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Abstract: Current antineoplastic agents present multiple disadvantages, driving an ongoing search
for new and better compounds. Four lupane-type triterpenes, 3α,24-dihydroxylup-20(29)-en-28-
oic acid (1), 3α,23-dihydroxy-30-oxo-lup-20(29)-en-28-oic acid (2), 3α,23-O-isopropylidenyl-3α,23-
dihydroxylup-20(29)-en-28-oic acid (3), and 3α,23-dihydroxylup-20(29)-en-28-oic acid (4), previously
isolated from Phoradendron wattii, were evaluated on two cell lines of chronic (K562) and acute (HL60)
myeloid leukemia. Compounds 1, 2, and 4 decreased cell viability and inhibit proliferation, mainly in
K562, and exhibited an apoptotic effect from 24 h of treatment. Of particular interest is compound
2, which caused arrest in active phases (G2/M) of the cell cycle, as shown by in silico study of the
CDK1/Cyclin B/Csk2 complex by molecular docking. This compound [3α,23-dihydroxy-30-oxo-lup-
20(29)-en-28-oic acid] s a promising candidate for incorporation into cancer treatments and deserves
further study.
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1. Introduction

Worldwide, cancer is the second most common cause of death. Leukemias are among
the most frequent types of cancer, and most commonly affect people under 20 years of
age [1,2]. Current treatments against leukemia have serious disadvantages as the drugs
they involve present multiple side effects, such as limited efficacy versus metastasis and
loss of efficacy due to development of resistance mechanisms by cancer cells, among others.
Finding new and effective compound is an ongoing challenge [3].

The world’s flora is a seemingly infinite source of bioactive compounds. As part of our
search for new efficient and safe alternative agents we have been studying the mistletoe
Phoradendron wattii (syn.: Phoradendron vernicosum), which, in traditional Mayan medicine,
is used to treat symptoms suggestive of cancer [4]. We previously isolated four lupane-type
triterpenoids from P. wattii with favorable characteristics such as good yield, structural
stability, biological activity, and selectivity [5].

There are multiple reports of anticancer activities of lupane skeleton triterpenes, mainly
betulinic acid, betulin and lupeol, since these compounds are ubiquitous in most plants [6],
as well as 23-hydroxybetulinic acid [7]. The selective inhibitory activity of betulic acid was
of interest for the study of other lupane skeleton triterpenes, as well as to determine their
mode of action, and their ability to affect other cancer cell lines, such as leukemic cells; thus
showing that the main mechanism of death is by cell apoptosis, such as the loss of potential
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of the mitochondrial membranes (MMP), DNA fragmentation [8], upregulation of the
expression of the pro-apoptotic protein Bax [9], release of both cytochrome c and Smac [10],
release of TNFα, stimulation of TNFR, activation of caspases, production of reactive oxygen
substances (ROS) and consumption of glutathione (GSH) with accumulation of its oxidized
form (GSSG) [11], in addition to the arrest of the G1/S phase of the cell cycle [7].

These triterpenoids’ properties, along with previous reports on pentacyclic triterpenes’
action against leukemia cells [7,12], suggested to us the need to assess their effects in chronic
and acute myeloid leukemia cells. The present study objective was to evaluate the effect of
these metabolites against the K562 and HL60 myeloid leukemia cell lines.

2. Results

The effect on leukemia cells viability was evaluated using different concentrations of
four isolated lupane-type triterpenes: 3α,24-dihydroxylup-20(29)-en-28-oic acid (1); 3α,23-
dihydroxy-30-oxo-lup-20(29)-en-28-oic acid (2); 3α,23-O-isopropylidenyl-3α,23-dihydroxy
lup-20(29)-en-28-oic acid (3); and 3α,23-dihydroxylup-20(29)-en-28-oic acid (4) (Figure 1).
In the K562 cell line, compound 2 was capable of reducing cell viability to 88.6 ± 0.40% at
50 µg/mL and to 24.3 ± 1.95% at 100 µg/mL (Figure 2A). In the HL60 cell line, compound
1 reduced cell viability to 92.25 ± 0.25% at 100 µg/mL, a significant difference compared
to the negative control. In the same cell line, compound 2 decreased cell viability to
88.35 ± 3.85% at 50 µg/mL and 85.15 ± 3.05% at 100 µg/mL (Figure 2B).

Compound safe was measured by evaluating them against normal mononuclear cells
(MNC). Only compound 2 at 100 µg/mL reduced cell viability (48.3 ± 0.88%), whereas the
other compounds did not differ from the negative control (Figure 2C).

Their antiproliferative effect was evaluated at different concentrations in vitro. Cells
were pre-stained with carboxyfluorescein succinimidyl ester (CFSE) and, for 48 h, were
placed in the presence or absence of triterpenes at a specific concentration, as well as
a positive control (PC). After this time, they were stained with 7-aminoactinomycin D
(7-AAD) to select surviving cells and further analyses by cytometry flow (Figure S1).
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Figure 2. Effect of compounds 1–4 at different concentrations in K562 (A) and HL60 (B) cell and
normal MNC (C). Normal and leukemia cells were cultured in presence of different compounds
concentration by 48 h and the viability percentage was analyze using 7-AAD. Data are expressed as
the percentage of 7-AAD ± SEM positive cells from at least three different experiments in triplicate.
Statistical significance was determined by a one-way analysis of variance (ANOVA) followed by
Dunnett’s post-hoc test. The differences were considered significant * p < 0.05, ** p < 0.01 vs. negative
control (NC).

To facilitate comparison with the control when using the K562 cell line, the index of
proliferation (IP) was considered as zero (T0) at the beginning of culture. After 48 h, the
cells exposed to compound 1 exhibited an IP of 5.76 ± 0.26 at 50 µg/mL and 4.18 ± 0.01
at 100 µg/mL. In the treatment with compound 2, the IP was 5.83 ± 0.30 at 25 µg/mL,
5.01 ± 0.27 at 50 µg/mL, and 4.29 ± 0.03 at 100 µg/mL. Finally, in the treatment with
compound 4 the IP was 5.97 ± 0.06 at 50 µg/mL and 6.00 ± 0.24 at 100 µg/mL. Com-
pounds 1, 2, and 4 had a concentration-dependent effect on delaying cell proliferation
(Figures 3A and S1A). With the HL60 cell line, only compound 2 delayed proliferation,
with an IP 0.54 ± 0.45% at 100 µg/mL (Figure 3B and S1B). Although compounds 1, 2, and
4 delayed leukemia cell proliferation, compound 2 was clearly the most effective. Even
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so, the chronic myeloid leukemia (CML) cells were more susceptible to it than the acute
myeloid leukemia (AML) cells.
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Figure 3. The data represent mean ± SEM of proliferation index from three different experiments
K562 (A), HL60 (B) cell lines and normal MNC (C) at different concentrations. * p < 0.05 and ** p < 0.01
were compared to the negative control. + p < 0.05 and ++ p < 0.01 were compared to the positive
control. Statistical significance was determined by a one-way analysis of variance (ANOVA) followed
by Dunnett’s post-hoc test.

When all compounds were evaluated on MNC at the concentrations for which the re-
sponse differed from the negative control in the two leukemia cell lines Figures 3C and S1C,
no difference was observed with compounds 1, 3, and 4. However, at 100 µg/mL com-
pound 2 exhibited an IP of 0.18 ± 0.11. Worth noting is that at this same concentration
compound 2 caused a greater reduction in the CFSE level in the K562 cell line, implying a
higher potency against this CML cell line and notable selectivity.

A double stain was used to quantify the cell death rate from the apoptosis (annexin
V-FITC positive) or necrosis (single 7-AAD positive) pathways at 24 and 48 h. At 24 h
with the K562 cell line, death by apoptosis was 2.27 ± 0.31% in the negative control
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(Figures 4A and S2A, marked in red box), while in the positive control (dasatinib), it in-
creased to 18.72 ± 4.2%. Death by apoptosis was clearly higher in the three active com-
pounds: 35.95 ± 2.55% (1), 51.50 ± 2.65% (2), and 51.80 ± 7.80% (4). After 48 h, no change
had occurred in the negative (2.07 ± 0.26%) and positive (19.34 ± 3.86%) controls, although
with compound 1 death by apoptosis increased to 40.60 ± 2.50%. No change was observed
with compound 2 at this time (51.33 ± 0.22%), and with compound 4 the rate of apoptosis
was lower (35.45 ± 0.25%) than at 24 h. When the compounds were evaluated under the
same conditions on MNC, most cells remained viable (annexin V-FITC-, 7-AAD-), and
only a small proportion were necrotic (annexin V-FITC-, 7AAD+). These results highlight
triterpenes 1, 2, and 4 had minimal effect on normal cells, but clearly induced apoptotic
death in leukemia cells to varying degrees.
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Figure 4. The compounds 1, 2, and 4 induced apoptosis in K562 and compound 2 in HL60. The
compounds 1 (50 µg/mL), 2 (25 µg/mL), and 4 (100 µg/mL) were evaluated in cell line K562 and
normal MNC. The results in (A) represents mean ± SEM of at least three independent experiments
in cell line K562 and normal MNC, and results in (B) represents mean ± SEM of at least three
independent experiments in cell line HL60 and normal MNC of compound 2 (100 µg/mL). Statistical
significance was determined by a one-way analysis of variance (ANOVA) followed by Dunnett’s
post-hoc test. The differences were considered significant at * p < 0.05, ** p < 0.01 compared to
negative control.

When tested against the HL60 cell line (Figures 4B and S2B) at 24 h the negative control
exhibited 5.36 ± 0.20% apoptosis, and the positive control (parthenolide) 40.40 ± 0.50%.
After 48 h, the rate had changed little in the negative control (5.54 ± 0.40%), but had
increased in the positive control (74.23 ± 2.37%). Of the tested compounds, only 2 at
100 µg/mL exhibited an effect: 5.54 ± 0.40% apoptosis at 24 h and 67.08 ± 3.31% at 48 h.
The HL60 line is clearly less sensitive to this compound than the K562 line.

Under the same conditions, the apoptosis rate in normal MNC exposed to compound 2 for
24 h was minimal, but at 48 h, necrosis had reached 35.23± 2.20% (annexin V-FITC-, 7AAD+).

To identify cell cycle status, we used flow cytometry to evaluate distribution of the
different cell cycle phases for each compound in the two leukemia cell lines at 48 h.

In the negative control, the K562 line had 41.2 ± 3.0% of cells in G1 phase, 26.9 ± 3.4%
in G2, 16.35 ± 0.01% in G0, and 10.2 ± 0.2% in S (Figures 5A and S3A). In the positive
control (dasatinib), cells in G0 accounted for 59.3 ± 4.2% of the total and G1 for 10.2 ± 0.2%.
With compound 1 the G0/G1 was 70.8% and with compound 4 it was 65.0%, comparable
to the positive control. No notable G0/G1 accumulation was observed with compound



Molecules 2022, 27, 5616 6 of 16

2; G1 accounted for 3.92% and the active cell cycle phases (G2/M) for 82.6%. None of the
tested compounds exhibited any effect on MNC since cell distribution differed minimally
between the culture conditions. This is relevant because elimination of the G0 cell cycle
phase or induction of cell cycle transit to active phases has not been reported for dasatinib
and imatinib, the drugs of choice in leukemia treatment.
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Figure 5. Results in cells K562 (A) and HL60 (B) of different compounds on the cell cycle status,
represent mean± SEM from three different experiments of cell cycle phase distribution in the different
cells analyzed. Significance between cell cycle phase was determined using one-way analysis of
variance (ANOVA) followed by Dunnett’s post-hoc test. Differences were considered significant at
* p < 0.05, ** p< 0.01 vs. negative control (NC).

In the HL60 cell line, compound 2 raised the G0/G1 phases to 83.0%, which does
not differ from the 74.4% with the positive control, parthenolide (Figures 5B and S3B).
Compound 2′s effect on normal MNC cells did not differ from either the positive or
negative controls.

Given the above results, it was decided to do molecular docking analysis using key
targets reported for leukemia cells; docking scores for compounds 1–4 were compared to
ATP and a co-crystalized inhibitor (Table 1). All four compounds’ binding energies for
the VEGFR (Vascular Endothelial Growth Factor Receptor) kinase domain were higher
than the original substrate adenosine triphosphate (ATP) and the co-crystalized inhibitor
(tivozanib). This indicates that the observed effects of compounds 1–4 on K562 and HL60
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cells are not related to this target (Figure S1). However, a correlation was observed with the
FLT-3 (FMS-like tyrosine kinase 3) protein in the HL60 cell line, compound 2 showing a
lower score than compounds 1, 3, and 4 (Figure S4).

Table 1. Docking scores for compounds 1–4.

Compound Score (kcal/mol)
VEGFR2 Kinase Domain FLT3 ABL Kinase CDK1-CyclinB

1 −5.20 −5.22 −6.14 −5.12
2 −4.89 −6.23 −7.12 −6.48
3 −4.62 −5.54 −4.92 −4.72
4 −5.16 −5.84 −6.16 −5.08

ATP −8.33 −7.65 −7.41 −6.44
co-crystalized

inhibitor −10.23 −10.54 −11.46 −6.93

In contrast, for ABL kinase (Figure 6) and the CDK1/CyclinB/Cks2 complex (Figure 7)
the scores for compounds 1–4 with experimental bioactivity are better correlated; in which
compound 3 had the highest score, epimers 1 and 4 had comparable scores, and compound
2 had the lowest. The high scores suggest involvement of these two targets in the effects
observed during the experimental analysis.
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(B) Close-up of the binding site of flavopiridol (Re-docking RMSD: 0.462 Å), ATP and compound 2.
(C) Visualization of interactions between compounds 1–4 inside the binding site of CDK1. (D) Visu-
alization of interactions between compound 2 inside the binding site of CDK1. (E) Visualization of
interactions between flavopiridol inside the binding site of CDK1 in raw complex retrieved from PDB.
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As a complementary study, we submitted the four compounds’ molecular structures
to in silico analysis via the SwissADME platform to predict their physicochemical and
pharmacokinetic properties (Table 2).

Table 2. In silico predicted physicochemical and pharmacokinetic parameters of compounds 1–4.

Compound
1 2 3 4

Molecular Weight
(g/mol) 472.70 486.68 512.76 472.70

Physicochemical
Parameters

nHBA 4 5 4 4
nHBD 3 3 1 3
cLogP 5.52 4.69 6.65 5.45
nROTB 3 4 2 3
TPSA (Å2) 77.76 94.83 55.76 77.76

Pharmacokinetic
Parameters

GI absorption High High Low High
CYP1A2 inhibitor No No No No
CYP2C19 inhibitor No No No No
CYP2C9 inhibitor Yes No No Yes
CYP2D6 inhibitor No No No No
CYP3A4 inhibitor No No No No

nHBA: hydrogen bond acceptors, nHBD: hydrogen bond donors, clogP: lipophilicity (consensus Log Po/w),
nROTB: rotatable bonds, TPSA: topological polar surface area; GI absorption: Gastrointestinal absorption;
CYP1A2: cytochrome P450 1A2; CYP2C19: cytochrome P450 2C19; CYP2C9: cytochrome P450 2C9; CYP2D6:
cytochrome P450 2D6; CYP3A4: cytochrome P450 3A4.

Lipinski’s rule of five for compound selection was applied as an initial approach. Only
compound 2 complied with all the rules, with acceptable values for molecular weight
(≤500), hydrogen bond donors (nHBA ≤ 5), hydrogen bond acceptors (nHBD ≤ 10),
lipophilicity (expressed in cLogP ≤ 5), molar refractivity (TPSA ≤ 140 Å) and rotatable
bonds (nROTB ≤ 10) [13]. It was predicted that compound 2 would have high passive
gastrointestinal absorption and would not inhibit some key CYP450 isoforms (Table 2),
making it a good candidate for further study [14].

3. Discussion

The observed in vitro effect of triterpenes 1–4 on leukemic cells suggests that some
functional groups in these molecules are prone to interact with active sites such as the
hydroxyl groups, thus improving their anti-cancer activity. For example, when the hydroxyl
groups at C-3 and C-4 are protected with an acetonide, these triterpenes essentially have
no activity (CI50 > 100 µg/mL).

Compounds 1 and 4 are epimers, these two molecules differ in their C-4 and thus in
the orientation of the hydroxymethyl group, either forward (C-24) or backward (C-23),
respectively. Compound 1 had a more substantial antiproliferative effect against the K562
cell line than compound 4. Based on these differences in activities and stereochemistry,
interaction with enzymes or receptors is the main possible mechanism of action.

Of all the evaluated compounds, compound 2 exhibited the most notable effect against
leukemia cells. This may be due to the presence of the formyl group at C-30, in the form of
α,β-unsaturated aldehyde, which has increased activity against leukemia cells compared
to a non-functionalized analog [15]. This oxidized group apparently induces a more
selective effect against leukemia cell lines than against solid tumors [16]. Previous research
has shown presence of the aldehyde group on C-28 in lupane-type triterpenes to exhibit
preferential against leukemia cell lines compared to that exercised against solid tumors and
normal cells. This has also been observed in other compounds with other functionalization
which induce cell death by apoptosis [17]. Triterpenes with a lupane-type skeleton and an
α,β-unsaturated aldehyde group, specifically at C-30, exhibit similar increasing activities
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in adherent cell lines due to the presence of this functionalization, with a further increase
due to simultaneous oxidation at C-28 [18,19].

One of the mechanisms by which the presence of α,β-unsaturated carbonyl groups
(e.g., ketones or aldehydes) seems to induce a cytotoxic effect is through generation of
Michael-type adducts. This is due to the reactivity of the β-carbon with the nucleophilic
thiol group of proteins and peptides, which play key role in cancer progression and drug
resistance. In addition to their ability to interact with cellular thiols, compounds with
α,β-unsaturated carbonyl groups can induce apoptosis via the mitochondrial pathway,
which is considered one of the main physiological cell death pathways and a promising
therapeutic target for cancer treatment [20,21].

Worth noting is that the percentage of leukemia cells arrested in the inactive phases of
the cell cycle (G0/G1) after in vitro treatment with compound 2 was lower compared to that
shown by drugs currently used to treat chronic myeloid leukemia, such as tyrosine kinase
inhibitors (TKIs) (e.g., imatinib or dasatinib). The mechanism of TKIs on the cell cycle is
to arrest cells in inactive phases, causing them to remain in a resting state, making their
elimination (and death) difficult and resulting in persistent post-treatment disease [22–24].
Unfortunately, most patients treated with TKs, such as dasatinib and imatinib, experience
leukemia cell persistence in CML because the leukemia stem cells (CD34 + CD38-) enter
the G0 phase, in which the cells become quiescent, and can thus survive.

The fact that compound 2 caused arrest in the active phases of the cell cycle suggest
that it may be affecting the CDK1 responsible for cell cycle regulation in the G2 and M
phases [25]. Known to be overexpressed in many types of cancer, CDKs have become
attractive therapeutic targets for preventing unregulated cancer cell proliferation [26]. This
makes compound 2 a promising candidate in future studies, mainly aimed at CML, because
it exhibits interactions similar to those of flavopiridol, coupled with the fact that it permits
MNC cells to remain highly viable.

Given the observed behavior of compound 2 against leukemia cells, a combination of
compound 2 with TKI drugs, such as imatinib, is a promising approach. Combinations of
TKIs with drugs that inhibit active phases of the cell cycle, such as vinca alkaloids [27] or
paclitaxel, have been used to treat advanced or metastatic solid tumors [28].

Compound 2 was the only one effective on the HL60 cell line. This is promising, since
there is currently no effective treatment for CML or AML. The FLT3 protein is known to
one of the targets in AML. This type III tyrosine kinase receptor plays vital role in the
survival, proliferation and differentiation of hematopoietic cells in AML [29]. In the present
molecular docking results with FLT3, compound 2 had a better score that compounds 1,
3, and 4, suggesting that interaction with FLT3 may be involved in the activity observed
in the HL60 cell line; however, the scores were lower for the inhibitor and ATP with the
same protein.

The VEGFR was selected as a molecular docking target because it plays key role in the
proliferation and survival of leukemic cells [30,31]. In the present results none of the effects
exerted by compounds 1–4 were found to be linked to interaction with this target.

When tested with BCR-ABL protein, one of the most potent anti-apoptotic proteins
in CML [32], compounds 1–4 could not bind in the same central cavity as this inhibitor
(also occupied by the nucleoside portion of ATP). However, they could bind in the larger
cavity constituting the “entrance” to the central cavity, thus hindering entry of ATP into
the site of action, and consequently, inhibiting the kinase activity (Figure 6C). According
to the docking scores, compound 2, and to a lesser extent epimers 1 and 4, are capable
of competing with ATP; this suggests that the observed apoptotic effect is due to this
interference with the ABL signaling pathway, which in turn can trigger cell death in K562
cell line.

The molecular docking analysis using CDK1 showed all four triterpenes to be capable
of entering the same site as the competing inhibitor, with a similar position and orientation
(Figure 7B). However, compound 2 had the lowest score of all the tested triterpenes, even
lower than ATP, and one comparable to the inhibitor flavopiridol. This low score may
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have resulted from formation of five interactions through hydrogen bonds with residues
ASP86, ASP146, LYS33, and LEU83 (Figure 7C); the latter may be a key interaction since
it also occurs with flavopiridol (Figure 7D), but not with the other triterpenes (Figure S3).
Based on these remarkable results for interaction with CDK1, the principal effect observed
for compounds 1–4 may be explained by their interaction with the CDK1/Cyclin B/Cks2
complex, an important mitotic promoter [25]. It may also account for the significant arrest
in the G2/M phases caused by compound 2, which is one of flavopiridol’s modes of action.

The predicted properties of analysis indicated compound 2 to be the most promising
of the four compounds since it is the only one which meets all the parameters of Lipinski’s
rule of five. These criteria are aimed at assisting in development of orally bioavailable
drugs with high gastrointestinal absorption, a vital goal in drug discovery. The fact that
compound 2 was not predicted to be a CYP450 isoenzymes inhibitor suggests it has a lower
possibility of being toxic and/or it may lessen the appearance of undesirable side effects
such as elimination and accumulation of drugs and their byproducts [14,33–35].

As observed, compound 2 has an important effect on leukemic lines; however, like
other triterpenes, they show a significant drawback due to their moderate solubility (Swis-
sADME), presumably related to their lipophilicity, since it is well known that the low
aqueous solubility of a drug can seriously affect its efficacy and hinder its possible thera-
peutic application in clinical use as a medicine [36–38].

A large number of studies have been carried out to improve their pharmacological
activities of triterpenes, such as by introducing heterocyclic scaffolds, mainly nitrogen-
containing heterocyclics, such as triazole, pyrazole, indole, piperazine and aminoquino-
lines [38], as well as the preparation of esters, amides, saponins or conjugated sugars [36,39],
esters with dicarboxylic acids, conjugated with polyethylene glycol, ammonium salts,
among others [40].

Another way to improve bioavailability is by encapsulating them in nanoparticles,
such as liposomes, which have been shown to be efficient and non-toxic, capable of in-
corporating the triterpene scaffold, such as betulinic acid, through the use of relatively
inexpensive materials and manufacturing procedures [37].

The implementation of delocalized lipophilic cationic compounds such as Rho123, F16,
MKT-077, qualinium and triphenylphosphonium lipophilic cationic salts to pentacyclic
triterpenes has also been explored [41], the latter being of great importance, since in addition
to improving water solubility, and thus bioavailability, targets mitochondria [41].

The pentacyclic triterpenes, such as betulin and betulinic acid; have apoptotic effects
on cancer cells through initiating the formation of ROS and free radicals on mitochondria,
increasing the permeability of the mitochondrial membrane, which results in the release of
cytochrome c in the cytosol and activation of caspases to end DNA fragmentation. These
compounds also have effects on the Bcl-2 protein family, which consists of anti-apoptotic
(Bcl-2, Bcl-XL and Mcl-1) and proapoptotic (Bax and Bad) proteins [41–43].

However, due to low bioavailability, it is difficult in vivo conditions to produce the
desired therapeutic effect. Therefore, binding to lipophilic cationic compounds would
improve their activity, mainly by inducing apoptosis directly in the effect on mitochondria
in cancer cell lines [41–43].

However, compound 2, despite showing moderate solubility and a LogP of 4.61,
is better than its analogs that have a LogP of up to 6.65 and poor solubility in water
(Compound 3). What this leads us to make modifications or formulations in the future to
improve its pharmacokinetic parameters, because compound 2 shows promise for future
studies [37].

4. Materials and Methods
4.1. Compounds

The compounds were isolated from the aerial parts of Phoradendron wattii according to
a previous study [5]. Compounds were dissolved in DMSO at a concentration of 10 mg/mL.
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4.2. Controls

In all cases medium with DMSO (0.1%) was used as negative control, dasatinib (2 nM)
and parthenolide (10 µM) were used as positive controls for K562 and HL60 cell lines,
respectively. All tests were carried out in triplicate.

4.3. General Procedures

The bioassays were performed inside a laminar flow hood, brand NuAire, class II,
type A2. The cells were kept inside a CO2 incubator with a water jacket and HEPA filter,
brand NuAire.

4.4. Cell Lines

Chronic myeloid leukemia (K562; ATCC CCL-243) and acute myeloid leukemia (HL60;
ATCC CCL-240) cell lines were used for all assays. The K562 cell line was maintained
with RPMI medium at 10% FBS, the HL60 cell line was maintained with IMDM medium
at 20% FBS; 1% penicillin-streptomycin was added to both cell lines and incubated at
an atmosphere of culture with 95% humidity and 5% CO2 at 37 ◦C. All evaluation was
performed between 4 and 5 cell passages.

4.5. Bioassay of Viability

A total of 2× 105 cells/well were cultured into 24-well plates and treated with different
concentrations of four compounds (6.25, 12.5, 25, 50, and 100 µg/mL) for 48 h. At the end
of this time, the cells were collected and stained with 7-aminoactinomycin D (7-AAD),
according to manufacturer instructions, for 15 min in darkness. The samples were then
analyzed by flow cytometry using FACS Verse flow cytometer (BD Bioscience, San Jose,
CA, USA).

4.6. Viability Test in Normal Mononuclear Cells

Normal mononuclear cells were obtained from bone marrow samples, and were
collected following institutional guidelines, including written informed consent from each
donor. Collection procedures were approved by the Ethics and Scientific Committees of the
Mexican Institute of Social Security [Instituto Mexicano del Seguro Social (IMSS), project
R-2013-3602-6].

The MNC were purified with FicollPaque Plus (Pharmacia Biotech, Uppsala, Sweden)
by centrifugation at 400× g at room temperature for 30 min according to the manufacturer’s
protocol. Once the MNC were obtained, they were resuspended in RPMI medium (ATCC)
with 10% FBS, and they were counted using a hemocytometer, previously stained with a
trypan blue solution, verifying the viability of 95% [44].

Cells were plated at 2 × 105 cells/well in 24-well plates and incubated with different
concentrations of compounds 1 (50 µg/mL), 2 (25 and 100 µg/mL), 3 (100 µg/mL), and 4
(100 µg/mL), for 48 h. RPMI with 10% FBS was used as culture medium for cell growth.
After this time, cells were collected, washed with PBS and stained with 7-AAD, according
to manufacturer instructions. They were analyzed by flow cytometry with a FACSVerse
flow cytometer (BD Bioscience, San Jose, CA, USA).

4.7. Proliferation Bioassay

Cell lines were stained with carboxyfluorescein diacetate succinimidyl ester (CFSE) at
1 mM and incubated at 37 ◦C for 15 min under constant agitation, to then be washed with
PBS at 10% of FBS to eliminate the excess of the dye. 2 × 105 cells/well were seeded in 24-
well plates and incubated with different concentrations of the compounds (6.25, 12.5, 25, 50,
and 100 µg/mL) for 48 h. After culturing, cells were stained with 7-AAD and immediately
analyzed using a FACS Verse flow cytometer (BD Bioscience, San Jose, CA, USA).
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4.8. Apoptosis Assay

Cells (2 × 105) were cultured in 24-well plates and treated with the compounds at
the concentration in which the compounds showed inhibition of viability or proliferation
[1 (50 µg/mL), 2 (25 and 100 µg/mL), 3 (100 µg/mL) and 4 (100 µg/mL)], to later be
incubated for 24 h and 48 h. After this time, cells were washed with PBS and stained with
annexin V-FITC and 7-AAD apoptosis kit (BD Bioscience) and incubated in the dark for
15 min, then they were analyzed by flow cytometry.

4.9. Cell Cycle Assay

Two million cells of K562, HL60, and normal MNC were cultured in 6-well plates
and incubated for 48 h with the compounds at different concentrations. After this time,
the cells were collected, purified with Ficoll Paque Plus, washed with PBS, and fixed with
4% formaldehyde for 15 min on ice. After that, cells were permeabilized for 20 min with
0.1% triton. Next, cells were washed with PBS 3% FBS and then stained with anti Ki67
antibody (AF488 in 1:100 dilution) for 12 h, washed with PBS 3% FBS and subsequently
incubated with 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI) at 500 ng/mL DAPI
for 30 min. After this procedure, cells were analyzed using a FACS Canto II flow cytometer
(BD Bioscience, San Jose, CA, USA).

4.10. In Silico Studies

The ADME (absorption, distribution, metabolism, and excretion) properties of com-
pounds, such as molecular weight (MW), hydrogen bond acceptors (nHBA), hydrogen
bond donors (nHBD), lipophilicity (clogP), rotatable bonds and topological polar surface
area (TPSA), and pharmacokinetic parameters were predicted using SwissADME [14].

Protein target structures for molecular docking studies were retrieved from RCSB
Protein Data Bank, selecting CDK1/CyclinB/Cks2 complex with flavopiridol as CDK1
inhibitor (PDB ID: 6GU2), ABL kinase with nilotinib as inhibitor (PDB ID: 3CS9), FMS-like
tyrosine kinase 3 (FTL3) with quizartinib as inhibitor (PDB ID: 4RT7) and VEGFR2 kinase
domain with tivozanib as inhibitor (PDB ID: 4ASE) [45]. Three-dimensional structures of
tested ligands were generated in their low-energy conformation using ChemDraw Profes-
sional v.16, based on crystallographic data of the compound or a closely related structure
when available, and further energy minimization with MM2 force field. Targets were
prepared by removing co-crystalized inhibitors and water molecules, and then processed
by LePro tool. Molecular docking studies were performed using LeDock software [46]. A
receptor grid was set for each target, restraining it to include position of co-crystalized
inhibitor and surrounding cavities in accordance with previous reports for new inhibitor
search [47–53] (resulting search volumes shown in Table 3), generated poses were set to
100 and 0.5 of RMSD. Generated poses and interactions were analyzed in BIOVIA Discovery
Studio Visualizer v19.1.

Table 3. Search volume for molecular docking.

PDB Entry Search Volume
Minimum (Å) Maximun (Å)

x y z x y z

6GU2 318.71370 205.75305 181.98100 336.44230 228.73095 201.80300
3CS9 14.46000 −5.72656 44.42565 45.40620 21.22764 63.53435
FLT3 −50.71070 −3.84690 −29.64010 −22.42360 24.18290 3.17570
4ASE −42.91900 −19.71083 −23.08805 −8.47920 9.87587 1.26045

4.11. Analysis of Results

All cytometric data was analyzed using FlowJoTM v10.6 software. The data were ex-
pressed as means ± SEM. Statistical significance was calculated with a one-way analysis of
variance (ANOVA) followed by Dunnett’s post-hoc test, applying a p < 0.05 significance level.
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5. Conclusions

The epimers 3α,24-dihydroxylup-20(29)-en-28-oic acid (1) and 3α,23-dihydroxylup-
20(29)-en-28-oic acid (4) and compound 3α,23-dihydroxy-30-oxo-lup-20(29)-en-28-oic acid
(2) induced inhibition of proliferation and cell death by apoptosis. Molecular docking
results suggest this may be due to interaction with the ABL kinase protein. Compound 2,
in particular, allows MNC to remain highly viable. The compound 3α,23-dihydroxy-30-
oxo-lup-20(29)-en-28-oic acid (2) is promising because it exhibited notable activity in both
cell lines, arrested cells in the active phases of the cell cycle, and it was found, in silico, to
interact with CDK1/Cyclin B/Csk2 complex. Productive future research should evaluate
compound 2′s effects in leukemia stem cells, as well as implement in vivo bioavailability
and toxicity studies.

Supplementary Materials: The following supporting information can be accessed at: https://www.
mdpi.com/article/10.3390/molecules27175616/s1, Figure S1. Binding modes of the studied com-
pounds at the VEGFR binding site. (A) Binding site of tivozanib, ATP and compound 2, (B) Close-up
of the binding site of tivozanib (Re-docking: 0.286 Å), ATP and compound 2; Figure S2. Binding
modes of studied compounds at the FLT3 binding site. (A) Binding site of quizartinib, ATP and com-
pound 2, (B) Close-up of the binding site of quizartinib (Re-docking: 1.472 Å), ATP and compound
2; Figure S3. Interactions of the compounds 1, 3, and 4 at CDK1 binding site. (A) visualization of
interactions between compound 1 inside CDK1 binding site, (B) Visualization of interactions between
compound 3 inside CDK1 binding site, (C) Visualization of interactions between compound 4 inside
CDK1 binding site; Figure S4. Binding modes of the studied compounds at the VEGFR binding site;
Figure S5. Binding modes of studied compounds at the FLT3 binding site; Figure S6. Interactions of
the compounds 1, 3, and 4 at CDK1 binding site.
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