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 � The stability of the glenohumeral joint depends on soft tis-
sue stabilizers, bone morphology and dynamic stabilizers 
such as the rotator cuff and long head of the biceps ten-
don. Shoulder stabilization techniques include anatomic 
procedures such as repair of the labrum or restoration of 
bone loss, but also non-anatomic options such as remplis-
sage or tendon transfers.

 � Rotator cuff repair should restore the cuff anatomy, reat-
tach the rotator cable and respect the coracoacromial arch 
whenever possible. Tendon transfer, superior capsular 
reconstruction or balloon implantation have been pro-
posed for irreparable lesions.

 � Shoulder rehabilitation should focus on restoring balanced 
glenohumeral and scapular force couples in order to avoid 
an upward migration of the humeral head and secondary 
cuff impingement. The primary goal of cuff repair is to be 
as anatomic as possible and to create a biomechanically 
favourable environment for tendon healing.
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Introduction
The biomechanics of the shoulder are highly complex. 
First, it is composed of four joints (glenohumeral, acromi-
oclavicular, scapulothoracic, and sternoclavicular). The 
glenohumeral joint has six degrees of freedom and is the 
most mobile joint in the human body, allowing the hand 
to reach a wide range of positions. This mobility can be 

further enhanced by translation of the humeral head on 
the glenoid, but the consequence of this tremendous 
mobility is perhaps a predisposition to instability and 
impingements. Second, mobility is assumed by 18 mus-
cles that act in synergy. Consequently, decoupling/isolat-
ing them is impossible, making precise kinematic analysis 
and clinical examination difficult. Third, the glenohumeral 
joint has the characteristics of an active non-weight-bearing 
joint, leading to major bony and muscular modifications 
and frequent tendon overuse.

When looking at the shoulder as a functional unit, it 
appears that several factors need consideration. To func-
tion normally, the shoulder needs all the anatomic struc-
tures to work in a chain. Form will allow function.1 First, 
the central nervous system provides a signal to the muscle-
tendon unit. By contracting, the muscle transmits its 
tension to the tendon, which then acts as a lever arm on 
the joint. To be efficient, such a system requires a stable 
fulcrum. The necessary stability is provided by static and 
dynamic factors such as bony contours, ligaments, 
labrum, capsule, etc.

The specificity of biomechanically relevant parameters, 
such as, for example, joint reaction forces, is that they can-
not be measured in vivo without invasive procedures.2 
Our knowledge therefore mainly relies on experimental 
cadaveric studies3 or computational modelling.4 These 
simulations have become more sophisticated in recent 
years, allowing the inclusion of an increasing number of 
variables with the ability to adjust both pathology and 
patient-specific characteristics.5 This ongoing process will 
without doubt call into question prior assumptions and 
allow further insights into shoulder biomechanics.

It is crucial to understand the basic principles of shoul-
der biomechanics and their modifications in the most com-
mon pathologies encountered in daily practice. The goal 
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of this article is to provide an overview of normal gleno-
humeral biomechanics as well as the most common non-
prosthetic shoulder disorders including instability and 
rotator cuff tears.

Instability
Static stabilizers

Static stability of the glenohumeral joint is provided by the 
capsulolabral structures as well as the bony anatomy of 
the glenoid. Historically, significant effort was placed on 
understanding the importance of the anterior capsu-
lolabral structures, due to the fact that these structures are 
classically torn in the case of anterior shoulder instability.6 
The glenohumeral ligaments are a thickening of the joint 
capsule and represent the primary static stabilizers. To 
allow a high degree of shoulder mobility they only become 
tight at the end-ranges of motion. The superior gleno-
humeral ligament is tight in adduction, the middle at 45 
degrees of abduction and the inferior glenohumeral when 
the shoulder is brought to 90 degrees of abduction in 
external rotation.7 The inferior glenohumeral ligament is 
therefore considered the strongest and most important 
soft tissue stabilizer. Structurally it can be avulsed from 
the glenoid side resulting in an antero-inferior labral 
lesion, as well as from the humeral side resulting in the 
less-frequent humeral avulsion of the glenohumeral liga-
ment (HAGL) lesion.8,9 The postero-inferior capsule and 
posterior inferior glenohumeral ligament are not as robust 
as their anterior counterparts,10 but it is often felt to be 
necessary to ‘balance’ both inferior ligaments during a 
soft tissue repair for instability. Laxity is a normal, physio-
logic and asymptomatic finding, that corresponds to 
translation of the humeral head in any direction to the gle-
noid.11 Hyperlaxity is constitutional, multidirectional, 
bilateral and asymptomatic. Hyperlaxity of the shoulder is 
probably best defined as external rotation with the elbow 
at the side equal to or greater than 85 degrees.12 This non-
pathological finding is a risk factor for instability but does 
not by itself demand treatment unless there is clear patho-
logical laxity. Pathological laxity of the inferior gleno-
humeral ligament is observed when passive abduction in 
neutral rotation in the glenohumeral joint is above 105 
degrees, there is apprehension above 90 degrees of 
abduction, or if a difference of more than 20 degrees 
between the two shoulders is noted.13,14 Pathological lax-
ity is often multidirectional and associated with a redun-
dant capsule leading to an increased glenohumeral 
volume.15 Biomechanical studies have focused on evaluat-
ing the effectiveness of soft tissue procedures to reduce 
capsular volume. Cadaveric models created by stretching 
the capsule 10–30% beyond the maximal range of motion, 
revealed that 1 cm capsular shifts were effective to reduce 
capsular volume by an average 33.7% (range, 25.3% to 

44.6%).16–18 Ponce et al further reported a linear relation-
ship between the number of 1 cm stitches and capsular 
volume, each plication reducing the volume by approxi-
mately 10%.19 Lastly, while both capsular plication and 
rotator interval closure have been reported to be effective 
in restoring intact range of motion after capsular stretch-
ing, the addition of an interval closure has the benefit of 
better restoring humeral head translation at 60 degrees 
of abduction.18,20

The osseous glenoid is relatively flat, the biomechanical 
role of the glenoid cartilage and labrum is to double the 
depth of the glenoid socket and therefore enhance the 
contact area with the humeral head.21–23 This is further 
believed to stabilize the joint by helping to centre the 
humeral head when compressed against the glenoid by 
the rotator cuff muscles (concavity compression mecha-
nism). A complete loss of the anterior labrum has been 
reported to decrease the contact area by 7% to 15%, and 
increase the mean contact pressure by 8% to 20%.24 A 
biomechanical study by Hara et al identified the antero-
inferior labrum as being the weakest point, with a mean 
force necessary to cause a rupture of 3.84 ± 1.00 kg/5 
mm.25 Finally, it was postulated that an intact labrum 
could help create a negative intra-articular pressure (vac-
uum effect); this effect is, however, thought to be mar-
ginal when the rotator cuff muscles are contracted.26–28 
Despite these important stabilizing effects, Itoi et al 
revealed that soft tissues alone play only a minor role in 
glenohumeral stability in mid-range of motion.29

Glenoid bone defects and morphology

An important concept regarding glenohumeral joint sta-
bility is the concavity compression principle, which cen-
tres the humeral head on the glenoid. This centring 
mechanism is the result of the rotator cuff compressing 
the humeral head against the glenoid cavity, and is one 
reason why an anterior glenoid rim defect predisposes to 
recurrent anterior instability.30 While there is some contro-
versy, 15% to 20% glenoid bone loss seems to be the cut-
off value for soft tissue repair.31,32 Shin et al demonstrated 
that in case of an anterior defect ≥ 15%, a soft tissue pro-
cedure (Bankart) is unable to restore normal shoulder kin-
ematics and even leads to postero-inferior translation of 
the humeral head in abduction and external rotation.32 
On the other hand, bone grafting (glenoidplasty) can suc-
cessfully reconstruct glenoid curvature and depth and 
therefore restore stability.30,33 Another key point is the 
reduced contact area and increased articular contact pres-
sure induced by bony glenoid defects.24 While iliac bone 
graft (Eden-Hybinette), articular distal clavicle autografts 
and coracoid transfer (Latarjet or Bristow) can all restore 
normal values, the correct position and orientation of the 
bone graft is important.34,35 The Latarjet will, however, be 
limited by the amount of bone that can be harvested. 
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Young et al reported mean values of 26.4 ± 2.9 mm and 
9.3 ± 1.4 mm for length and thickness respectively.36 A 
graft placed in too lateral of a position will lead to an 
increased anterior-inferior peak contact pressure, whereas 
a recessed graft will lead to high edge loading. To avoid 
increased inferior contact pressure, the current evidence 
suggests orientating the coracoid bone graft in an inferior 
direction.37 The congruent-arc modification of the original 
Latarjet technique further allows the reconstruction of 
larger defects by matching the shape of the graft to that of 
the glenoid.38 The use of a distal tibial osteochondral allo-
graft respects all these biomechanical principles and has 
been shown to be a valid alternative in the absence of reli-
able autograft.39

During posterior shoulder dislocation, reverse Bankart 
lesions are only present in isolation in 51% of cases.40 
They are, however, sufficient to increase posterior transla-
tion and inferior translation of the humerus in the sulcus 
position by 86% and 31% respectively.41 Additionally, gle-
noid retroversion is more common in posterior instability 
and appears to predispose to posterior instability.42 Every 
five-degree increment of retroversion led to an additional 
posterior decentralization of the humeral head overall by 
(average ± standard deviation) 2.0 mm ± 0.3 in the intact 
and 2.0 mm ± 0.7 in the detached labrum condition. Bony 
alignment in terms of glenoid retroversion angle plays an 
important role in joint centration and posterior transla-
tion, especially in retroversion angles greater than 10 
degrees.43 Labral injury from repetitive posterior loading 
or instability can range from a posterior labral tear to an 
incomplete, concealed avulsion of the postero-inferior 
labrum (also known as ‘Kim lesion’) to a reverse Bankart 
lesion. Glenoid retroversion beyond the average five 
degrees to 10 degrees has been shown to be a risk factor 
for developing subsequent posterior instability in a pro-
spective study of healthy subjects. For every one degree 
increase in glenoid retroversion, the risk for posterior 
instability increase by 17%.44

Humeral bone defects

A Malgaigne lesion45 also called a Hill–Sachs lesion46 
describes the grooved defect of the humeral head. This 
frequently unrecognized complication of anterior disloca-
tion of the shoulder joint is the result of compression of 
the posterolateral head upon the anterior glenoid rim. The 
presence of humeral bone loss has been linked with recur-
rent instability after open or arthroscopic shoulder stabili-
zation.47,48 Cadaveric studies have revealed that humeral 
bone defects as small as 12.5% of the humeral head diam-
eter will affect joint stability, which can be restored with 
allograft reconstruction. However, an isolated 25% bone 
loss was not shown to be sufficient to explain recurrent 
instability on its own.49–51 In other words, glenoid bone 
loss is required as well. Clinically, the more common 

alternative to allograft reconstruction is the remplissage 
procedure, which insets the posterior capsule and infraspi-
natus tendon into the lesion. This procedure medializes 
the insertion of the posterior structures to prevent engage-
ment and also decreases anterior translation of the 
humeral head. A recent review identified 10 biomechani-
cal studies of which only one reported persistent engage-
ment after a remplissage procedure in the presence of a 
25% humeral head defect.52 The same study further com-
pared the remplissage to the Latarjet and found that 84% 
of specimens (27 of 32 testing scenarios) stabilized after 
remplissage, and 94% of specimens (30 of 32 testing sce-
narios) stabilized after the Latarjet procedure. This was, 
however, not statistically significant and the authors con-
cluded that both techniques are effective.53 nevertheless, 
at maximum external rotation at 60 degrees of abduction, 
remplissage altered the kinematics of the glenohumeral 
joint by shifting posteriorly and inferiorly the apex of the 
humeral head.54 Moreover, while often described as an 
inset of the infraspinatus tendon, the procedure is in fact a 
capsulomyodesis of the infraspinatus and teres minor;55 
this has not only been proven in anatomic investigation, 
but also follows normal form as the tendon does not 
extend very far medially from its normal insertion.

For posterior instability, the McLaughlin procedure56 
using the detached subscapularis tendon has been 
described for locked posterior instability in presence of a 
reverse Malgaigne (Hill–Sachs) lesion. This technique has 
been subsequently modified as either a reverse remplis-
sage57 or an osteotomy of the lesser tuberosity with the 
attached subscapularis (Hughes and neer method) to allow 
additional bone support to articular cartilage with satisfac-
tory outcome both in acute and chronic setting.58,59

Bipolar defects

neither glenoid nor humeral head bone loss can be 
viewed individually. Just as they occur together at the time 
of injury, they interact in the risk of recurrent instability. 
The concept of the glenoid track has emerged as a way to 
understand this relationship. The concept was first pro-
posed by Yamamoto et al, who used three-dimensional 
computed tomography (CT) scans to reveal that the nor-
mal glenoid track is 84% ± 14% of the glenoid width.60 
Subsequently this was validated in live subjects where the 
value was determined to be 83%. This concept is in fact 
the continuation of the work by Burkhart and De Beer on 
engaging vs. non-engaging Hill–Sachs lesions.61 Di Giac-
omo et al further refined this to the on-track and off-track 
concept, stating that glenoid bone loss will result in a 
reduction in the width of the glenoid track.62 In the setting 
of glenoid bone loss, the glenoid track decreases. The gle-
noid track in the bone loss situation is determined by sub-
tracting the width of the defect from 83% of the original 
glenoid width, which is thought to be the width in the 
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absence of a glenoid.63 Then, the width of the Hill–Sachs 
defect from the origin of the infraspinatus to the most 
medial extent of the defect is measured and compared to 
the glenoid track to determine whether it exceeds the gle-
noid track (‘off-track’) or is less than the glenoid track 
(‘on-track’).

Dynamic stabilization (rotator cuff, conjoint tendon  
and long head of the biceps)

Dynamic stability of the glenohumeral joint is provided 
by the muscular structures during the mid-points of range  
of motion. As stated above, the rotator cuff is key to the 
concavity-compression concept in which it actively con-
tributes to stability in opposition to the deltoid and pecto-
ralis muscles (which tend to destabilize the joint superiorly 
and anteriorly).64,65 The cuff contributes to anterior (exter-
nal rotators) and posterior (internal rotators) stability in 
cadaveric66,67 and electromyographic studies.68 While all 
rotator cuff muscles contribute to anterior joint stability, 
the subscapularis seems to be the least effective at end-
range of motion in opposition to the long head of the 
biceps.69

In addition to the previously mentioned bony augmen-
tation, the Latarjet procedure and its variant the Bristow 
combine (1) the ligamentous effect by augmentation of 
the coracoacromial ligament by the inferior glenohumeral 
ligament, (2) a muscular effect (hammock effect) by low-
ering the inferior part of the subscapularis, which is mainly 
efficient in mid-range motion (Fig. 1A and Fig. 1B),70 as 
well as (3) a sling effect induced by the conjoint tendon 
forming an anterior rampart especially efficacious in end-
range motion (Fig. 2). The two latter effects have often 
been confused in the literature.

According to a cadaveric study by Yamamoto et al, the 
hammock and sling effects appear to be the primary stabi-
lizers and account for 51% to 62% of shoulder stability in 
mid-range of motion, and up to 76% to 77% at 90 degrees 

of abduction and maximal external rotation (end-range 
motion).71 The Latarjet technique further leads to an 
enhanced sling effect in comparison to the Bristow proce-
dure due to the inferior graft position and subsequent 
conjoint tendon orientation and trajectory (Fig. 3).72

These hammock and sling effects are also the central 
point of the recently developed dynamic anterior stabiliza-
tion (DAS) procedure. In this technique the long head of 
the biceps, in place of the conjoint tendon, it transferred 
through a subscapularis split to the anterior glenoid mar-
gin.73 The DAS results in decreased anterior glenohumeral 
translation depending on the glenoid defect conditions. As 
compared with isolated Bankart repair, DAS shows signifi-
cantly less relative anterior translation in 10% glenoid defects 
at translation forces of 20 n (0.3 ± 1.7 mm vs. 2.2 ± 1.8 mm, 

A) B)

Fig. 1 (a) Anterior view of a left shoulder after dynamic anterior 
stabilization. (b) Lowering the inferior part of the subscapularis 
muscle done by biceps tendon in low-range motion is called 
‘hammock effect’. It represents a muscular effect.

Fig. 2 Anterior view of a left shoulder after dynamic anterior 
stabilization. At higher range of abduction, the biceps tendon 
is more horizontal and does not lower the inferior part of the 
subscapularis muscle anymore. It forms a veritable sling in front 
of the shoulder, called the sling effect.

A) B)

Fig. 3 Sagittal illustration of a right shoulder. Direction of the 
conjoint tendon in (a) the Latarjet and (b) Bristow procedure. 
note that the conjoint tendon during Latarjet has to go around 
the inferior subscapularis (a). Contrarily, the conjoint tendon 
exits directly through the split during the Bristow procedure (b).
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P = .005) and 30 n (2.6 ± 3.4 mm vs. 5.3 ± 4.2 mm, P = 
.044) and in 20% glenoid defects at all translation forces 
(20 n: –3.2 ± 4.7 mm vs. 0.8 ± 4.1 mm, P = .024; 30 n: 
–0.9 ± 5.3 mm vs. 4.0 ± 5.2 mm, P = .005; 40 n: 2.1 ± 6.6 
mm vs. 6.0 ± 5.7 mm, P = .035).31 However, similar to pre-
vious biomechanical observations regarding isolated con-
joint tendon transfer in 20% glenoid defects, DAS leads to 
a relevant posterior and inferior shift of the humeral head 
in the abduction external rotation (ABER) position and to a 
relevant increase in inferior glenohumeral translation and 
should consequently not be used for large bony defects.31,74 
A recent comparative study on a subcritical bone model 
reported significantly improved peak resistance force to 
anterior displacement when augmenting labral repair with 
a transfer of the long head of the biceps compared to the 
conjoint tendon (54.1 ± 5.5 n vs. 46.5 ± 7.6 n; P = .039).75 
The DAS does not appear to limit postoperative rotational 
range of motion.31

Scapular morphology

Specific acromial morphology in the sagittal plane is sig-
nificantly associated with the direction of glenohumeral 
instability. In shoulders with posterior instability, the 
acromion is situated higher and is oriented more horizon-
tally than in shoulders with anterior instability. This acro-
mial position may provide less osseous restraint against 
posterior humeral head translation. Posterior instability 
virtually never occurs with a steep ‘Swiss chalet roof-
type’ acromion.76

Restoration of stability

It is important to keep in mind that even if shoulder stabi-
lization procedures are efficient to prevent recurrent 
macro-instability (defined as a recurrent shoulder disloca-
tion), they seem inefficient in preventing micro-instability 
(defined as residual humeral head translation), which 
could be an explanation for persistent apprehension.77

Rehabilitation

From a biomechanical point of view, rehabilitation proto-
cols after glenohumeral instability should avoid excessive 
pressure and over tensioning on the repaired structures. 
Regarding pressure, humeral cartilage and labral compres-
sion evaluated by motion simulation only occurred in the 
superior half of the glenoid during exercises.78 This indi-
cates that postoperative exercises do not lead to important 
pressure changes on an inferior labral repair. Concerning 
soft tissue tension, rehabilitation should be performed in 
the scapular plane, which lies about 30 degrees anterior to 
the coronal plane of the body.79 This position allows for 
decreased stress on the anterior capsular structures, opti-
mized glenohumeral congruence and enhanced functional 
activity of the posterior cuff compared to the body plane.79 

As already mentioned, the rotator cuff acts as a key dynamic 
stabilizer, and if its force couples go unbalanced, the del-
toid muscle will create an upward migration of the humeral 
head and secondary cuff impingement.80 The same princi-
ple applies to the scapula, where the serratus anterior and 
trapezius act as the primary force couple stabilizing the 
scapula in abduction in the scapular plane.81 Rehabilitation 
should therefore focus on strengthening and careful bal-
ancing of these force couples. Regarding soft tissues repair, 
protection is best achieved by avoiding constraints to the 
antero-inferior capsule-labral complex. At 0 degree of 
abduction, Black et al found that the low-tension zone was 
around 45 degrees of external rotation, in case of anterior 
capsular shortening of only 2 mm this zone was reduced by 
an additional 20 degrees.82 Penna et al confirmed these 
findings, further reporting that combination of passive 
abduction and external rotation was responsible for a maxi-
mum measured force of 17.7 n on a capsule-labral repair.83 
While it seems reasonable to limit excessive stress on the 
capsule during early rehabilitation, residual capsular short-
ening on the other hand should be avoided as it alters phys-
iologic glenohumeral head translation.84

Rotator cuff
The physiologic state

The role of the rotator cuff is to work in conjunction with 
the deltoid to balance the force couples around the gleno-
humeral joint. In the horizontal plane, the cross-sectional 
area and force couples between the anterior (subscapula-
ris) and posterior (infraspinatus and teres minor) rotator 
cuff are balanced.85 The forces generated by the subscap-
ularis, the supraspinatus, the infraspinatus and the teres 
minor are 53%, 14%, 22% and 10% respectively.85 The 
subscapularis seems to be a key muscle for anterior for-
ward flexion,86 while the infraspinatus prevents superior 
and anterior translation of the humeral head.87

The rotator cable, first described by Burkhart88 as a 
thick bundle of fibres perpendicular to the supraspinatus, 
is of major biomechanical importance (Fig. 4).89 It is man-
datory to have a good understanding of the anatomy sur-
rounding the rotator cable as well as the close relationship 
between the insertion of the supraspinatus and infraspina-
tus tendons as well as the coracohumeral ligament. The 
rotator cable outlines the rotator crescent which is a rela-
tive avascular lateral portion of the supra and infraspina-
tus tendons. The anterior cable inserts in close relation to 
the coracohumeral ligament into the anterior greater 
tuberosity and upper lesser tuberosity, representing fibres 
of the anterior supraspinatus. The posterior cable inser-
tion will be located at the junction between the infraspi-
natus and teres minor.89,90 Thus, a tear involving all of the 
infraspinatus disrupts the posterior cable while disruption 
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of the anterior cable requires a tear involving the upper 
half of the subscapularis tendon. The function of the cable 
is frequently compared to that of a suspension bridge 
which transmits the forces of the cuff through the span to 
its pillars. This mechanism could explain why function  
is preserved in tears involving only the rotator crescent 
(Fig. 4) and why partial cuff repairs with restoration of the 
pillars can restore good function.89,91

Further, anatomical pseudoparalysis (defined as the 
inability to actively forward elevate the arm > 90 degrees 
with complete passive anterior forward elevation) was 
shown to be the consequence of the disruption of at least 
one rotator cable attachment, subsequently leading to 
insufficient equilibrium in the vertical plane and resulting 
in altered kinematics.92 Bouaicha et al recently introduced 
the concept of the shoulder abduction index (SAM), which 
is basically a ratio of the lever arm of the rotator cuff and 
deltoid as an anatomic predictor to the appearance of 
pseudoparalysis.93 According to their work, a SAM < 0.77 
(odds ratio 11) in the presence of a massive rotator cuff 
tear is predictive of pseudoparalysis.

Rotator cuff tear repair

It appears preferable to restore the anatomy of the rotator 
cuff after a tear whenever possible to restore load transmis-
sion from tendon to bone. This can, however, be challeng-
ing when facing large and retracted tear patterns, 
particularly chronic tears. A medially non-anatomic reinser-
tion significantly reduces the compressive glenohumeral 
joint reaction forces, the glenohumeral stability and the 
supraspinatus moment arm, especially in abduction.94 Con-
sequently, medialization of the supraspinatus should be 
limited to 10 mm as it does not seem to limit shoulder 

range of motion by internal impingement.95,96 Denard  
et al reported that subscapularis footprint medialization by 
up to 4 to 7 mm is also functionally acceptable.97

Articular-sided rotator cuff tears are thought to be the 
equivalent of superior capsular rupture and a physiologi-
cal adaptation in the throwing athlete allowing enhanced 
external rotation and anterior humeral translation.98,99 
However, biomechanical studies have shown that a partial-
thickness tear will lead to altered strain patterns in the 
remaining cuff and therefore enhance the risk of tear 
propagation.100,101 A trans-tendon repair of articular-sided 
partial-thickness rotator cuff tears was shown to reduce 
glenohumeral contact pressure and contact area during 
internal impingement but also subacromial contact pres-
sure.102 The latter assumes that the repair is done without 
overtensioning.

The coracoacromial arch

Another important point is that contact between the rota-
tor cuff and the coracoacromial arch is not per definition a 
pathologic state and can be seen under physiologic condi-
tions.103 While acromion shape has been the source of 
extensive research, an increased critical shoulder angle (38 
degrees) has been pointed out as a source of increased 
load to the supraspinatus tendon at lower degrees of 
abduction.104 This led to the suggestion to perform a lat-
eral acromioplasty instead of anterior subacromial decom-
pression as an adjunct to rotator cuff repair.105 This further 
has the advantage of preserving the acromial insertion of 
the coracoacromial ligament which, when resected, allows 
anterosuperior humeral head translation.106

Surgical possibilities in case of irreparable rotator cuff lesions

When facing impaired shoulder function in the presence of 
an irreparable postero-superior cuff tear, several surgical 
options have been proposed. Tendon transfers, commonly 
using the latissimus dorsi and more recently the lower tra-
pezius can both significantly enhance shoulder function. 
While the main goal of the tendon transfer is to restore 
external rotation, recent biomechanical data favours the use 
of lower trapezius tendon transfer to the infraspinatus inser-
tion because of both stronger abduction and external rota-
tion moment arms.107 The development of arthroscopic 
surgery led to an increased awareness and subsequently 
better understanding of the superior capsule, which is 
closely related to the undersurface of the supraspinatus 
and infraspinatus tendons and resists superior migration of 
the humeral head.108 Subsequent research showed that a 
double-layer repair with inherent approximation of the 
superior capsule leads to improved biomechanical proper-
ties of the construct.109 In the setting of an irreparable cuff, 
superior capsular reconstruction (SCR) using either an auto-
graft (tensor fascia lata),110 a dermal allograft111 or the long 
head of the biceps112 recreates a passive restraint to superior 

BT

H

RC

Fig. 4 Right shoulder viewed through a posterior portal. 
Arthroscopic view of crescent configuration of the rotator cuff 
(RC). The cable surrounds the crescent.
Note. BT, biceps tendon; H, humeral head.
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and anteroinferior translation.113 Therefore, adding a static 
stabilization like the SCR to a dynamic stabilizer like a  
tendon transfer may ultimately enhance articular stability  
at the low to mid ranges of abduction.114 Finally, SCR is a 
promising procedure that remains, however, relatively new 
and is subject to further research regarding optimal graft 
choice and surgical technique to avoid excessive strain on 
the construct during activities of daily living.115,116

The last proposed solution trying to restore gleno-
humeral contact pressures is the implantation of a balloon 
spacer in the subacromial space. In a recent cadaveric 
study, this procedure was shown to efficiently lower the 
humeral head, increase deltoid load and normalize articu-
lar contact pressure at most abduction angles.117 While 
the use of a biodegradable balloon may be questionable 
regarding long-term outcomes in the setting of an irrepa-
rable tear, it could on the other hand be a suitable adjunct 
to rotator cuff repair by reducing peak pressure and wear 
on the repair, potentially avoiding a re-tear.118

An irreparable isolated subscapularis tear implies not 
solely a tendon failure, but also rupture of the underlying 
anterior capsule and ligaments, leading to subsequent 
altered shoulder kinematics. The biomechanical specificity 
being that both a dynamic and static stabilizing force is 
impaired, consequently increasing anterior and inferior 
humeral head translation.119 Treatment options include 
tendon transfer of the pectoralis major or latissimus dorsi 
tendon and/or anterior capsule reconstruction.120 An in 
vitro study by Konrad et al reported increased restoration 
of humeral head translation when the pectoralis tendon 
was transferred behind the conjoint tendon, allowing bet-
ter restoration of the line of action of the subscapularis 
tendon.121 This led to further anatomic studies favouring 
an anterior transfer of the latissimus dorsi tendon.122 A 
variety of options have been proposed for anterior cap-
sule reconstruction including autografts (tensor fascia 
lata, hamstrings), tendon allograft, or human dermal allo-
graft.123 A recent cadaveric study by Komperda et al 
revealed that anterior capsular reconstruction was supe-
rior to pectoralis major tendon transfer to restore anterior 
and inferior humeral head translation.123 Further, the 
addition of an anterior latissimus dorsi tendon transfer to 
an anterior capsular reconstruction did not enhance 
antero-inferior humeral head stability.119

Rehabilitation

The primary goal of cuff repair is to be as anatomic as pos-
sible and to create a biomechanically favourable environ-
ment for tendon healing. Rehabilitation protocols must 
logically be adapted to the strength of the repair and tis-
sue quality. Basic science research has mainly focused on 
the effect of mechanical loading on tendon-to-bone repair 
during the acute phase of healing using rat models.124 
While some authors reported improved tendon-to-bone 

healing with immobilization,124,125 others have found that 
limited early (during the first six weeks after a repair) ten-
sile load is beneficial for viscoelastic tendon proper-
ties.126,127 However, uncontrolled tensile load (as seen 
with open chain exercises, eccentric muscle activation and 
motion beyond repair elasticity), leads to impaired tissue 
healing and can predispose to re-tear or repair tissue elon-
gation.128–130 Excessive compressive loads, typically 
increased by postoperative scapular protraction,131 do fur-
ther impair tissue healing.124,132 Lastly, Sonnabend et al, in 
a primate model, reported that while eight weeks after 
cuff repair the tissue appeared macroscopically healed, 
mature healing with Sharpey fibres started at 12 weeks, 
therefore supporting a 12–15 week rehabilitation pro-
gramme.133 Further studies are needed to provide guide-
lines for rehabilitation based on tear size and type of repair.

Conclusions
The shoulder is a complex biomechanical entity with close 
relationships between anatomical structures and the bio-
mechanical consequences of the different pathologies 
encountered. Soft tissue stabilizers, bone morphology 
and dynamic stabilizers such as the rotator cuff and long 
head of the biceps tendon all interact to ensure shoulder 
stability. Balanced glenohumeral and scapular force cou-
ples are mandatory to preserve or restore shoulder func-
tion. Further, a thorough knowledge of the anatomy and 
biomechanical properties of the rotator cuff, underlying 
joint capsule, rotator cable and coracoacromial arch is 
essential when performing a rotator cuff repair. The huge 
potential of the human body to cope and adapt to the dif-
ferent pathologies can make it sometimes challenging to 
differentiate between an anatomical or pathological vari-
ant. The wide range of pathologies encountered as well as 
the even higher number of proposed anatomic and non-
anatomic surgical solutions make it a very interesting sub-
ject for further research. The understanding of the 
discussed biomechanical principles should therefore be of 
great help to the surgeon treating these pathologies.
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