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Abstract

Anaerobic digestion (AnD) is a microbiological process that converts organic waste materi-

als into biogas. Because of its high methane content, biogas is a combustible energy source

and serves as an important environmental technology commonly used in the management

of animal waste generated on large animal farms. Much work has been done on hardware

design and process engineering for the generation of biogas. However, little is known about

the complexity of the microbiology in this process. In particular, how microbes interact in the

digester and eventually breakdown and convert organic matter into biogas is still regarded

as a “black box.” We used 16S rRNA sequencing as a tool to study the microbial community

in laboratory hog waste digesters under tightly controlled conditions, and systematically

unraveled the distinct interaction networks of two microbial communities from mesophilic

(MAnD) and thermophilic anaerobic digestion (TAnD). Under thermophilic conditions, the

well-known association between hydrogen-producing bacteria, e.g., Ruminococcaceae and

Prevotellaceae, and hydrotrophic methanogens, Methanomicrobiaceae, was reverse engi-

neered by their interactive topological niches. The inferred interaction network provides a

sketch enabling the determination of microbial interactive relationships that conventional

strategy of finding differential taxa was hard to achieve. This research is still in its infancy,

but it can help to depict the dynamics of microbial ecosystems and to lay the groundwork for

understanding how microorganisms cohabit in the anaerobic digester.

Introduction

Renewable energy has received great attention in recent years due to the shortage of fossil fuels

and increasing atmospheric pollution and global warming caused by the burning of fossil fuels

[1]. Biogas produced from the AnD of biomass or organic waste is renewable, environmentally

friendly and associated with multiple benefits [2–5]. A balanced interaction between microbes

in the bio-digestion chain is crucial for a stable and efficient gas production. With traditional

culture-dependent techniques, researchers were able to identify the microbes responsible for
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specific metabolic processes in AnD [6]. However, most microbes in these systems are still

uncultivatable, and the key species for efficient biogas production are not fully known. More-

over, a number of studies have shown that the roles and interactions of specific microorgan-

isms within the biogas-producing communities are very complex [7–10]. An in-depth study to

understand the interactive structure of the microbial community and its functional dynamics

during different phases of AnD is absolutely necessary if we want to improve the process and

performance of biogas production in a microbial digester.

A conventional way to decipher microbial interactions is performing co-culture experi-

ments which construct an artificial community in a controlled condition [11, 12]. Although

the co-culture strategy aimed to monitor population dynamics, the microbial abundance fre-

quently shows the difference between structured and unstructured environments [12].

Another problem is that co-culture experiments routinely involve only a small number of

microbial species. In a systematical way, one key method to improve understanding of micro-

bial relations in AnD reactors is through network inference. In order to uncover the hidden

patterns beyond the animal world, network-based approaches have been applied to investigate

the interactions between animals. Network inference has been widely used to explore interac-

tions between various entities [13, 14]. However, microbes are the most abundant and diverse

organisms on earth, and microbial interactions, including mutualism, competition, parasitism

and commensalism, are difficult to quantify as the underlying processes usually cannot be

observed directly and are often too complex for laboratory experiments [15]. Fortunately,

recent advances in high-throughput sequencing technology have made large scale surveys of

microbial communities feasible. Metagenomic studies and network-based approaches have

yielded detailed information on the composition of microbial communities, which in turn

have paved the way to study the structure of microbial ecosystems and their dynamics [16–18].

There are several approaches that can be taken to construct a microbial network. One com-

monly applied method is the similarity-based network construction where the co-occurrences

of two species over multiple time-series samples are measured to infer their interactions [16,

17, 19–21]. In such networks, nodes correspond to organisms and an edge between two nodes

represents the significant relationship of two taxa across a set of time series samples. Although

the advanced version of this approach [22–24] can identify pairwise relationships using a cor-

relation estimation, it is still difficult to identify the direction and the strength of these relation-

ships between microbes [15]. Recently, a number of methods employing mathematical and

statistical models have been developed to model complex relationships (one species influenc-

ing multiple others). For example, some studies used nonparametric regression models to

infer the dynamic relationships between three microbial populations [25, 26]. Recently, a new

tool called MetaMIS (Metagenomic Microbial Interaction Simulators) that applies generalized

Lotka-Volterra models (gLV) was released [27]. The gLV equations also known as the preda-

tor–prey equations have recently been adopted for the study of dynamic models for microbial

communities [15, 28]. They are commonly used to model direct competition and trophic rela-

tionships between an arbitrary number of species. In a dynamic model of a microbial commu-

nity from 16S rRNA amplicon data, the input data comprise the growth rates and relative

abundance of the community members, which can either be obtained experimentally or can

be estimated from time series data. According to our survey, gLV equations can be used to

study many aspects of microbial interactions; some studies indicated that gLV equations can

successfully predict microbiota temporal dynamics from the mouse intestine [28] or within a

cheese-making environment [29]. On the other hand, some studies suggested that the distribu-

tion of interaction pairs obtained by a gLV dynamic model in an ecological system can be used

to predict microbiota stability [30]. Another important application of this approach is in data

simulation. Given a set of known interspecies interactions, the LV model can generate a
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simulated microbial community [30–32]. These applications make it a potential tool for future

metagenome analysis.

AnD can be maintained at different temperature ranging from mesophilic (30–40˚C) to

thermophilic (55–65˚C) temperature [33]. It is known that thermophilic temperatures lead to

higher substrate degradation and biogas production. Several studies have demonstrated the

different bacterial composition of mesophilic and thermophilic anaerobic digesters using

swine manure [34, 35], however, limited information regarding the specific roles played by

each microbe was revealed. In order to more closely investigate the interaction patterns in

these two conditions and clarify the major microbes which potentially drive the changes of the

communities, we collected 16S rRNA profiles from day 18 to day 60 (the start-up to steady-

state stage in the swine manure digester) and analyzed the microbial interactions using Meta-

MIS [27]. We found that the microbial interaction network could serve to reinforce the under-

standing of microbial community and to systematize these pairwise interactive relations. The

thermophilic interaction network showed a very different profile of influential microbial mem-

bers than those of the mesophilic network. Through these network-based approaches, we have

revealed the first information on the interactions of microbial communities in an anaerobic

digester, which in turn will pave the way to study the structure and dynamics of the microbial

ecosystems under these conditions.

Materials and methods

Anaerobic digester operation and sampling

To compare the microbiota composition in thermophilic (55˚C, TAnD) and mesophilic (37˚C,

MAnD) AnD digesters, two bench-top CSTRs (completely stirred tank reactors), each with a

working volume of 3 L, were set up for this study [36]. The digesters were operated at two differ-

ent temperatures, mesophilic (37˚C) and thermophilic (55˚C), using 15 days hydraulic retention

time (HRT), and 5% total solids (TS) without pH control. All tests were operated at the theoreti-

cal steady state in each reactor with a semi-continuous feeding mode. Effluents were collected

and influents were added every day. Manure from hogs, the growing pigs, from the same farm

was used as the primary substrate to establish the baseline information of the operational param-

eters, including temperatures, TS concentrations and HRT. We received approval from the farm

owners to collect the concentrated pig manure from her pig farm, called DaXi pig farm, in Miaoli

County, Taiwan. These manure samples were kept frozen in a -20˚C freezer and thawed before

use. A peristaltic pump (Masterflex model No. 7553–80, Cole-Parmer Instrument Co., IL., USA)

was used in feeding and sampling operations to avoid introducing air into the digester. Both

influent and effluent samples were analyzed for pH, TS and chemical oxygen demand (COD,

colorimetric method) according to Standard Methods (APHA et al., 1998). Also, biogas produc-

tion was recorded using the wet test gas meter (W-NK-0.5, Shinagawa Co., Tokyo, Japan), and

the methane composition was determined using a gas chromatograph (GC-8700T, China Chro-

matography Co., Taiwan) equipped with a thermal conductivity detector (GC-TCD) and a Pora-

pak Q column, with helium as the carrier gas. The gas sample was analyzed and compared with

a gas standard. Liquid samples were kept frozen until analysis was conducted. The effluent for

each test was frozen for later use.

DNA extraction

Bacterial DNA was extracted from each collected sample using the PowerSoil1 DNA Isolation

Kit (Mo Bio Laboratories, USA), according to the manufacturer’s instructions. Concentrations

of double stranded DNA in the extracts were determined by the Quant-iT dsDNA HS assay kit

and the Qubit fluorometer (Invitrogen, Life Technologies, Carlsbad, CA., USA). DNA was
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quantified with a Nanodrop-1000 Spectrophotometer (Thermo Scientific, Wilmington, DE,

USA). All procedures were performed in laminar flow cabinet to avoid contamination.

PCR amplification of 16S rRNA and sequencing

To increase primer coverage of sequences available in the Ribosomal Database Project (RDP)

database, the primers used for DNA amplification were a modified 341F (CCTAYGGGRBGCA
SCAG) and a modified 806R (GGACTACNNGGGTATCTAAT) [37] fused with Illumina over-

hanging adapters, which amplified a DNA fragment of about 533 bp length flanking the V3

and V4 regions of the 16S rRNA gene [38]. The PCR amplification (30 μL final volume) was

performed using 2X Phusion Flash High-Fidelity PCR Master Mix (Finnzymes Oy, Finland),

and the incubation conditions were as follows: 98˚C for 3 min, followed by 25 cycles of 98˚C

for 30 s, 56˚C for 30 s, and 72˚C for 30 s with a final extension of 72˚C for 5 min. All PCR

products were confirmed by 2% agarose gel electrophoresis and purified using NucleoSpin1

Gel and PCR Clean-up (Macherey-Nagel GmbH & Co. KG, Düren, Germany). DNA concen-

trations and quality of the cleaned PCR products were determined using the Nanodrop-1000

Spectrophotometer (Thermo Scientific, Wilmington, DE, USA).

The purified amplicons were further processed according to the Illumina standard protocol

of 16S rRNA sequencing library preparation, and sequenced by the MiSeq platform with the

reagent kit v3.

Sequence processing

All paired-end sequences in FASTQ format were processed with FLASH software [39],

MOTHUR v.1.36.1 [40, 41], and the UPARSE OTU (operational taxonomic units) analysis

pipeline [42]. At first, these paired-end reads were merged using FLASH software [39] with

standard parameters, with the exception of the maximum overlap parameter, which was set at

150. The successive filtering step for merged reads was performed by MOTHUR software [40].

With trim.seqs command, primer sequences were removed and all sequences less than 375

bases, with a quality score smaller than 30 or with homopolymers longer than eight nucleotides

were discarded. These trimmed sequences were simplified by using the unique.seqs command

to generate a unique set of sequences, and were clustered with a 97% similarity cutoff using

UPARSE [42], where chimeric sequences were removed simultaneously with OTU-picking.

The taxonomic assignment of the OTUs was achieved by the classify.seqs script using the train-

set14_032015.rdp in MOTHUR [40] which used the RDP classifier with a confidence score

threshold of 80%. The final step was to remove OTUs derived from Chloroplast, Mitochondria,

Eukaryota, or unknown kingdom, and to perform the 16S rRNA gene copy number (GCN)

adjustment of taxon abundance [43], and to generate an OTU table.

Statistical analysis and classification of microbial members

The classification of microbial members was based on the OTU abundance. If OTUs contained

more than 1% of the total number of sequences, they were denoted as high-abundance OTUs.

If the abundance of OTUs in a time-series sample ranged from 0.1% to 1%, they were classified

as low-abundance non-rare OTUs, and the remainder as rare OTUs.

There are i = 1,. . .,N OTUs and k = 1,. . .,t time-series samples in a microbial abundance

table. The mean value of relative abundance, xik, for an OTU i is defined below.

MEANi ¼

Pt
k¼1
ðxikÞ

Nðxik > 0Þ
ð1Þ
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Differential OTUs between mesophilic and thermophilic anaerobic reactors were selected

by the following steps. First, for each OTU among all time-series samples, the fold changes and

relative abundance from two reactors were calculated. If there were missing values, the corre-

sponding fold changes were ignored (Eq (2)). When the abundance of the mesophilic condi-

tion was used as a reference, the differentially abundant OTUs at thermophilic temperature

could be identified. On the contrary, setting the thermophilic condition as the reference allows

identification of the differentially abundant OTUs at mesophilic temperature.

FOLDk
i ¼

xtreatment
ik

xreference
ik

if xik ¼ 0; then FOLDk
i ¼ 0 ð2Þ

Next, we determined the differential status of a fold change, FOLDi
k, in each time-series

sample (Eq (3)). If the fold change was larger than the threshold, setting 2 in this study, it was

considered to be in a differential status.

INDEXk
i ¼

1 if FOLDk
i � FOLDthreshold

0 if FOLDk
i < FOLDthreshold

ð3Þ

(

Finally, Eq (4) was to identify whether an OTU i belonged to the differentially abundant

group. There were a total of t differential statuses among time-series samples for each OTU

which could be divided into two time-series stages, including an early stage where k = 1,. . .,tcut
and a late stage where k = tcut+1,. . .,t. In this study, there were ten time-series samples in each

anaerobic reactor and tcut was set to 7. If there were over 4 differential fold changes in the early

stage and over 2 in the late stage, this OTU was defined as a differentially abundant OTU

under the treatment condition (see Eq (2)). This kind of settings is done in order to avoid iden-

tifying differential OTUs which only have differential abundances in the early stage.

OTUdiff
i ¼ ð

Ptcut
k¼1

INDEXk
i þ

Pt
k¼tcutþ1

INDEXk
i Þ � 6

if
Ptcut

k¼1
INDEXk

i � 4 and
Pt

k¼tcutþ1
INDEXk

i � 2
ð4Þ

Furthermore, rarefaction curves or Shannon indices were constructed using the command

rarefaction.single or collect.single in MOTHUR [40] to compare the microbial richness or

diversity between the mesophilic or thermophilic processes.

Inference for microbial interaction network

An OTU table is exhaustively divided into two groups according to whether an OTU is associ-

ated with a biogas related pathway (BRP) or not (NBRP). In the BRP or NBRP groups, there

were NBRP or NNBRP microbial families used to generate a high confidence BRP interaction net-

work by using a discrete-time LV model [44] coupled with a partial least square regression [45].

The high confidence BRP interaction network is a combination of two kinds of interaction net-

works. The first one is the raw BRP interaction network derived from the BRP group which

constitutes an interaction network with (NBRP) × (NBRP−1) interactions where MBRP
ij represents a

repressive or active effect of OTU j on i. The second one is a group of mixed interaction net-

works from both the BRP and NBRP group over Nsim simulation runs. For each simulation,

NgNBRP OTUs are randomly selected from the NBRP group and combined with NBRP OTUs from

the BRP group to generate an interaction network where MBRPþgNBRP
ij;sim is the interactive relation-

ship. Over the Nsim simulated interaction networks, an interactive relationship is identified if
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one of the following conditions is fulfilled when P is defined by Eq (5).

P ¼
PNsim

sim¼1
ðMBRPþgNBRP

ij;sim > 0Þ

Nsim
ð5Þ

Condition I

If P� Pthreshold and MBRP
ij > 0, then MBRP

ij reveals an active confident interactive relationship of

OTU j and i.

Condition II

If P� Pthreshold and MBRP
ij � 0, then MBRP

ij reveals a non-confident interactive relationship.

Condition III

If P� 1 − Pthreshold and MBRP
ij � 0, then MBRP

ij reveals a non-confident interactive relationship.

Condition IV

If P� 1 − Pthreshold and MBRP
ij < 0, then MBRP

ij reveals a confident repressive interactive relation-

ship of OTU j and i.
In our study, 173 microbial members were identified at the family level, comprised of 36

BRP and 137 NBRP families. There were a total of 1260 interactions in the raw BRP interaction

network (MBRP
ij ). Then Nsim = 1000 mixed interaction networks were generated by 1000 simula-

tion runs where NgNBRP = 120 NBRP families were randomly chosen from the NBRP group and

cooperated with NBRP = 36 BRP families to infer interactive relations ðMBRPþgNBRP
ij;sim Þ for each sim-

ulation run. Over the 1000 simulated interactive networks, an interactive relation coherent in

Pthreshold = 95% of simulated outcomes and consistent with the raw BRP interactive relation

ðMBRP
ij Þ was defined as high confidence. Finally, there were 689 and 671 high confidence inter-

actions in the mesophilic or thermophilic anaerobic digesters, respectively.

Topological inference for microbial interaction network

The topological analysis of an interaction network was conducted by three measurements using

Gephi software [46]. Measurements included in-degree centrality, betweenness centrality and

eigenvector centrality. In a topological interaction network, a node represents an OTU i and an

edge indicates the interactive relation between two OTUs. In-degree centrality quantifies the

number of nodes that an OTU receives. Larger the values, indicate that the OTU is influenced by

more OTUs or interactions. In-degree centrality is displayed by node color, the darker (or ligh-

ter) red indicates that the OTU has more (or less) in-degree relationships. Betweenness centrality

measures the number of times an OTU functions as a bridge along the shortest path between

two other OTUs. Therefore an OTU has a strong betweenness centrality (bigger node size) if it

bridges on many shortest paths. Eigenvector centrality is a measurement to identify the impor-

tance of an OTU in a network based on its connections. An important OTU is always linked by

other important OTUs and situated at the core of the network.

The biological evaluation of inferred microbial interactions

In the tool, MetaMIS [27], the microbial interactions were evaluated using two metabolic indices

including complementarity and competition index. The metabolic complementarity index is
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defined as the fraction of metabolites in one species’ nutritional profile but not in the nutritional

profile of another one [47] in which a nutritional profile is retrieved from Kyoto Encyclopedia of

Genes and Genomes (KEGG) metabolic pathways [48]. The index ranging from 0 to 1 measures

the trophic dependence between two microbes. Thus, an index of 1 means that all of the nutri-

ents required by one microbe can be synthesized by another microbe from metabolic precursors.

The metabolic competition index is defined as the fraction of metabolites in a species’ nutritional

profile that are also included in another species’ nutritional profile. This index ranges from 0 to 1

as a measure of the trophic competition between two microbes; thus an index of 1 means that all

of the nutrients required by two microbes are the same. According to genome-scale metabolic

network models, 23,562 metabolic complementarity or competition indices for pairs of micro-

bial species [47] were transformed to 19,182 microbial trophic relations at the family level. For

each transformation, metabolic indices from the same family were averaged.

Results

Biogas production in mesophilic or thermophilic AnD

During the 90 days of operation of the AnD processes, the removal efficiency of COD and TS

in the MAnD or TAnD anaerobic reactors became more stable after the sixtieth day (Gray

Fig 1. The fluctuation of COD and TS over time. Ten time points were selected according to the changing

rate of COD and TS in the MAnD (A) or TAnD (B) digesters as labeled in the bottom of the diagram. The gray

region indicates the stable duration of COD/TS removal rates (i.e., RCOD or RTS).

https://doi.org/10.1371/journal.pone.0181395.g001
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region in Fig 1). These facts indicate a steady state of organic carbon mineralization into biogas

under mesophilic or thermophilic conditions (Fig 1 and S1 Table). As shown in Fig 2, biogas

and methane from thermophilic conditions (Fig 2B) were produced at a higher level than that

obtained from the mesophilic digester (Fig 2A) at any period (S1 Table). Methane yields

accounted for a similar fraction of the total biogas collected under mesophilic or thermophilic

conditions in all time periods (Fig 2), with a maximum methane content of 55% at the end of

each steady-state period.

Summary of sequence data and archaeal percentage

We used Illumina-based 16S rRNA sequencing to examine the complex microbial communi-

ties found in the AnD digesters. In total, 20 effluent samples at ten time points were collected

from MAnD or TAnD reactors before the steady-state period (Fig 1). This obtained approxi-

mately 3 million paired-end reads (~900 megabases of 16S rRNA amplicon sequence). All

sequenced samples which had been deposited in the NCBI Short Read Archive under BioPro-

ject PRJNA350355 (SRR4450465- SRR4450484) showed similar levels of sequence quality.

After pre-processing steps of quality control, paired-end merging, primer trimming, and

Fig 2. Biogas production in the anaerobic reactors. MAnD (A) or TAnD (B) digesters. (A) The MAnD

digester had lower efficiency of gas (-●-) or methane (-�-) production than the TAnD one (B). The percentage

of methane (CH4%) in biogas was similar in the two reactors.

https://doi.org/10.1371/journal.pone.0181395.g002
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taxonomic assignment, about 75%, i.e. 1,124,760 quality-checked reads, from the total raw

reads were retained for later analysis (Table 1).

Between 86.9% and 91.7% of all the sequences were assigned to the domain bacteria in the

mesophilic samples, while between 92.1% and 97.8% of sequences were assigned at thermo-

philic temperature (Table 2). The percentage of archaeal sequences (8.3–13.1%) at mesophilic

temperature was higher than in the thermophilic conditions (2.2–7.9%), especially after per-

forming GCN correction (Table 2). All of the archaeal or bacterial sequences were classified to

family-equivalent OTUs recognized in the RDP database. In total, 173 major families were

identified after discarding 5 or 19 OTUs uniquely in the thermophilic or mesophilic conditions

respectively.

Comparison of microbial community structure

Rarefaction curves and microbial diversity. Rarefaction curves of observed OTU rich-

ness revealed the saturation of the number of OTUs from the asymptotic nature of randomly

sampled reads (S1 Fig), indicating that the number of sequences per time-series sample was

high enough to cover the microbial diversity in each sample. The estimated number of OTUs

was apparently lower under thermophilic conditions although the sequencing depth was

higher. In spite of the fact that microbial richness was influenced by temperature (S1 Fig), a

lower Shannon diversity index was observed under thermophilic anaerobic environments in

all experimental periods (S2 Fig).

Biogas-related microorganisms. Microorganisms from the bacterial or archaeal domains

execute several interdependent, successional, and complex biological interactions to influence

the efficacy of methanogenesis. As the best characterized methane producers in AnD, different

methanogenic families were dominant at different temperatures; Methanotrichaceae, Methanocor-
pusculaceae, Methanoregulaceae and Methanomassiliicoccaceae were abundant at the mesophilic

temperature. However, under thermophilic conditions Methanobacteriaceae and Methanomicro-
biaceae became more prominent (Table 3). Methanogenic anaerobes often cooperate with bacte-

rial consortia which play key roles to balance various biological conversion processes (i.e. BRP) in

AnD, for example hydrolysis, acidogenesis, acetogenesis, methanogenesis and desulfurization, in

order to avoid the accumulation of inhibitory end products. Supported by the literature [49–53],

we identified 36 microbial families which participated in BRP. The remainders (137 families)

were placed into the non-biological conversion process (i.e. NBRP) group.

Table 1. The number of pyrosequencing reads after preprocessing. The percentage of total sequence

reads is shown in brackets.

37˚C 55˚C

Total Reads 66019±5089 (100%) 83293±6987 (100%)

Merged Reads 59658±4626 (90.4%) 75131±6314 (90.2%)

Trimmed Reads 52474±4081 (79.5%) 66171±5608 (79.4%)

Final reads 50499±3952 (76.5%) 62157±5472 (74.6%)

https://doi.org/10.1371/journal.pone.0181395.t001

Table 2. The archaeal percentage (%) with or without GCN correction, denoting GCN or NGCN, respectively.

T18 T24 T30 T34 T38 T42 T46 T50 T58 T60

37˚CNGCN 8.4 10.7 13.1 9.1 8.3 7.5 8.4 10.7 10.7 12.7

55˚CNGCN 6.4 5.5 2.2 4.0 3.5 2.4 3.0 5.0 7.9 6.8

37˚CGCN 13.0 16.3 19.6 14.0 12.8 11.6 12.9 16.3 16.2 19.1

55˚CGCN 10.1 8.7 3.5 6.3 5.6 3.9 4.8 7.8 12.2 10.6

https://doi.org/10.1371/journal.pone.0181395.t002
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Representatives of 36 bacterial or archaeal families involved in BRP were detected (Table 3

and Fig 3). We examined another two microbial communities from the seeds of digested

manure sludge and influent pig manure as controls to trace microbial temporal changes. The

Table 3. The relative abundance of microorganisms in the BRP group. All values are shown as % of total sequence in each sample, except of the right-

est column.

Taxonomy in family level Seeda Manurea 37˚C a 55˚Ca Diffb Ngenus

p1: Porphyromonadaceae 0.32L 23.60H 3.11H 2.56H - 8

p1: Spirochaetaceae 0.49L 2.28H 2.06H 0.90L DN 2

p1: Rikenellaceae - <0.01R 0.01R 0.06R - 3

p1: Bacteroidaceae - 0.92L 0.08R 0.06R - 2

p2: Flavobacteriaceae 0.02R 0.29L 0.42L 0.63L - 9

p2: Enterococcaceae - 0.26L 0.02R <0.01R DN 1

p2: Veillonellaceae 0.02R - <0.01R 0.01R - 1

p2: Aerococcaceae <0.01R 0.12L <0.01R - - 2

p3: Erysipelotrichaceae 0.09R 2.59H 2.13H 3.47H - 5

p3: Peptostreptococcaceae 0.23L 9.51H 1.84H 3.19H - 5

p3: Syntrophaceae 5.79H 0.04R 0.69L 0.16L - 3

p3: Acidaminococcaceae <0.01R <0.01R 0.14L 0.26L - 3

p3: Desulfovibrionaceae 0.02R <0.01R 0.02R 0.01R - 3

p4: Methanotrichaceae 20.42H 0.03R 6.46H 1.45H DN 1

p4: Methanobacteriaceae 0.40L 0.04R 0.68L 2.14H UP 3

p4: Methanosarcinaceae 0.24L 0.06R 1.47H 1.90H - 5

p4: Corynebacteriaceae 0.02R 8.71H 1.05H 1.29H - 1

p4: Methanomicrobiaceae 0.02R - 0.12L 1.54H UP 2

p4: Methanocorpusculaceae 0.12L 0.11L 2.46H 0.12L DN 1

p4: Pseudomonadaceae 0.04R 17.55H 0.28L 0.84L UP 3

p4: Methanoregulaceae 21.61H 0.02R 0.83L 0.25L DN 3

p4: Methanospirillaceae 1.89H 0.11L 0.25L 0.10L - 1

p4: Enterobacteriaceae <0.01R 1.55H 0.11L 0.28L UP 2

p4: Planococcaceae - - 0.01R 0.21L UP 6

p4: Coriobacteriaceae <0.01R 0.35L 0.15L 0.14L - 6

p4: Methanomassiliicoccaceae 1.13H - 0.14L 0.06R DN 1

p1,2: Clostridiaceae_1 0.61L 11.65H 1.77H 2.96H - 3

p1,2: Clostridiaceae_2 - - <0.01R <0.01R - 1

p2,3: Lactobacillaceae <0.01R 0.53L <0.01R <0.01R - 1

p1-4: Ruminococcaceae 1.21H 1.79H 13.51H 10.33H - 15

p1-4:Prevotellaceae - 0.01R 0.39L 1.03H - 2

p1-4:Lachnospiraceae 0.04R 2.23H 0.34L 1.39H UP 5

p1-4:Synergistaceae 2.46H 0.02R 1.59H 0.54 L DN 6

deS: Syntrophobacteraceae 0.43L - 0.23L 0.12 L - 2

deS: Desulfobulbaceae 0.02R 0.01R 0.03R 0.02 R - 1

deS: Desulfobacteraceae 0.03R - <0.01R <0.01 R - 1

Eight methanogens 45.84 0.36 12.39 7.55

36 BRP families 57.67 84.38 42.39 38.06

a H: high abundance; L: low abundance; R: rare abundance (details see materials and methods)
b Diff indicates the differentially abundant OTUs at thermophilic or mesophilic temperature.

-: Microbial abundance is similar between the two anaerobic digesters.

DN (or UP): Microbial abundance is lower (or higher) at thermophilic temperature.

https://doi.org/10.1371/journal.pone.0181395.t003
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accumulated relative abundance of methanogens revealed that seed sludge was the major

source of methanogens (45.84%) for those from MAnD (12.39%) or TAnD (7.55%) digesters

(Table 3). However, influent substrates from swine manure constituted a bacterial repository

and provided 84.02% of its community during the process of hydrolysis, acidogenesis, aceto-

genesis and desulfurization (Table 3).

Temperature-dependent changes in microbial community composition. Of the 173

OTUs identified at the family level, we identified 13 differentially abundant OTUs that were

involved in the BRP group (Table 3) and 15 from the NBRP group (S2 Table). In the TAnD

reactor, there were six differentially abundant families that participate in methanogenesis;

Methanobacteriaceae, Methanomicrobiaceae, and Lachnospiraceae were the most common of

the differentially abundant families, conveying 2.14%, 1.54%, and 1.39% of total reads respec-

tively (Table 3). Pseudomonadaceae, Enterobacteriaceae or Planococcaceae, as low-abundance

families, accounted for only 0.84%, 0.28% or 0.21% of the total prokaryotic communities,

respectively. Interestingly, Planococcaceae could not be detected in the seed sludge or swine

manure but was detectable, albeit at very low relative abundance under thermophilic condi-

tions. In contrast, in the MAnD process, four methanogens, Methanotrichaceae (6.46%),

Methanocorpusculaceae (2.46%), Methanoregulaceae (0.83%) and Methanomassiliicoccaceae
(0.14%), were highly abundant families compared with thermophilic conditions. The major

source of Methanotrichaceae, Methanoregulaceae and Methanomassiliicoccaceae was from seed

sludge because their relative abundance in seed sludge reached 20.42%, 21.61%, and 1.13%

respectively. However, these high-abundance donor communities did not remain present at

high levels during the start-up period of reactors (Fig 3). Methanocorpusculaceae which was

equally present at relatively low abundance in seed sludge (0.12%) or swine manure (0.11%)

remained at a constant level at the higher temperature, and reached 2.46% at the mesophilic

temperature. Other than methanogens, two differentially abundant bacterial families were

identified; Spirochaetaceae (2.06%) and Enterococcaceae (0.02%) which function in hydrolysis

and acidogenesis respectively to enhance the AnD degradation of organic matter (Table 3).

Specifically, extracts from mesophilic or thermophilic conditions had respective differentially

abundant families, Lachnospiraceae or Synergistaceae, which have a wide spectrum of mecha-

nisms that may affect the overall phases of the BRP processes. There was no differential family

identified which was involved in the process of desulfurization (Table 3). The differentially

abundant taxa that do not participate in the BRP process are listed in S2 Table. The detailed

metabolic pathway [48] that microbes of the BRP group was shown in S3 Table.

Different microbial interaction networks

In this study, temperature was a critical factor influencing the microbial abundance and composi-

tion. At mesophilic temperature, the microbial community had higher diversity and more differ-

entially abundant families involved in BRP processes. However, under thermophilic conditions,

the differentially abundant taxa were most concentrated in the process of methanogenesis. These

observed differences in microbial communities might be controlled by the intrinsic interactions

between microorganisms. To visualize the structure change, totally 173 families were used to infer

the microbial interactions, the interaction networks with the 100 strongest interactive strengths

from the MAnD or TAnD reactors were sketched (Fig 4, only the 36 BRP group was shown).

Using eigenvector centrality, Flavobacteriaceae, Methanocorpusculaceae and Spirochaetaceae

Fig 3. Different microbial compositions at MAnD or TAnD digesters. Microbial communities shown at the family level under

mesophilic (A) or thermophilic (B) conditions. 36 BRP microbial families related to five biogas generation pathways were denoted as p1 for

hydrolysis, p2 for acidogenesis, p3 for acetogenesis, p4 for methanogenesis, and deS for desulfurization.

https://doi.org/10.1371/journal.pone.0181395.g003
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connected by central OTUs were the most influential in the mesophilic interaction network

(dotted red circle in Fig 4A). Under thermophilic conditions, the most influential OTUs were

Spirochaetaceae, Ruminococcaceae, and Methanomicrobiaceae (dotted red circle in Fig 4B).

Spirochaetaceae played a critical role and was common between the two reactors, where the

color of dark red indicated it was regulated by more microbial members and the large node

size, conveying high betweenness centrality, indicates that Spirochaetaceae was always con-

nected to other microbial members with the shortest paths. The other four members which

were distinct between mesophilic and thermophilic processes, Flavobacteriaceae, Methanocor-
pusculaceae, Ruminococcaceae and Methanomicrobiaceaei, had concordant topological prop-

erties such as a smaller node size with a dark red color: these were regulated by a variety of

Fig 4. Microbes with different topological niches under mesophilic or thermophilic conditions. The interaction networks

identified at mesophilic (A) or thermophilic (B) temperatures. Nodes represent microbial families. The size of the nodes corresponds

to their betweenness centralities. A larger node indicates higher betweenness centrality which has a large influence on the transfer

of information through the network. The color of the nodes conveys the number of in-degree interactions, describing how many

OTUs influence this node. The node shown in dark red connects the maximum in-degree nodes, i.e., 10. The node closest to the

center of the network has the highest level of eigenvector centrality, a measure of the influence of a node in a network. Three nodes

linked by a red dotted circle indicate the top three most influential OTUs. The top six are denoted inside an orange dotted circle. The

pink arrow indicates an activate relationship, and the blue arrow indicates a repressive event. Nodes marked with an asterisk (*)

have a very low level of out-degree interactions.

https://doi.org/10.1371/journal.pone.0181395.g004

Inferring microbial interactions in anaerobic digestion

PLOS ONE | https://doi.org/10.1371/journal.pone.0181395 July 21, 2017 13 / 22

https://doi.org/10.1371/journal.pone.0181395.g004
https://doi.org/10.1371/journal.pone.0181395


microorganisms but rarely influenced others. Within the top six microbial families with high

eigenvector centrality (dotted orange circle in Fig 4), the leading methanogens were very dis-

tinct between the two reactors, Methanocorpusculaceae was critical at mesophilic temperature,

and Methanomicrobiaceae, Methanotrichaceae and Methanosarcinaceae were important in the

thermophilic reactors. Furthermore, more OTUs denoted with stars were observed at high

temperature. These nodes with stars were unlikely to influence other members owing to the

low level of out-degree interactions.

In two reactors, there were several concordant observations based on the topological struc-

ture. Porphyromonadaceae and Spirochaetaceae were highly regulated by the microbial com-

munity and also gave feedback to the microbial society. However, Methanosarcinaceae mainly

influenced the community but was rarely influenced by others. In contrast, the major role of

Ruminococcaceae was to receive various stimuli from other members especially in thermo-

philic conditions. Regardless of abundance measurements, Methanospirillaceae, Methanoregu-
laceae and Methanomassiliicoccaceae contributed consistently with the least impact in both

interaction networks.

Based on relative abundance, there were two differentially abundant methanogens and four

bacteria identified in thermophilic conditions (Table 3). After transforming the abundance

profile to an interaction network, a variety of influential bacteria or methanogens were identi-

fied in both reactors. For example, Methanosarcinaceae had non-differential relative abun-

dance in the two reactors but existed in critical topological situations. Consequently, the

network-based approach provides a novel view to decipher changes in microbial communities

between the two different temperatures.

Metabolic support for the microbial interactions

Organizing the trophic relations, metabolic complementarity or competition index, into meso-

philic microbial interactions in MetaMIS [27] was manipulated to evaluate the underlying bio-

logical connections. For the 100 strongest interactions from the MAnD reactors (Fig 4), only

23 interaction pairs (S4 Table) can be mapped with trophic information due to the database

limitation. Nevertheless, the inferred strengths of positive interactions revealed a borderline

association (R2 = 0.29; p-value = 0.06) with their metabolic trophic dependences (Fig 5A). Sim-

ilarly, changes of inferred negative interactive strengths are statistically significantly associated

(R2 = 0.57; p-value = 0.01) with changes of metabolic competition indices (Fig 5B). The results

suggested that the inferred microbial interactions were supported by the measurement using

their metabolic properties.

Discussion

The aim of our study was to use deep sequencing technology to investigate the interactions in

microbial communities in mesophilic or thermophilic reactors generating biogas from hog

waste. Analysis of bacterial and archaeal communities in mesophilic or thermophilic reactors

displayed clear differences as regards methane yields, microbial richness, Shannon diversity,

archaeal percentage, differential abundance of families, and interaction networks. From the

surrounding literature on the microbiome from MAnD or TAnD [10, 54, 55], it appears that,

in general, thermophilic anaerobic digesters conveyed a higher level of methane yield, pH,

COD or TS removal efficiency [54], and a lower level of species richness, biodiversity [54, 55]

or archaeal percentage [10, 55], when compared with MAnD reactors. Despite the level of pH,

COD or TS removal efficiency, our findings were in agreement with the results of these previ-

ous studies. The lower microbial richness and diversity under thermophilic conditions have

been explained by the disinfection of pathogenic microbes and efficient biodegradation of
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animal manure [56]. The present study measured organic matter degradation through quantify-

ing the reduction of COD or TS. The higher level of TS digestion at the thermophilic tempera-

ture implied the degradation of complex organic particulates and the accumulation of volatile

fatty acids including formic acid, acetic acid, propionic acid, or butyric acid, etc., which may

lower the pH of AnD reactors [57]. Here, we observed a very stable pH level which as a whole

ranged from pH 7.1 to 7.2 not only in mesophilic but also in thermophilic digesters. Thus, we

supposed that higher temperature did not increase the microbial population involved in hydro-

lysis or acidogenesis but might result in an early microbial shift towards acetogenesis or metha-

nogenesis according to three current observations described in details below.

First, there were no differentially abundant families from the thermophilic conditions identi-

fied which are known to function in hydrolysis or acidogenesis. Second, the cumulative relative

abundance of acetogenic bacteria at the thermophilic temperature reached 7.09% higher than that

observed in mesophilic conditions (4.83%). Thirdly, differentially abundant families at the TAnD

reactor gathered in the methanogenic pathway, which constituted a hydrogenotrophic methano-

gen of Methanobacteriaceae, a hydrogenotrophic/methylotrophic of Methanomicrobiaceae, and

Fig 5. The association between metabolic trophic relations and microbial interactions. (A) Metabolic

complementarity index had a borderline association with positive interactive strengths. (B) Metabolic

competition index showed a statistically significantly association with negative interactive strengths.

https://doi.org/10.1371/journal.pone.0181395.g005
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three low-abundance microorganisms, including Enterobacteriaceae affiliated with hydrogen-pro-

ducing processes [58], Planococcaceae associated with a high concentration of carbon source [59]

and Pseudomonadaceae which could reduce Fe(III) with hydrogen or acetate [60]. In contrast,

under mesophilic conditions, the differentially abundant bacteria were broadly located in hydro-

lysis, acidogenesis, and acetogenesis and only methanogens had significantly higher relative abun-

dance in methanogenesis. This can be explained by the high digestion efficiency of organic matter

at higher temperatures and not necessarily an increase in the bacterial community responsible for

hydrolysis or acidogenesis.

Acetogenesis is a general metabolic pathway shared by several phyla including Spirochaetes,
Firmicutes, Chloroflexi, and Deltaproteobacteria [61]. Although the reactions that involve in the

carbon flow of the homoacetogenesis are highly conserved in all acetogenic bacteria, it was

shown that homoacetogens produce either the Rnf (multisubunit ferredoxin–NAD+ oxidore-

ductase) or the Ech (energy-converting hydrogenase) complex to couple with the Wood–

Ljungdahl pathway to generate a transmembrane ion (Na+ or H+) gradient that drives ATP

synthesis [62]. Wood–Ljungdahl pathway is an intermediate process that produces acetate

from inorganic gases like CO2 and H2 [63]. According to the energy transport system, there

are three types of homoacetogens:Rnf-containing (Na+-dependent), Rnf-containing (H+-

dependent), and Ech-containing (H+-dependent). The question of whether homoacetogenesis

is prevalent under mesophilic [62] or thermophilic condition [63] remains a debate. According

to the network topology analysis, we found the hints to explain the potentially roles of acetog-

neic bacteria in MAnD or TAnD. For example, based on the differential topological niche of

Acidaminococcaceae, the homoacetogenesis conducted by Rnf-containing and Na+-dependent

acetogenic mechanism may be more influential at the thermophilic condition than that at

mesophilic condition [64]. It was possible that acetogens could utilize Rnf-containing and

Na+-dependent acetogenic mechanism to avoid the competition of hydrogen with hydrogeno-

trophic methanogens at thermophilic condition. Similarly, according to network topology, the

functional role as acetogen played by Erysipelotrichaceae might be differential between MAnD

and TAnD. The exact functional mechanism of Erysipelotrichaceae can be identified when the

genome sequencing is completed. Since the speculations were brought up based on the theo-

retical inference of microbial interactions, a further investigation is required to confirm the

role of acetogenic microbes at MAnD or TAnD.

Although differential analysis had revealed a distinct microbial structure between MAnD

and TAnD reactors, modeling microbial abundance profiles by LV equations [46] and topo-

logical analysis shed light on the intertwined relationships between microorganisms. The fam-

ily Methanotrichaceae and Methanosarcinaceae which control the majority of methane

production are two well-known aceticlastic methanogens which are capable of converting ace-

tic acid into methane. Methanotrichaceae, also known as Methanosaetaceae, takes acetic acid as

the only substrate for methanogenesis with the formation of methane and carbon dioxide but

Methanosarcinaceae possesses a complicated trophic system that can convert hydrogen, meth-

anol, methyl sulfide, monomethylamine, dimethylamine, trimethylamine, acetic or pyruvic

acid to methane [65]. Generally, at thermophilic temperature, the hydrogen producing process

becomes prevalent and favored at low acetate concentrations, while aceticlastic methanogen-

esis is favored by high acetate concentrations [66, 67]. The lower level (1.45%) of Methanotri-
chaceae at higher temperatures implied that the lower concentration of acetate than observed

in the mesophilic digesters is due to the syntrophic association between hydrogenotrophic

methanogens, including Methanomicrobiaceae and Methanobacteriaceae, and acetate-oxidiz-

ing bacteria, often the genus Clostridium [68] which was in the family Clostridiaceae_1 in the

current study, or other hydrogen-producing bacteria, such as Ruminococcaceae and Prevotella-
ceae [69]. The topological structure of Ruminococcaceae and Prevotellaceae was located at the
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core of network measured by eigenvector centrality and showed very essential occupations,

especially in the thermophilic digesters. By utilizing the measurement of eigenvector centrality,

describing the kind of representatives in a network, Methanomicrobiaceae or Methanocorpus-
culaceae were the most influential methanogens at thermophilic or mesophilic temperatures

respectively. The literature supports the role of Methanomicrobiaceae, which has been identi-

fied under mesophilic and thermophilic conditions [70], and Methanocorpusculaceae, which

favors mesophilic temperature [71], and the two methanogens are driven by sharing the com-

mon substrate source including hydrogen, formic acid, isopropanol or ethanol, etc [72]. Inter-

estingly, the three methanogens with relatively non-influential topology were controlled by a

simple substrate source, such as Methanoregulaceae (hydrogen and formic acid), Methanospir-
illaceae (formic acid) and Methanomassiliicoccaceae (methanol). Furthermore, the disappear-

ance of interactive relationships observed for Syntrophobacteraceae in thermophilic conditions

may be explained by its mesophilic tendency [73].

In conclusion, based on analysis of differential abundance, microorganisms were more

involved in methanogenesis at thermophilic temperatures but distributed on diverse pathways

under mesophilic conditions. This observation was also made by topological analysis. The

greater number of nodes (OTUs) with a low level of out-degree interactions in the thermo-

philic interaction network indicated that interactions were concentrated on a smaller group of

organisms at thermophilic temperature and more dispersed at mesophilic temperature.

Conclusions

Research on methane production in AnD has been underway for decades, however, the micro-

bial interactions in different AnD conditions have not yet been explored in any detail. Accord-

ing to previous observations in this study, we know that increasing temperature will change

the microbial composition and decrease microbial diversity. Our development of topological

interaction networks represents an early attempt to gain a systematic understanding of these

microbial interactions and reveals more efficient topological relationships at thermophilic

temperature. These predicted microbial interactions were not only biologically informative

but also metabolically supported. The interaction network described here could serve as the

basis for in-depth studies of microbial interactions, identification of the kind of biological

mechanisms that drive these intertwined networks, and how microbes interact to raise meth-

ane yields. Nevertheless, more biological experiments are required to validate the inferences of

microbial interactions to fill in the gaps between realistic and estimated phenomena. The net-

work approach has been applied in gene expression or metabolic research, to successfully

uncover gene-gene interactions [74] or metabolic networks [75, 76]. Our group pioneered the

method to generate microbial interaction networks in order to study anaerobic digesters. We

have provided several new insights to provide a foundation for further studies in this area.

Such approach has many applications and potential in other research fields.
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S1 Fig. Assessment of OTU coverage by rarefaction analysis. Individual rarefaction curves

for each time-series sample taken from the MAnD (A) or TAnD (B) digesters.

(TIF)

S2 Fig. Microbial community divergence in mesophilic and thermophilic temperatures.

Diversity of microbial communities was represented as white or black circles for mesophilic

(�) or thermophilic (●) conditions. The larger Shannon index represents a higher level of
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