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Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne

zoonosis with a high mortality rate in humans. Additionally, dogs are frequently reported

to be infected with this disease. There has been no commercially available vaccine for

humans and animals as yet. The SFTS is caused by Dabie bandavirus (DBV), formerly

known as SFTS virus. The DBV is now classified into the genus Bandavirus in the

family Phenuiviridae. DBV Gn and Gc can induce specific immune responses in vivo.

In this study, we used reverse genetics technique to construct two recombinant canine

distemper viruses (rCDVs), rCDV-Gn and -Gc, which could express Gn and Gc in

vitro, respectively. Both of the recombinants, derived from a common parental CDV,

were independently subjected to twenty serial passages in cells for Sanger sequencing.

Neither point mutation nor fragment deletion was found in the Gn open reading frame

(ORF), whereas the rCDV-Gc showed a nonsynonymous mutation (A157C) in the Gc

ORF, correspondingly resulting in amutation of amino acid (T53P) in the Gc. Growth curve

of the rCDV-Gc almost coincided with that of a wild-type CDV, but exhibited a significant

difference from that of the rCDV-Gn. Much research remains to be performed to

demonstrate whether both recombinants are able of inducing specific immune responses

in vivo.

Keywords: severe fever with thrombocytopenia syndrome, Dabie bandavirus, canine distemper virus, Gn and Gc,

recombinant virus, reverse genetics

INTRODUCTION

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease, caused
by Dabie bandavirus (DBV), formerly known as SFTS virus. This disease was initially reported
in Central China in 2009. Its clinical signs include fever, thrombocytopenia, gastrointestinal
symptoms and leukocytopenia in patients. There is an unusually high initial case fatality rate of
30% (1). In recent years, this disease has raised serious public health concerns, especially in China
(2). The SFTS is a tick-borne zoonosis. The DBV can rapidly evolve by genemutation, reassortment
and homologous recombination in ticks and reservoir hosts (3). More recently, it was frequently
reported that non-human animals, especially dogs, were infected by DBV, or were diagnosed with
DBV antibody-positive (4–9). Dog-to-human transmission of DBV can even occur throughmanual
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de-ticking of domestic dogs (10). Specific treatment of SFTS
is unavailable now. Development of veterinary vaccines would
be one of the most effective ways to protect companion dogs
from SFTS, thereby interrupting a potential route of dog-to-
human transmission.

The DBV belongs to the genus Bandavirus in the family
Phenuiviridae of the order Bunyavirales. Its genome is segmented
into three pieces: L, M and S segments. The M segment
encodes a membrane protein precursor that matures into two
glycoproteins, Gn and Gc, embedded within the viral envelope.
Bunyaviral Gn and Gc can induce specific immune responses
in vivo (11–14). Different virus-vectored vaccines have been
reported to be capable of inducing DBV-specific immune
responses (15–18). For example, Dong et al. (19) constructed a
live-attenuated recombinant vesicular stomatitis virus that could
express the DBV Gn/Gc glycoproteins. Single-dose vaccination
with it was demonstrated to elicit complete protection in mice
from DBV infection (18). More recently, Tian et al. (15) reported
that Gn-expressing recombinant rabies virus conferred protective
immune responses in mice.

Canine distemper virus (CDV), also known as canine
morbillivirus, causes a highly contagious disease, canine
distemper, which affects a wide variety of domestic and
wild carnivores (19). This virus is classified into the genus
Morbillivirus in the family Paramyxoviridae. Typical CDV virions
are enveloped and pleomorphic particles. The viral genome is
a single-stranded, linear RNA with negative polarity. Wild-type
CDV possesses a 15,690-nt-long genome, following the “rule
of six”, necessary for efficient replication between genome and
antigenome (20). The CDV genome contains six transcriptional
units, separately coding for six structural proteins, namely N,
P, M, F, H and L proteins. Six open reading frames (ORFs) are
separated by untranslated regions with variable lengths.

Virulence-attenuating CDV strains have been broadly used
to produce commercially available vaccines against canine
distemper. Moreover, these strains are potential vectors for
delivering foreign antigens to induce protective immunities
against canine distemper and other diseases (21), such as
leishmaniasis (22) and rabies (23). Unfortunately, there has been
no report concerning CDV-vectored vaccines against DBV as
yet. We had developed one virulence-attenuating strain (CDV
QN strain) previously, and more recently, we constructed its
reverse genetics platform for expressing foreign antigens (24,
25). Considering anti-DBV vaccines unavailable for dogs, we
rescued two recombinant CDVs in the present study. These two
recombinants were demonstrated to be able to express separately
DBV Gn and Gc in vitro.

MATERIALS AND METHODS

Cells, Virus and Plasmids
Two cell lines, BSR-T7/5 and Vero-Dog-SLAM (VDS), were
kindly provided by the China Animal Health and Epidemiology
Center, and cultured at 37◦Cwith 5%CO2 in Dulbecco’smodified
Eagle’s medium (DMEM), supplemented with fetal bovine
serum (VivaCell, Shanghai, China), penicillin (100 U/mL),
streptomycin (100µg/mL), amphotericin B (0.25µg/mL) and

G418 (500µg/mL). The wild-type CDV (wt-CDV), QN strain,
was cultured in VDS cells. The QN strain-based reverse genetics
system had been established previously, mainly containing four
plasmids, namely one full-length cDNA clone of recombinant
CDV that expressed a foreign protein, and three helper plasmids
(pCAGGS-N, pCAGGS-P and pCAGGS-L).

Construction of Two Recombinant CDV
cDNA Clones
Mature Gn and Gc, embedded within the DBV envelope
(Figure 1A), are derived from the same precursor (Figure 1B).
Two recombinant CDV cDNA clones (rCDV-Gn and -Gc
cDNA clones) were schematically shown in Figures 1C,D.
They were separately flanked by the T7 promoter and a
fusion sequence of hepatitis delta virus ribozyme-T7 terminator
at their 5′ and 3′ ends, respectively. In order to improve
protein expression, Gn and Gc ORFs (Genbank access No.:
MT236316) were optimized for codon usage bias in dogs using
an online codon-optimizing tool (https://www.vectorbuilder.cn/
tool/codon-optimization.html), followed by chemical synthesis.
These two codon-optimizing sequences were independently
subcloned into the Not I/Pme I sites of another CDV cDNA
clone (25) via homologous recombination using the In-Fusion R©

Kit (Takara, Dalian, China) according to the manufacturer’s
instruction. Two recombinant cDNA clones (Figures 1C,D)
were subjected to Sanger sequencing for confirming their
identities, followed by plasmid extraction using the HighPure
Maxi Plasmid Kit (TIANGEN, Beijing, China) according to the
manufacturer’s instruction.

Recovery of Two Recombinant CDVs
Two recombinant CDVs, rCDV-Gn and -Gc, were rescued
from their individual cDNA clones. Briefly, BSR-T7/5 cells
were seeded into a 12-well plate for culturing at 37◦C in an
incubator. To rescue recombinant CDV, a cell monolayer at
70% confluency was co-transfected with either of the cDNA
clones (2.0 µg/well), pCAGGS-N (1.0 µg/well), pCAGGS-P (0.5
µg/well) and pCAGGS-L (0.5 µg/well) using Lipofectamine
2000 (Thermo Fisher, Carlsbad, the USA) according to the
manufacturer’s instruction. Two plasmid-co-transfected cell
monolayers were digested with trypsin at 72 h post transfection
(hpt), and then separately co-cultivated with VDS cells in
two T25 flasks. Recombinant viruses would be rescued from
their individual cDNA clones, and then undergo budding from
membranes of BSR-T7/5 cells for further infecting VDS cells.
The rescued viruses were subjected to serial blind passages in
VDS cells.

RT-PCR Detection
The rCDV-Gn- and-Gc-infected cell cultures were collected
at passage-10 (P10). Total RNAs were extracted from
the cell cultures, and then served as templates for RT-
PCR detection using the PrimeScriptTM High Fidelity One
Step RT-PCR Kit (Takara, Dalian, China). The forward
(5′-TCAAGAGTATTACTCATGCTTAA-3′) and reverse (5′-
TCGAAGTCGTACACCTCAGTCAT-3′) primers targeted sites
at the P and M ORFs, respectively. The RT-PCR underwent
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FIGURE 1 | Schematic representations of DBV Gn-Gc heterodimer, glycoprotein precursor, rCDV-Gn cDNA clone and rCDV-Gc cDNA clone. DBV spike is a Gn-Gc

heterodimer, embedded within viral envelope (A). DBV glycoprotein precursor composed of Gn and Gc (B). The cleavage site is marked with a red arrow. rCDV-Gn

cDNA clone (C) and rCDV-Gc cDNA clone (D). T7 P, T7 promoter; GS, gene start; GE, gene end; KS, Kozak sequence; H-R, hepatitis delta virus ribozyme;

T7 T, T7 terminator.

45◦C for 10min, 94◦C for 2min and then 30 cycles at 98◦C
(10 s), 55◦C (15 s) and 68◦C (20 s). The extracted total RNAs
were also subjected to PCR for detecting cDNA residues
using the same primer pair. The PCR reaction contained 2 ×

PrimeSTARMax Premix (Takara, Dalian, China) and underwent
30 cycles at 98◦C (10 s), 55◦C (10 s) and 72◦C (10 s). Both
RT-PCR and PCR products were analyzed through agarose gel
electrophoresis. Two RT-PCR products were extracted from gels
for Sanger sequencing.

Indirect Immunofluorescence Assay
IFA was carried out to confirm successful rescue of recombinant
CDVs, as described previously (25). In brief, two VDS cell
monolayers at 90% confluency were independently inoculated
with the P15 rCDV-Gn and -Gc for incubation at 37◦C. At
24 h post inoculation (hpi), cell monolayers were fixed with 4%
paraformaldehyde for at least 30min, and then washed four
times with PBS for further cellular permeation with 0.4% Triton

X-100 for 30min, followed by washing with PBS thrice. Cell
monolayers were blocked in blocking solution at 37◦C for 1 h,
and then incubated with the anti-CDV monoclonal antibody
(MAb) (Lvdu, Binzhou, China) at 37◦C for 2 h, followed by
washing with PBS thrice. Subsequently, cell monolayers were
incubated with the Alexa Fluor R© 555 conjugate (Thermo Fisher,
Waltham, MA, the USA) at 37◦C for 1 h, followed by washing
with PBS thrice. After coating with 90% glycerin, cell monolayers
were observed under a fluorescence microscope.

Mass Spectrometry
Gn andGc expressions were analyzed bymass spectrometry (MS)
at the Shanghai Bioprofile Biotechnology Co., Ltd (Shanghai,
China), as described previously (26). In brief, rCDV-Gn- and -
Gc-infected cell cultures were harvested at P10 for inactivation
by 0.1% formalin at 4◦C for 48 h. Proteins of inactivated
samples were digested by a method of filter-aided sample
preparation (27). Liquid chromatography linked to tandem
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mass spectrometry was performed on a Q Exactive Plus mass
spectrometer coupled to Easy nLC (Thermo Fisher, Waltham,
MA, the USA). The MS data were analyzed using MaxQuant
software v1.6.0.16. The results of database search were filtered
and exported with <1% false discovery rate at peptide-spectrum-
matched level, and protein level, respectively.

Growth Kinetics
The rCDV-Gn and -Gc were compared with each other on
their growth kinetics in VDS cells, as described previously (25).
In brief, VDS cells were seeded into five 12-well plates (106

cells/well, and 6 wells/plate) for incubation at 37◦C for 2 h.
The P15 rCDV-Gn and -Gc were separately inoculated (MOI
= 0.0002) into all five plates (3 wells/progeny in each plate)
for incubation at 37◦C for 3 h. Supernatants were replaced with
DMEM for further incubation at 37◦C. A plate was randomly
removed from the incubator at 0, 24, 48, 72 and 96 hpi, and
then subjected to two freeze-and-thaw cycles for harvesting
supernatant, followed by viral titration using the Spearman–
Kärber equation (28). Growth curves of viruses were drawn using
the GraphPad Prism software (Version 8.0). Data at each time
point were representative of three independent experiments. As
a control, the growth curve of wt-CDV referred to that in the
previous publication (25).

Genetic Stabilities of Two Foreign
Sequences
Two recombinant viruses underwent twenty serial passages
(72 h/passage) in VDS cells. Their culture supernatants were
collected at P15 and P20 for RT-PCR detection, as described in
Subheading “RT-PCR Detection”. Four RT-PCR products were
subjected to agarose gel electrophoresis. Two P20 products were
extracted from gels for Sanger sequencing to uncover genetic
stabilities of two foreign sequences.

RESULTS

Rescue of rCDV-Gn and -Gc
Two full-length cDNA clones were constructed for independent
co-transfection with three helpers into BSR-T7/5 cells that could
constitutively express T7 RNA polymerase. Owing to the absence
of CDV receptors on it, the BSR-T7/5 cell line was used only
for virus recovery, rather than for blind passaging. Alternatively,
the SLAM receptor-expressing VDS cells, because permissive to
CDV infection, were used for serial blind passages of rescued
viruses in this study. Typical cytopathic effects (CPEs), such
as exacerbated cell-to-cell fusion (Figure 2A) and syncytium
formation (Figure 2B), appeared on VDS cell monolayers with
viral passaging. The CPEs were also visible during serial blind
passages. As controls, wt-CDV-inoculated and uninfected cell
monolayers were shown in Figures 2C,D, respectively.

RT-PCR Detection of rCDV-Gn and -Gc
The rCDV-Gn and -Gc were simultaneously analyzed at
P10 by one-step RT-PCR for detecting their identities. Two
expected bands, 1887 (Figure 2E) and 1899 (Figure 2F) bps,
were observable only on the RT-PCR lanes by agarose gel

electrophoresis. As a control, PCR analysis (Figures 2E,F, Lane
PCR) indicated no plasmid residue of cDNA clones affecting
the RT-PCR analysis. The identities of rCDV-Gn and -Gc were
confirmed by Sanger sequencing of RT-PCR products.

IFA and Mass Spectrometry
In order to confirm recovery of rCDV-Gn and -Gc, the IFA
was performed using CDV MAb as the primary antibody and
Alexa Fluor R© 555 conjugate as the secondary antibody. The
result showed that bright red syncytia were visible on the
rCDV-Gn- and rCDV-Gc-infected cell monolayers. As a control,
non-inoculated VDS cells exhibited no similar phenotype
(Figure 2G). The IFA result confirmed two recombinant CDVs
had been recovered from their individual cDNA clones.
Expressions of Gn and Gc were demonstrated by mass
spectrometry, which exhibited Gn- and Gc-specific peptide
sequences matched to the MS/MS spectra. Two representative
MS/MS spectra were shown in Figures 3A,B.

Growth Kinetics of rCDV-Gn and -Gc
To determine growth curves of two recombinants in vitro,
VDS cell monolayers were independently inoculated with rCDV-
Gn and -Gc at P15. Typical syncytium formation was visible
at 24 hpi, and exacerbated over time to cause intercellular
hyperfusogenicity at 48 hpi (Figures 3C,D). The growth curves
of both recombinants were compared with each other and with
that of the wt-CDV (Figure 3E). Two recombinants displayed
distinct growth kinetics in vitro: the rCDV-Gn replicated more
slowly from 0 to 24 hpi but maintained a higher level of titer
than the rCDV-Gc did during 48–96 hpi, and approximately at
36 hpi, they showed the same titer value. The rCDV-Gc showed
the similar growth kinetics to that of the wt-CDV, suggesting the
Gc had a less impact than the Gn did on viral replication.

Genetic Stability of Foreign Sequences
In order to test genetic stability of two foreign sequences, rCDV-
Gn and -Gc were serially passaged in VDS cells for a total
of twenty passages. The agarose gel electrophoresis showed
specific RT-PCR products, separately amplified from RNA
samples of P15 and P20 progenies (Figure 3F). The P20 RT-PCR
products were subjected to Sanger sequencing, suggesting neither
point mutation nor fragment deletion occurring in the foreign
sequence of rCDV-Gn. The rCDV-Gc showed a nonsynonymous
mutation (A157C) in the Gc ORF, correspondingly resulting in a
mutation of amino acid (T53P) in Gc.

DISCUSSION

In recent years, the SFTS was frequently reported in China,
Japan, and the Republic of Korea. This disease, characterized
by a high case-fatality rate in humans, is primarily transmitted
via tick bite, and can also be transmitted from person to person
through contacting patient’s blood (29). Domesticated animals,
like companion dogs, should be considered as a source of animal-
to-human transmission, as evidenced by recent case reports (7, 8,
10, 30). Unfortunately, there has been no commercially available
vaccine against SFTS for dogs as yet. CDVs are efficient vectors
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FIGURE 2 | Rescue and identification of rCDV-Gn and -Gc. rCDV-Gn-induced cell-to-cell fusion [(A) enclosed by purple line] and rCDV-Gc-induced syncytium

formation [(B) enclosed by green line] on VDS cell monolayers during viral passaging. As controls, wt-CDV-inoculated and uninfected cell monolayers are shown in

(C,D), respectively. A wt-CDV-induced CPE is enclosed by a white line. RT-PCR detection of the P10 rCDV-Gn (E) and -Gc (F) using the forward

(5′-TCAAGAGTATTACTCATGCTTAA-3′) and reverse (5′-TCGAAGTCGTACACCTCAGTCAT-3′) primers. The Gn- and Gc-specific bands are 1,887 and 1,899 bps,

respectively. Indirect immunofluorescence assay of VDS cell monolayers separately inoculated with rCDV-Gn and -Gc at 24 hpi (G). The primary and secondary

antibodies are CDV MAb and Alexa Fluor® 555 antibody, respectively.

for expressing heterologous proteins (31–34), or antigens that can
confer specific immune responses in animals (22, 23, 35). This
prompted us to develop a novel candidate of CDV vaccine using
reverse genetics for delivering DBV antigens to induce protective
immunity in dogs.

We have separately constructed two CDV reverse genetics
systems for the 5804P strain (34, 36) and for the QN strain (24,
25). In the present study, we rescued two recombinant virulence-
attenuating CDVs (QN strain), independently coding for DBV
Gn and Gc in cells. The reason why the DBV glycoprotein
precursor was not used for construction of recombinant CDV
was that the full-length sequence of precursor was theoretically
too long (3222 nt) to be accommodated in a single CDV
genome. Even if a precursor-inserting CDV can be rescued
from its recombinant cDNA clone, both viral replication and
protein expression would be affected by the excessive load of
heterologous sequence in a single CDV genome to some extent.
Therefore, we independently rescued Gn- and Gc-expressing

CDVs, in order to maintain the viral propagation that was not
significantly affected by foreign sequences.

During the initial blind passages after co-transfection, both
recombinants revealed a weak adaptability in VDS cells, as
evidenced by slow appearance of virus-induced CPE foci (data
not shown). Such a weak adaptability was gradually improved
with serial passaging in VDS cells. Each viral progeny is
theoretically better than its previous one in growth kinetics
during the initial blind passages (37). We speculated that both
recombinants had been almost adapted to the VDS cell line at
P15. Thus, the P15 progenies were used for determining the
growth curves of two recombinants. The rCDV-Gc had a similar
growth curve to that of the wt-CDV. The rCDV-Gn showed
totally different growth kinetics from those of the rCDV-Gc
and wt-CDV, implying that the Gn sequence had an uncertain
impact on viral replication in vitro. Nevertheless, Tian et al. (15)
recently revealed that the insertion of DBV Gn did not affect
replication of a recombinant rabies virus in vitro, compared with
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FIGURE 3 | Characterization of rCDV-Gn and -Gc. Representative Gn (A) and Gc (B) specific MS/MS spectra on peptide identifications. Cytopathic effects on VDS

cell monolayers separately inoculated (MOI = 0.0002) with the P15 rCDV-Gn (C) and -Gc (D) at 0, 24, 48, 72, and 96 hpi. Multi-step growth curves of rCDV-Gn and

-Gc at P15 (E). Three curves are drawn using the GraphPad Prism software. Data at each time point are representative of three independent experiments. RT-PCR

analysis on P15 and P20 progenies of rCDV-Gn and -Gc using the forward (5′-TCAAGAGTATTACTCATGCTTAA-3′) and reverse (5′-TCGAAGTCGTACACCTCAG

TCAT-3′) primers (F).
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that of its parental strain. We reported a recombinant CDV (QN
strain) that expressed a SARS-CoV-2 S1 subunit (686 aa) in VDS
cells. The rCDV-Gn was measured to have a similar growth
curve to that of the S1 subunit-expressing CDV (25). More
recently, we rescued another recombinant CDV (QN strain) that
could efficiently express the VP2 of canine parvovirus type 2.
Interestingly, we found the VP2-expressing CDV showed also a
similar growth curve to that of the rCDV-Gn (24).

To enhance expression levels of Gn and Gc, their full-length
ORFs were optimized for codon usage bias in dogs. Their
expressions were qualitatively analyzed by mass spectrometry,
demonstrating that the rCDV-Gn and -Gc were able of encoding
the Gn and Gc in VDS cells, respectively. It is generally assumed
that bunyaviral Gn and Gc induce specific immune responses in
vivo (11–14). Much research remains to be performed to reveal
whether both the rCDV-Gn and -Gc can elicit specific immunity
in animals.

The CDV Rockborn strain, albeit historically regarded as a
virulence-attenuating one, reverted back to a highly virulent
status after serial passaging in dogs (38). Therefore, the viral
feature of high-fidelity replication plays a crucial role in
development of live-attenuated CDV vaccines, and ensures a
foreign antigen stably expressed for inducing repeatedly immune
responses in vivo. In the present study, we hoped to rescue two
recombinant CDVs, characterized by high-fidelity replication
during serial passages. The Gn ORF was demonstrated to be
genetically stable at P20, whereas unfortunately the Gc ORF
showed one missense mutation (A157C). We recently reported
a recombinant CDV (5804P strain) that could express enhanced
green fluorescence protein (eGFP) in cells. Under non-selective
conditions, this eGFP-tagged recombinant exhibited only one
single-nucleotide mutation in the eGFP ORF at P47 (36). We

have successfully established the reverse genetics systems of
two CDV strains. Although it remains to be clarified which
strain has a higher fidelity in viral replication, the QN is
more suitable than the 5804P for use as a vector candidate,
because the former has been proven to be a virulence-attenuating
strain (unpublished data), whereas the latter is a highly virulent
one (39).
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