of 

SNP allele rs4523096[T] on activity of the i16 promoter region with or without KCl+PcTX-

induced neuronal stimulation. D) Effects of SNP allele rs4530871[T] on activity of the 

5’UTR region with or without KCl+PcTX-induced neuronal stimulation. The 5’UTR SNP 

allele rs4530871[T] significantly attenuated activity-induced gene expression. E) Effect of 

SNP alleles rs4523096[T] and rs4530871[T] combined, on relative Luciferase activity of the 

5’UTR i16 region. The combination of the two non-reference SNP alleles significantly 

affects gene expression at basal neuronal activity levels as compared to control. F) Effect of 

SNP alleles rs4523096[T] and rs924872285[G] combined, on relative Luciferase activity of 

the −0.2kb i16 region. This combination of non-reference alleles also significantly affects 

gene expression as compared to control. (*p<0.05, **p<0.01, One-way or Two-way (KCl

+PcTX) ANOVAs, Tukey’s post hoc tests).
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Figure 4. Effect of human coding variants on CPG2 spine localization
Schematic depiction of the CPG2 coding region in SYNE1. Dark blue arrows indicate 

SYNE1 exons (note: the i34 intron is not spliced out in CPG2). Purple indicates the CPG2 
coding region and orange marks the 5’ and 3’UTRs in the CPG2 mRNA. Light blue depicts 

the predicted CPG2 protein structure with dark blue regions indicating coiled-coil domains 

and red circles marking two PKA phosphorylation sites known to affect CPG2 protein 

function65. Black vertical lines label the positions of identified missense SNPs within the 

CPG2 coding region with their amino acid residue exchange indicated. Cultured 
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hippocampal neurons were lentivirus infected with shRNA for KD of endogenous CPG2 and 

replaced with GFP-fused human CPG2 reference protein or mutated variants. Representative 

images showing dendritic segments of neurons expressing endogenous rCPG2 (A) and 

shRNA rCPG2 KD (B) stained with anti-CPG2 monoclonal antibodies. C-I) Representative 

images showing dendritic segments of neurons expressing GFP-hCPG2 control or mutated 

variants stained with anti-GFP antibodies. Scale bar: 2µm. J) Spine localization was 

quantified as the ratio between fluorescence intensity in spine regions and in 10µm of 

adjacent dendrite. K) Quantification of spine size defined as spine head area (µm2). Spine 

localization of the V551A and R904W variants is significantly decreased while spine size is 

comparable to control. (*p<0.05, **p<0.01, One-way ANOVAs, Dunnett’s post hoc tests).
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Figure 5. Effect of human CPG2 coding variants on glutamate receptor internalization.
CPG2 coding variants were tested in an internalization assay for biotinylated surface 

receptors. Schematic depiction of predicted CPG2 protein structure with dark blue regions 

indicating coiled-coil domains and red circles marking two PKA phosphorylation sites. 

Black vertical lines label the positions of identified missense SNPs with their amino acid 

residue exchange indicated. A-F) Cultured cortical neurons were either uninfected (control), 

infected with shRNA for KD of endogenous CPG2 (KD) or infected with shRNA for CPG2 

KD together with GFP-fused human CPG2 reference protein (hCPG2) or mutated variants 

(as indicated). Representative Western blots showing the internalized fraction of biotinylated 
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surface receptors probed with GluA2 antibodies. Quantification of internalized GluA2 is 

presented as percent internalization calibrated to levels of surface receptors. Human CPG2 

replacement shows receptor internalization rates comparable to control. CPG2 variants 

R477Q, T691I, and R904W show significantly decreased GluA2 internalization. (*p<0.05, 

**p<0.01, One-way ANOVAs, Tukey’s post hoc tests).
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Table 1

Genetic variants in CPG2 exons

Genome
Position

(GRCh37)
chr6:

SNP Variant
allele

MAF
(1000G)

SYNE1
exon #

AA residue
Substitution

in human
CPG2

effect on
spine

localization

effect on
GluA2/GluN1
internalization

152784621 rs9397509 A/G G=0.004 19 Q171R no no

152779933 rs34610829 C/T T=0.011 22 R359C* n/a n/a

152777095 rs17082709 T/G G=0.043 23 L401V* n/a n/a

152776571 rs76646638 G/A A=0.002 24 R477Q no yes

152776571 rs201146062 C/T T=0.001 24 R477W n/a n/a

152774753 rs148346599 G/A A=0.002 25 E515K n/a** n/a**

152772264 rs214976 T/C T=0.39 26 V551A yes no

152771967 rs141464488 T/C C=0.001 27 V579A n/a n/a

152768738 rs116939102 C/T T=0.0002 29 T691I no yes

152768726 rs117461489 A/C C=0.0008 29 E695A no no

152762307 rs149109801 T/A A=0.0002 32 F885L n/a n/a

152757224 rs34028822 C/T 0.0029 33 R904W yes yes

*
Not conserved between rat and human.

**
Low expression in cellular assays
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