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Abstract We introduce a novel, data-driven topological data analysis (TDA) ap-
proach for embedding brain networks into a lower-dimensional space in quantifying
the dynamics of temporal lobe epilepsy (TLE) obtained from resting-state functional
magnetic resonance imaging (rs-fMRI). This embedding facilitates the orthogonal
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projection of 0D and 1D topological features, allowing for the visualization and mod-
eling of the dynamics of functional human brain networks in a resting state. We then
quantify the topological disparities between networks to determine the coordinates
for embedding. This framework enables us to conduct a coherent statistical inference
within the embedded space. Our results indicate that brain network topology in TLE
patients exhibits increased rigidity in 0D topology but more rapid flections compared
to that of normal controls in 1D topology.

1 Introduction

The analysis of brain networks through graph theory has become a cornerstone in
understanding the intricate neural connections that underpin human cognition and
behavior (Bassett and Sporns, 2017; Sporns, 2003; Wijk et al., 2010; Chung et al.,
2017a). Traditionally, graph-theoretical analyses of brain networks have relied on
metrics such as node degree, clustering coefficients, and path lengths, extracted from
adjacency matrices representing neural connections. However, these analyses often
hinge on a predetermined threshold to binarize weighted networks, introducing a
level of arbitrariness that can skew the final statistical results and their interpretation
(Lee et al., 2011b; Chung et al., 2013). The demand for a more robust analytical
framework that transcends the limitations of threshold-dependent network analysis
has led to the integration of persistent homology (Edelsbrunner and Harer, 2010), a
key concept from topological data analysis (TDA), into brain network analysis (Lee
et al., 2011a, 2012; Petri et al., 2014; Sizemore et al., 2018, 2019; Vaccarino et al.,
2022).

Persistent homology offers a multiscale perspective, unveiling the topological
features of brain networks across a continuum of thresholds, and thus avoid the
arbitrariness Lee et al. (2011a, 2012). This approach not only captures the essence
of complex neural architectures but also provides a stable representation that is
less susceptible to the noise and variability inherent in neuroimaging data. By trac-
ing the persistence of topological features—such as connected components and
loops—across different scales, persistent homology encapsulates the hierarchical
organization of brain connectivity, offering a nuanced understanding of its topolog-
ical characterization of brain networks Chung et al. (2017b, 2019a); Kuang et al.
(2019); Yoo et al. (2017). The adaptability of persistent homology in scrutinizing
brain networks has been underscored in many recent studies. Sizemore et al. (2019)
and Xing et al. (2022) showcased the utility of persistent homology for assessing
time-dependent shifts in the topological attributes of networks. Aktas et al. (2019)
leveraged persistent homology to monitor the progression of network cliques, while
Billings et al. (2021) explored its application in representing brain networks through
simplicial complexes. Persistent homology’s effectiveness in mapping out the spa-
tial organization of cliques and cycles in brain networks was examined by Sizemore
et al. (2018). In functional brain connectivity analysis using EEG data, persistent
homology’s relevance was demonstrated by Khalid et al. (2014); Caputi et al. (2021).
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Chung et al. (2023) applied persistent homology to investigate the structural covari-
ate networks associated with abnormal white matter in maltreated children. These
contributions highlight persistent homology’s capacity to offer a comprehensive
framework for analyzing networks across multiple scales.

Although numerous studies have applied persistent homology to static networks
or summarized time-varying networks in a static manner, the exploration of dy-
namic patterns in persistent homology for evolving brain networks remains less
common, with only a handful of exceptions (Yoo et al., 2016; Santos et al., 2019;
Songdechakraiwut and Chung, 2020; Giusti et al., 2016; Sizemore et al., 2018; Chung
et al., 2024b). These time-varying networks, represented as a series of graphs, en-
capsulate the fluctuating landscape of neural interactions. The challenge lies in deci-
phering the underlying topological patterns that characterize these dynamic changes
(Chung et al., 2024b). This paper presents a novel data embedding technique called
the Topological Phase Diagram, which embeds time-varying brain networks into a
2D space to visually illustrate the temporal evolution of brain networks, providing
a clear and accessible means for modeling and interpreting dynamic neural interac-
tions. Our framework employs the Wasserstein distance between persistent diagrams
to generate a 2D topological profile of the data. Traditionally, the Wasserstein dis-
tance, or Kantorovich–Rubinstein metric, defined for probability distributions, faced
scalability issues (Shi et al., 2016; Su et al., 2015; Ma et al., 2023; Chung et al., 2023;
Vallender, 1974; Canas and Rosasco, 2012; Berwald et al., 2018). By establishing a
direct correlation between the Wasserstein distance and network edge weights, our
method enhances scalability and adaptability. We achieve a computational complex-
ity of O(𝑝 log 𝑝) for most network manipulation tasks like matching and averaging.
This efficiency enables the execution of demanding procedures, such as topological
embedding and clustering, with relative ease.

The dynamics of brain networks play a critical role in understanding cognitive
functions, including reasoning, attention, and executive functions. Haier et al. (1988)
investigated the correlation between cortical glucose metabolism and cognitive func-
tions using positron emission tomography (PET). The study found significant asso-
ciations between glucose metabolism in specific cortical areas and performance on
cognitive tasks, suggesting that higher metabolic rates are linked with enhanced rea-
soning and attention capabilities, providing insights into how brain energy consump-
tion correlates with cognitive performance and intelligence. Eisenberg et al. (2005)
found that educational experience correlates positively with glucose metabolism in
brain regions crucial for sustained attention and learning, suggesting that educational
experience may enhance metabolic efficiency in key brain regions, thereby poten-
tially contributing to improvements in the g-factor and overall general intelligence.
Pittau et al. (2012) investigated the patterns of altered functional connectivity in
patients with mesial temporal lobe epilepsy (MTLE). Using fMRI, the connectivity
patterns between various brain regions in MTLE patients were compared to healthy
controls. The findings indicate that MTLE patients exhibit significant disruptions
in functional connectivity, particularly involving the mesial temporal structures and
associated networks. These disruptions were linked to impairments in cognitive func-
tions such as memory and executive processes. However, most existing literature,
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including the studies mentioned above, focuses on correlating cognitive measures
with static summaries of dynamic brain imaging or brain network data, often ne-
glecting the dynamic pattern changes that occur over time. This static approach can
overlook critical information about the temporal dynamics and fluctuations within
brain networks that are essential for a comprehensive understanding of cognitive
processes. The investigation of dynamic aspects of brain networks could provide
deeper insights into the neural mechanisms underlying cognitive functions and their
alterations in conditions like TLE.

Neubauer and Fink (2009) explored the concept of neural efficiency, which posits
that more intelligent individuals exhibit lower levels of brain activation during cogni-
tive tasks compared to less intelligent individuals. This efficiency is particularly ev-
ident in tasks requiring executive functions, such as problem-solving and reasoning.
The study reviewed evidence from various neuroimaging studies, including EEG and
fMRI, demonstrating that higher intelligence is associated with more efficient neural
processing, characterized by reduced activation in the prefrontal cortex and other
brain areas involved in high-level cognitive functions. In this paper, we demonstrate
that similar conclusions can be drawn from functional brain networks at rest obtained
from rs-fMRI. We will explore how these networks differ in TLE patients compared
to normal controls and how these differences correlate with general intelligence. To
address the limitations of existing methods, we developed a novel topological embed-
ding framework for time varying network data called Topological Phase Diagram
(TPD) in aiding the topological modeling dynamic brain networks of temporal lobe
epilepsy (TLE). The embedding is based on the Wasserstein distance between per-
sistent diagrams, which provides the topological profile of data into 2D scatter plots.
The Wasserstein distance or Kantorovich–Rubinstein metric, as originally defined
between probability distributions, is not scalable (Shi et al., 2016; Su et al., 2015; Ma
et al., 2023; Chung et al., 2023; Vallender, 1974; Canas and Rosasco, 2012; Berwald
et al., 2018). We directly establish the relationship between the Wasserstein distance
and edge weights in networks making the method scalable and more adaptable. We
achieve O(𝑝 log 𝑝) run time in most graph manipulation tasks such as matching
and averaging. Such scalable computation enables us to perform a computationally
demanding task such as topological embedding and clustering with ease. We apply
TPD to elucidate the state space of dynamically changing functional brain networks,
as captured through resting-state functional magnetic resonance imaging (rs-fMRI).
The method allows us to delve into the temporal dynamics of brain connectivity,
providing a nuanced understanding of how brain networks evolve over time.

2 Methods

2.1 Preliminary: Graph filtrations

We will represent a dynamically changing brain network represented as a weighted
graph X(𝑡) = (𝑉, 𝑤(𝑡)), where 𝑉 = {1, 2, · · · , 𝑝} is the set of nodes corresponding
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to different regions of the brain and 𝑤(𝑡) = (𝑤𝑖 𝑗 (𝑡)) represents the time-dependent
edge weights between nodes 𝑖 and 𝑗 . We may assume smaller 𝑤𝑖 𝑗 implies weaker
connection while larger 𝑤𝑖 𝑗 implies stronger connection.

At each time point 𝑡, we can construct a binary networkX𝜖 (𝑡) = (𝑉, 𝑤𝜖 (𝑡)) where
the binary edge weights 𝑤𝜖 ,𝑖 𝑗 (𝑡) are given by:

𝑤𝜖 ,𝑖 𝑗 (𝑡) =
{

1 if 𝑤𝑖 𝑗 (𝑡) > 𝜖 ;
0 otherwise.

Here, 𝜖 acts as a threshold, determining the presence or absence of an edge based
on the weight 𝑤𝑖 𝑗 (𝑡) above given 𝜖 . This process results in a sequence of nested
graphs as the threshold 𝜖 is varied, encapsulating the multiscale structure. For a set
of sorted edge weights

𝑤(1) (𝑡) < 𝑤(2) (𝑡) < · · · < 𝑤(𝑞) (𝑡)

at time 𝑡, the graph filtration is given by (Chung et al., 2013; Lee et al., 2011a, 2012)

X𝑤(1) (𝑡) ⊃ X𝑤(2) (𝑡) ⊃ · · · ⊃ X𝑤(𝑞) (𝑡).

We used the order statistic notation 𝑤(𝑖) indicating the 𝑖-th smallest edge weight.
For 𝑝 number of nodes in a complete graph, there are 𝑞 = (𝑝2 − 𝑝)/2 number of
edges. This sequence of nested graphs, known as the graph filtration, captures the
hierarchical organization of the network’s connectivity.

At the initial stage of the graph filtration includes a larger number of weaker
connections. As we incrementally increase the threshold 𝜖 , the graph begins to shed
these weaker connections, progressively honing in on the more robust, significant
interactions within the network. This sequence portrays a spectrum of networks
ranging from most dense, representing the fully connected network, to the most
sparse, which retains only the most significant connections. This approach allows
for a nuanced understanding of the network’s hierarchical structure, illustrating how
connectivity patterns evolve as the threshold changes. By analyzing these filtrations
over time, we can trace the dynamic evolution of brain connectivity, identifying
which connections are persistent and robust under various conditions and which are
transient.

In graph filtration, the 0D persistent homology tracks the evolution of connected
components (0-cycles) across different thresholds. A connected component is born
when a new edge creates a connection that is not part of an existing component.
Once born, these components persist throughout the filtration, reflecting the non-
decreasing nature of the 0th Betti number 𝛽0 with increasing threshold values:

𝛽0 (𝑤(1) ) ≤ 𝛽0 (𝑤(2) ) ≤ · · · ≤ 𝛽0 (𝑤(𝑞) ).

The 1D persistent homology, on the other hand, captures the formation and
dissolution of loops or cycles. As the filtration progresses and more edges are deleted,
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Fig. 1 Graph filtration is applied to digits in MINST (Modified National Institute of Standards and
Technology database) showing Betti number differences over the filtration. A graph representing
each digit is used. Digits 3, 6 and 8 have 0, 1 and 2 cycles and thus they are topologically distinct.

some loops are destropyed, leading to their demise. This process is characterized by
a non-increasing 1st Betti number 𝛽1 (Chung et al., 2019a):

𝛽1 (𝑤(𝑞) ) ≥ · · · ≥ 𝛽1 (𝑤(1) ).

Figure 1 displays an example of how 𝛽0 and 𝛽1 changes over filtration values for 3
topologically distinct MINST digits while Figure 2 displays the Betti curves for two
representative subjects in our study. In graph filtration, the persistence of 0-cycles
is captured solely by their birth times, while cycles are uniquely identified by their
death times. This unique aspect allows for a clear partition of the edge weight set𝑊
into sets of birth values 𝑊𝑏 and death values 𝑊𝑑 , which correspond to 0D and 1D
topological features, respectively (Songdechakraiwut et al., 2021; Songdechakraiwut
and Chung, 2023). The birth set𝑊𝑏 is related to the concept of a maximum spanning
tree (MST) in a graph (Lee et al., 2012). Each edge contributing to a 0-cycle in the
MST signifies the emergence of a new connected component. The death set 𝑊𝑑 ,
conversely, includes edges whose inclusion in the network closes a loop, signaling
the termination of a cycle. When considering the temporal dynamics of a brain
network, these birth and death sets can provide invaluable insights into how network
connectivity evolves. For instance, changes in𝑊𝑏 over time can indicate alterations
in the network’s integration or segregation, while variations in𝑊𝑑 might reflect the
network’s resilience or vulnerability to perturbations.
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Fig. 2 Betti curves for one representative subject from HC and TLE obtained from the sliding
window of size 20 TRs. For each group, Betti curves for each of the 1425 sliding windows are
plotted in gray, while the average Betti curve across all sliding windows is depicted in black.

Fig. 3 Birth (top) and death (bottom) sets of the time varying correlation brain network for a
representative subject. The horizontal axis represents time point. The rs-fMRI brain networks are
mainly characterized by 1D topology (cycles).

2.2 Topological Distances between Brain Networks

Persistent bars serve as a crucial tool for visualizing the evolution of topological
features across varying filtration values (Ghrist, 2008; Topaz et al., 2015). These
features, specifically connected components and loops, exhibit distinct behaviors in
terms of their birth and death during the filtration process. In graph filtrations, we
observe that 0D topological features, or connected components, emerge when an edge
was disconnects two previously joint nodes at filtration value 𝑏 (𝑖) . The set of these
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birth values forms the 0D persistence barcode 𝐵 = {𝑏 (𝑖) } with each 𝑏 (𝑖) indicating
the birth of a new connected component (Figure 3-top). Conversely, 1D topological
features, or loops, are treated as having been born at −∞ in graph filtrations. A loop
is considered to die when a deleted edge destroys the cycle. This death is captured
at the filtration value equivalent to the weight of the edge causing the loop’s demise.
Accordingly, the 1D persistence barcode consists of points 𝐷 = {𝑑 (𝑖) }, where each
𝑑 (𝑖) marks the termination of a loop (Figure 3-bottom).

During the graph filtration, we have the unique decomposition of edge weights
into sets 𝑊𝑏 and 𝑊𝑑 , corresponding to the births of connected components and the
deaths of loops, respectively. The emergence of a new component and the closure
of a loop are mutually exclusive. With a complete graph encompassing 𝑝 nodes,
there are total 𝑞 =

𝑝 (𝑝−1)
2 edges. Within this total, 𝑞0 = 𝑝 − 1 edges are associated

with the creation of 0-cycles, equating to the number of edges in the graph’s MST.
Consequently, the remaining 𝑞1 =

(𝑝−1) (𝑝−2)
2 edge weights are attributed to the

eradication of 1-cycles. Thus, we have the following decomposition (Chung et al.,
2023; Songdechakraiwut and Chung, 2023):

Theorem 1 (Birth-death decomposition) For graph X = (𝑉, 𝑤) with the edge
weight set𝑊 = {𝑤(1) , · · · , 𝑤(𝑞) } has the unique decomposition

𝑊 = 𝐵 ∪ 𝐷, 𝐵 ∩ 𝐷 = ∅ (1)

where the birth set 𝐵 = {𝑏 (1) , 𝑏 (2) , · · · , 𝑏 (𝑞0 ) } is the collection of 0D sorted birth
values, and the death set 𝐷 = {𝑑 (1) , 𝑑 (2) , · · · , 𝑑 (𝑞1 ) } is the collection of 1D sorted
death values, with 𝑞0 = 𝑝 − 1 and 𝑞1 =

(𝑝−1) (𝑝−2)
2 . Furthermore, the birth set 𝐵

forms the 0D persistence barcode, while the death set 𝐷 forms the 1D persistence
diagram.

We quantify and compare persistent barcodes across different instances or time
points by leveraging the Wasserstein distance as a measure to compare persistent
bars. Like the majority of statistical inference and learning methods, where Eu-
clidean distance is used (Johnson, 1967; Hartigan and Wong, 1979; Lee et al., 2012),
we propose to use topological distances. The Wasserstein distance, a probabilistic
version of optimal transport, provides a meaningful way to compare two probability
distributions (Vallender, 1974; Canas and Rosasco, 2012; Berwald et al., 2018).

For distributions 𝑋 ∼ 𝑓1 and 𝑌 ∼ 𝑓2, the 𝑟-Wasserstein distance 𝐷𝑊 is defined
as:

𝑑 ( 𝑓1, 𝑓2) = (inf E|𝑋 − 𝑌 |𝑟 )1/𝑟
,

where the infimum spans all joint distributions of 𝑋 and 𝑌 with marginals 𝑓1 and
𝑓2. This distance measures the minimum expected cost to transport mass from one
distribution to another, offering a metric that satisfies key properties like positive
definiteness, symmetry, and the triangle inequality.

Given two 0D persistent bars 𝐵1 = {𝑏1
(𝑖) } and 𝐵2 = {𝑏2

(𝑖) }, we define their
empirical distributions via Dirac delta functions:
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𝑓1 (𝑥) =
1
𝑞

𝑞∑︁
𝑖=1

𝛿(𝑥 − 𝑏1
(𝑖) ), 𝑓2 (𝑥) =

1
𝑞

𝑞∑︁
𝑖=1

𝛿(𝑥 − 𝑏2
(𝑖) ).

The 2-Wasserstein distance between 𝐵1 and 𝐵2 is then given by (Chung et al., 2024a)

𝑑0 (𝐵1, 𝐵2)2 =

𝑞0∑︁
𝑖=1

(𝑏1
(𝑖) − 𝑏

2
(𝑖) )

2.

and for 1D persistent bars, the 2-Wasserstein distance 𝑑1 is similarly given as

𝑑1 (𝐷1, 𝐷2)2 =

𝑞1∑︁
𝑖=1

(𝑑1
(𝑖) − 𝑑

2
(𝑖) ),

where 𝑑1
(𝑖) , 𝑑

2
(𝑖) are the ordered death values in persistent bars 𝐷1 and 𝐷2 respec-

tively. This computational efficiency stems from the fact that for graph filtrations,
matching birth or death values align with the sorted order, simplifying the calcula-
tion. This allows the distance computation exactly in O(𝑞 log 𝑞) (Rabin et al., 2011;
Songdechakraiwut and Chung, 2023; Songdechakraiwut et al., 2021).

To account for both 0D and 1D topological differences in brain networks, we
use the sum of 0D and 1D Wasserstein distances 𝑑2 = 𝑑2

0 + 𝑑2
1 . Since it is unclear

which feature contributes the most, equal weighting of 0D and 1D features ensures
a balanced representation without bias towards either type of feature.

The passage describes a method for analyzing data through a topological phase
diagram, focusing on the categorization of subjects into different health groups based
on their topological features. Here’s a reedited version of the paragraph with a focus
on the topological phase diagram:

2.3 Topological Phase Diagram

We introduce the topological phase diagram (TPD), a graphical representation that
categorizes different states or phases of a system based on topological properties
(Figures 5). This diagram illustrates how the topological characteristics of a system
or brain network evolve across different time points or clinical conditions. Using
the birth-death decomposition, it is possible to decompose topology into 0D and
1D features. In the topological phase diagram, the 𝑥-axis represents the spread with
respect to the 0D topology, while the 𝑦-axis represents the spread with respect to the
1D topology (Chung et al., 2023).

Consider the time series of brain networks with sorted birth and death values

𝑏𝑡(1) < 𝑏
𝑡
(2) < · · · < 𝑏𝑡(𝑞0 )

𝑑𝑡(1) < 𝑑
𝑡
(2) < · · · < 𝑑𝑡(𝑞1 )
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Fig. 4 Topological embedding of digits in MINST data on the Topological Phase Diagram (TPD).
Topologically similar digits are clustered together along the diagonal direction. The embedding
itself does not have any associated clustering cost. Still the method is able to cluster them together.

for time point 𝑡, where 𝑡 ranges from 1 to 𝑇 . The embedding 𝑥- and 𝑦-coordinates
for the brain network at time point 𝑡 are then given by

𝑥𝑡 =
1
𝑞0

𝑞0∑︁
𝑖=1

𝑏𝑡(𝑖) . (2)

𝑦𝑡 =
1
𝑞1

𝑞1∑︁
𝑖=1

𝑑𝑡(𝑖) , (3)

which are the normalized cumulative birth an death values. Subsequently, the center
of the embedding is given by

𝜇𝑏 =
1
𝑇

𝑇∑︁
𝑡=1

[ 1
𝑞0

𝑞0∑︁
𝑖=1

𝑏𝑡(𝑖)

]
𝜇𝑑 =

1
𝑇

𝑇∑︁
𝑡=1

[ 1
𝑞1

𝑞1∑︁
𝑖=1

𝑑𝑡(𝑖)

]
.

Figure 6 displays TPD for 6 representative subjects. If two groups of brain net-
works are analyzed, the TPD should reveal a discernible difference in topological
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Fig. 5 Topological phase diagram (TPD) illustrating the temporal evolution of a functional brain
network’s topology for one subject over a window size of 50 TRs (40 seconds). Topological
clustering reveals three transient states, each denoted by a unique color. Temporal progression
is indicated with arrows. Overall, the network’s evolution in the TPD predominantly follows a
counterclockwise direction, although local, short-term deviations may occasionally proceed in a
clockwise manner.

spread between the groups (Figure 7). In this study, we investigated if TPD can
be effective used to characterize the time evolution of resting-state functional brain
networks and use TPD to distinguish between different health conditions.

2.4 Random Field theory on Topological Phase Diagrams

We developed a statitical inference procedure for directly analyzing a collection of
TPD. Consider points 𝑧1, · · · , 𝑧𝑛 ∈ R2 representing a topological phase diagram of
brain network X(𝑡). Their empirical distribution is given by

𝑓 (𝑧) = 1
𝑛

𝑛∑︁
𝑖=1

𝛿(𝑧 − 𝑧𝑖)
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Fig. 6 Topological phase diagram (TPD) illustrating the temporal evolution of functional brain
network topology for six representative subjects for the window size of 50 TRs (40 seconds).
Topological clustering identifies transient states, each represented by a distinct color. We determined
that 𝑘 = 3 is the optimal number of clusters to represent these states.

with the Dirac delta function 𝛿(𝑥). Note
∫
R2 𝑓 (𝑧) 𝑑𝑧 = 1, ensuring 𝑓 acts as a

probability density function. By applying Gaussian kernel smoothing with kernel
𝐾𝜎 (𝑧) = 1

2𝜋𝜎2 exp
(
− ∥𝑧 ∥2

2𝜎2

)
, we obtain the kernel density estimation (Fan and Gij-

bels, 1996):

𝐾𝜎 ∗ 𝑓 (𝑧) = 1
𝑛

𝑛∑︁
𝑖=1

𝐾𝜎 (𝑧 − 𝑧𝑖).

This process is equivalent to solving the heat diffusion equation after time 𝑡 = 𝜎2/2:

𝜕𝑔(𝑧, 𝑡)
𝜕𝑡

= Δ𝑔(𝑧, 𝑡),

with initial condition 𝑔(𝑧, 𝑡 = 0) = 𝑓 (𝑧) and Laplacian Δ.
Given the smoothed TPD for each subject, we can analyze them collectively by

computing the mean and standard deviation across subjects, which can reveal com-
mon patterns or variations across subjects. The smoothed TPD is used in performing
a statistical inference by testing the equivalence of TPD at each birth and death value
using the 𝑡-field 𝑇 (𝑥) over square 𝑆, where points of TPD are defined (Chung et al.,
2020). We are interested in determining the significance of TPD signals in square
𝑆 ⊂ R2. Since statistical test has to be done in every points in 𝑆, the multiple compar-
isons correction is needed. For continuous functional data, the random field theory
is often used (Andrade et al., 2001; Taylor and Worsley, 2007; Worlsey et al., 1995;
Worsley et al., 2004). The random field theory assumes the measurements to be a
smooth Gaussian random field. Kernel smoothing will make the data more smooth
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Fig. 7 Superimposition of TPD for a window size of 20 TRs (16 seconds) across all 50 HC and 101
TLE subjects, with each subject represented by a unique color. Consistent patterns are observable
within each population. TLE patients exhibit a much wider range of death values, suggesting that
to traverse longer trajectories, one must move more rapidly. Consequently, TLE is likely to exhibit
more fluctuating connections and disconnections, forming cycles in 1D homology. One subject in
the TLE group demonstrates definitively outlying behavior.

and Gaussian and increase the signal-to-noise ratio (Chung et al., 2005; Lerch and
Evans, 2005; Wang et al., 2010; Yushkevich et al., 2008).

Consider functional measurements 𝑔1, . . . , 𝑔𝑛 in square 𝑆. The measurements can
be modeled as

𝑔𝑖 (𝑧) = ℎ(𝑧) + 𝜖𝑖 (𝑧),

where ℎ is an unknown group-level signal, and 𝜖𝑖 is a zero-mean Gaussian random
field Worsley et al. (2004). We are interested in determining the significance of ℎ,
i.e.,

𝐻0 : ℎ(𝑧) = 0 for all 𝑧 ∈ 𝑆 vs. 𝐻1 : ℎ(𝑧) > 0 for some 𝑧 ∈ 𝑆. (4)

Note that any point 𝑝0 in 𝑆 that gives ℎ(𝑝0) > 0 is considered a signal. The hypothesis
(4) is a multiple comparisons problem for continuously indexed hypotheses over the
domain 𝑆. Subsequently, a test statistic is given by a 𝑡-field 𝑇 (𝑧) for 𝑧 ∈ 𝑆. The
resulting 𝑡-fields are given in Figures 8 and 9.

The statistical significance after multiple comparisons correction is determined by
the excursion probability 𝑃(sup𝑧∈𝑆 𝑇 (𝑧) ≥ 𝑢), which is approximated by computing
the expected Euler characteristic 𝜒 of the random excursion set 𝑆𝑢 = {𝑥 ∈ 𝑆 : 𝑇 (𝑧) >
𝑢} (Adler, 1981; Cao and Worsley, 2001; Taylor and Worsley, 2007; Worsley, 2003):

𝑃

(
sup
𝑥∈𝑆

𝑇 (𝑧) > 𝑢
)
� E𝜒(𝑆𝑢) =

2∑︁
𝑗=0

𝜇 𝑗 (𝑆)𝜌 𝑗 (𝑢),

where 𝜇 𝑗 (𝑆) is the 𝑗-th Minkowski functional (also known as Lipschitz-Killing
curvatures or intrinsic volume) of 𝑆, and 𝜌 𝑗 is the 𝑗-th Euler characteristic (EC)
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Fig. 8 Left: mean and standard deviation of smoothed TPD for window size 20 TRs = 16 seconds
with kernel bandwidth 0.01. The consistency of the pattern across groups indicates the stability
of the feature. The slight differences observed between the groups are likely to contribute to the
statistical significance in group differences. Right: 𝑡-random field (HC - TLE). After the random
field theory based multiple comparisons correction, only the red regions are statistically significant
at 0.01 level. These regions corresponds to the states 1 and 2 during the state change. There is no
signal detected in state 3.

Fig. 9 Left: mean and standard deviation of smoothed TPD for window size 50 TRs = 40 seconds
with kernel bandwidth 0.005. Right: 𝑡-random field (HC - TLE). Larger sliding window makes the
resulting density maps far smother. After the random field theory correction, Dark red and dark
blue regions are statistically significant. These regions corresponds to the states 1 and 2 during the
state change. There is no signal detected in state 3.

density of the T-field. The Minkowski functionals for square 𝑆 with side length 𝑎:

𝜇0 (𝑆) = 1, 𝜇1 (𝑆) = 2𝑎, 𝜇2 (𝑆) = 𝑎2.
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These correspond to the Euler characteristic, the half the boundary length, and the
area of the square, respectively.

The EC densities 𝜌 𝑗 (𝑢) for the T-field with 𝜈 degrees of freedom are given by:

𝜌0 (𝑢) = 1 − 𝑃(𝑇𝜈 ≤ 𝑢),

𝜌1 (𝑢) =
1

√
2𝜎2

· 1
2𝜋

(
1 + 𝑢

2

𝜈

)−(𝜈−1)/2

,

𝜌2 (𝑢) =
1

2𝜎2 · 1
(2𝜋)3/2

Γ

(
𝜈+1

2

)
(
𝜈
2
)1/2

Γ
(
𝜈
2
) 𝑢 (1 + 𝑢

2

𝜈

)−(𝜈−1)/2

.

The EC-density has the kernel bandwidth 𝜎 in the formulation so the inference
is done at a particular smoothing scale (Worsley et al., 2004; Adler, 1981; Taylor
and Worsley, 2007). The expected Euler characteristic is coded in MATLAB as
EC t square.m, which inputs the side of square 𝑎, bandwidth 𝜎 and threshold 𝑢.

2.5 Topological Clustering of State Space

We introduce a novel topological approach for estimating state spaces in dynamically
changing functional human brain networks derived from rs-fMRI. Our approach,
distinct from traditional methods that consider collections of graphs, deals with
a time series of graphs X(𝑡), capturing the evolving connectivity over time. We
employ the Wasserstein distance to cluster these time-varying brain networks into
topologically distinct states (Mi et al., 2018; Yang et al., 2020), incorporating the
temporal dimension of the data. Specifically, we aim to cluster the time series of
graphs X(1),X(2), . . . into 𝑘 clusters 𝐶 = (𝐶1, . . . , 𝐶𝑘) such that

𝑘⋃
𝑖=1
𝐶𝑖 = {X(1),X(2), . . .}, 𝐶𝑖 ∩ 𝐶 𝑗 = ∅ for 𝑖 ≠ 𝑗 .

Let 𝜇 𝑗 denote the topological cluster centroid within 𝐶 𝑗 , defined as

𝜇 𝑗 = arg min
𝑌 ∈𝐶 𝑗

∑︁
X(𝑡 ) ∈𝐶 𝑗

𝑑2 (𝑌,X(𝑡)), (5)

where 𝑑2 = 𝑑2
0+𝑑

2
1 represents the combined Wasserstein distance. The within-cluster

distance from the cluster centroid 𝜇 = (𝜇1, · · · , 𝜇𝑘) is

𝑙𝑊 (𝐶; 𝜇) =
𝑘∑︁
𝑗=1

∑︁
X(𝑡 ) ∈𝐶 𝑗

𝑑2 (X(𝑡), 𝜇 𝑗 ).
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The optimal cluster is found by minimizing within-cluster distance 𝑙𝑊 (𝐶; 𝜇) over
every possible partition of 𝐶. The proof for the local convergence is given in Chung
et al. (2023).

Similar to the 𝑘-means clustering, which only guarantees convergence to a local
minimum(Huang et al., 2020), our topological clustering algorithm does not ensure
convergence to the global minimum. The choice of initial cluster centroids can
significantly influence the results, as the algorithm might get trapped in a local
minimum and fail to reach the global minimum. To address this issue, we repeat
the algorithm multiple times with different random seeds, ultimately selecting the
run with the smallest minimum. The method is implemented in the MATLAB
function WS cluster.m, which takes a series of networks as input and outputs the
corresponding cluster labels and clustering accuracy.

2.5.1 Topological centroid

For dynamically changing functional brain networks represented as a time series
of graphs X(𝑡), we introduce an approach to identify the topological mean within
each cluster of these networks. This concept is akin to the Wasserstein barycenter
(Agueh and Carlier, 2011; Cuturi and Doucet, 2014) and the Fréchet mean (Le and
Kume, 2000; Turner et al., 2014; Zemel and Panaretos, 2019; Dubey and Müller,
2019). Unlike conventional averaging methods that focus on element-wise arithmetic
means of edge weights, our method leverages the Wasserstein distance to capture
the underlying topological features of the networks. However, this approach, while
capturing the average connectivity strength, may not accurately reflect the central
topological tendencies (Chung et al., 2023).

Given a cluster𝐶 𝑗 comprising a time series of brain networksX(𝑡 𝑗1), . . . ,X(𝑡 𝑗𝑚),
the topological centroid 𝜇 𝑗 is defined as the network that minimizes the sum of
squared Wasserstein distances to all other networks within the cluster in (5). This can
be approximated by relaxing the condition such that the centroid is not constrained
within the cluster:

𝜇 𝑗 = arg min
𝑌

𝑚∑︁
𝑘=1

𝑑2 (𝑌,X(𝑡 𝑗𝑘 )), (6)

which can be solved exactly as follows.
Consider graphs X𝑖 = (𝑉, 𝑤𝑖) with the corresponding birth-death decomposition

𝑊𝑖 = 𝐵𝑖 ∪ 𝐷𝑖 . Let 𝐵𝑖 = {𝑏𝑖(1) , · · · , 𝑏
𝑖
(𝑞0 ) } and 𝐷𝑖 = {𝑑𝑖(1) , · · · , 𝑑

𝑖
(𝑞1 ) } be sorted

birth and death sets for the 𝑖-th graph. We then define the topological addition to
amalgamate two graphs, X1 = (𝑉, 𝑤1) and X2 = (𝑉, 𝑤2), into X1 +𝑡 X2 = (𝑉, 𝑤).
The birth-death decomposition of X1 +𝑡 X2 is given by

𝐵 ∪ 𝐷 = (𝐵1 + 𝐵2) ∪ (𝐷1 +𝑊2),

where
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Fig. 10 Topological addition +𝑡 on two graphs X1 and X2. The resulting graph X1 +𝑡 X2 is
constructed by summing the matched sorted edge weights in MST (birth set colored red) and none-
MST (death set colored blue) separately. X1 +𝑡 X2 is not unique as shown in this example. The
resulting birth and death values are projected onto the MST and none-MST edges of the original
graphs. The resulting graphs (top right and bottom right) yield the identical 𝛽0 and 𝛽1 curves, thus
the topological distance cannot discriminate them and should be treated as topologically equivalent.

𝐵1 + 𝐵2 = {𝑏1
(1) + 𝑏

2
(1) , · · · , 𝑏

1
(𝑞0 ) + 𝑏

2
(𝑞0 ) }

and
𝐷1 + 𝐷2 = {𝑑1

(1) + 𝑑
2
(1) , · · · , 𝑑

1
(𝑞1 ) + 𝑑

2
(𝑞1 ) }

are element-wise addition of sorted order sets. To realize and visualize such a
graph, we need to determine the corresponding edge weight matrix 𝑤. However,
such graphs are not unique. For graphs with 𝑝 labeled nodes, the number of distinct
graphs yielding the same birth-and-death decomposition corresponds to the total
number of spanning trees. Cayley’s formula states that the total number of spanning
trees for a complete graph with 𝑝 nodes is 𝑝 (𝑝−2) (Cayley, 1878). Figure 10 illustrate
the topological addition of two graphs, where the added birth and death values are
simply projected onto the original graphs. Subsequently, we define the topological
mean as (X1 +𝑡 X2)/2, where the corresponding birth-death set is scaled by 1/2.
Then we can prove that the cluster mean 𝜇 𝑗 is given by the topological mean:

Theorem 2 The topological mean

𝜇 𝑗 =
X(𝑡 𝑗1) +𝑡 . . . +𝑡 X(𝑡 𝑗𝑚)

𝑚
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Fig. 11 Left: Connectivity matrix averaged across all time points for the subject shown in Figure
15. Averaging rs-fMRI correlation matrices over the entire duration can dilute the signal. Middle:
The conventional approach of computing the Pearson correlation across all time points to derive
a static summary. Some highly connected connections at specific times simply disapper. Right:
Topological averaging of correlation matrices across all time points. By employing birth-death
decomposition for averaging, we preserve more underlying connectivity pattern.

of all the graphs in the cluster 𝐶 𝑗 is the minimizer of

min
𝑌

𝑚∑︁
𝑘=1

𝑑2 (𝑌,X(𝑡 𝑗𝑘 )).

The proof is given in (Chung et al., 2023). The topological mean of graphs is the
minimizer with respect to the topological distance, which is analogous to the sample
mean as the minimizer of Euclidean distance. However, the topological mean of
graphs is not unique in geometric sense. It is only unique in topological sense. It
is possible that many different graphs have the identical birth-death decomposition,
and thus it may not possible to distinguish them topologically (Figure 10). Thus, we
need to establish a sort of anchor graph onto which we can project the topological
mean graph. This is implemented in the function WS project.m, which takes the
birth and death sets as inputs and projects them onto a given connectivity matrix.
The resulting connectivity matrix will maintain the same topological structure given
in the birth and death sets. Figure 11 demonstrates the performance of topological
averaging (right) against other existing approach for obtaining a static summary
network. In terms of signal retention, topological averaging far outperforms existing
methods. For topological averaging, we projected it to the Pearson correlation over
the whole time point.

2.5.2 Assigning consistent cluster labels across subjects

Let 𝑦𝑡 be the true cluster label for the brain network X(𝑡) at the 𝑡-th time point. Let �̂�𝑡
be the estimate of 𝑦𝑡 obtained from topological clustering. Define 𝑦 = (𝑦1, · · · , 𝑦𝑇 )
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and �̂� = ( �̂�1, · · · , �̂�𝑇 ). There is no direct association between the true clustering
labels 𝑦 and the predicted cluster labels �̂�, as they are independent. For 𝑘 clusters
𝐶1, · · · , 𝐶𝑘 , its permutation 𝜋(𝐶1), · · · , 𝜋(𝐶𝑘) is also a valid clustering for 𝜋 ∈ S𝑘 ,
the permutation group of order 𝑘 . There are 𝑘! possible permutations in S𝑘 (Chung
et al., 2019b). Therefore, it is crucial to obtain consistent cluster labels across subjects
for any subsequent statistical analysis across subjects. Once we identify networks
in cluster 𝐶 𝑗 , we can compute the embedding coordinates (𝜇 𝑗

𝑏
, 𝜇

𝑗

𝑑
) of the cluster

centroid of in TPD. In persistent homology, signals with longer persistence are
considered as having a more significant fleeting topological signal. The quantity
𝜇
𝑗

𝑑
− 𝜇

𝑗

𝑏
can be interpreted as a proxy for the overall persistence of the cluster.

Consequently, we relabel the cluster with the largest value of 𝜇 𝑗

𝑑
− 𝜇 𝑗

𝑏
. the lowest

cluster label, ensuring consistency in the labeling across time points and subjects.

2.6 Hodge Decomposition in Topological Phase Diagram

We explore the dynamics of topological changes over time within a Topological
Phase Diagram (TPD). Given points (𝑥1, 𝑦1), · · · , (𝑥𝑇 , 𝑦𝑇 ) in TPD, we define a
displacement vector 𝑤𝑘 at each time point 𝑘 , representing the topological change
between consecutive time points:

𝑤𝑘 = (𝑥𝑘+1 − 𝑥𝑘 , 𝑦𝑘+1 − 𝑦𝑘).

Then we obtain the vector field 𝑤 = {𝑤1, 𝑤2, · · · , 𝑤𝑇−1}, which serves as a proxy for
the underlying dynamical processes driving the topological evolution of the brain
network. We can study the properties of the vector field, such as its divergence
and curl, which provide insights into the behavior of the topological changes, such
as expansion, contraction, rotation, and shearing. For this, we obtain the smooth
representation of the vector field 𝑣(𝑧) as

𝜕𝑣(𝑧, 𝑡)
𝜕𝑡

= Δ𝑣(𝑧, 𝑡)

with initial condition 𝑣(𝑧, 𝑡 = 0) = 𝑤. Subsequently, we obtain smooth vector field 𝑣
which provides a smooth vector description of the topological changes over time.

Given a smooth vector field 𝑣(𝑧) within a square domain 𝑆, the Hodge decomposi-
tion enables the unique decomposition of the field into three orthogonal components:
an irrotational (gradient) part, a solenoidal (curl) part, and a harmonic part, expressed
as:

𝑣(𝑧) = ∇𝜙(𝑧) + ∇ × 𝜓(𝑧) + ℎ(𝑧),

where ∇𝜙(𝑧) represents the gradient of a scalar potential 𝜙(𝑧), capturing the irrota-
tional component of 𝑣(𝑧), while ∇ × 𝜓(𝑧) represents the curl of a scalar field 𝜓(𝑧),
capturing the solenoidal or divergence-free component of 𝑣(𝑧). This component
highlights the areas where the vector field exhibits rotational behavior, independent
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Fig. 12 NASA MERRA-2 wind data analyzed using the Hodge decomposition.

of any outward or inward flow as characterized by the gradient component. The har-
monic part, ℎ(𝑧), is both divergence-free and curl-free, embodying the component
of 𝑣(𝑧) that cannot be expressed as either a gradient or a curl. This part is particularly
significant in the context of closed domains where boundary conditions play a role,
and it captures the intrinsic properties of the vector field that are maintained across
the domain.

We illustrate our methodology using an intuitive example from NASA MERRA-2
dataset, a comprehensive collection of atmospheric data that offers a detailed weather
and climate data (Carvalho, 2019). We utilized the wind vector data in the dataset as
an illustration.

2.6.1 Estimation of gradient field

The gradient filed ∇𝜙(𝑧) in the coordinates 𝑧 = (𝑥, 𝑦) is given by

∇𝜙(𝑧) =
(
𝜕𝜙

𝜕𝑥
,
𝜕𝜙

𝜕𝑦

)
.

The potential 𝜙 can be estimated by minimizing the sum of squared differences
between ∇𝜙(𝑧) and 𝑣(𝑧):
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𝜙 = min
𝜙

∑︁
𝑥∈𝑆

∥∇𝜙(𝑧) − 𝑣(𝑧)∥2.

Discretize the domain 𝑆 into a finite set of points 𝑠1, 𝑠2, · · · , 𝑠𝑛. The vectorized form
of the scalar potential 𝜙 at these points is:

𝝓 =


𝜙(𝑠1)
𝜙(𝑠2)
...

𝜙(𝑠𝑛)


.

Representing the gradient operator ∇ in a discretized form involves matrices ∇𝑥

and ∇𝑦 that approximate the partial derivatives with respect to 𝑥 and 𝑦, respectively,
over grid. The vectorized form of 𝑣(𝑥) is separated into components:

v𝑥 =


𝑣𝑥 (𝑠1)
𝑣𝑥 (𝑠2)
...

𝑣𝑥 (𝑠𝑛)


, v𝑦 =


𝑣𝑦 (𝑠1)
𝑣𝑦 (𝑠2)
...

𝑣𝑦 (𝑠𝑛)


.

Then we solve the simultaneous matrix equations

∇𝑥𝝓 = v𝑥 , ∇𝑦𝝓 = v𝑦 ,

which is equivalent to solving [
∇𝑥

∇𝑦

]
𝝓 =

[
v𝑥

v𝑦

]
.

Subsequently, we obtain the least squares estimation

�̂� =

( [
∇𝑥

∇𝑦

]⊤ [
∇𝑥

∇𝑦

] )−1
[
∇𝑥

∇𝑦

]⊤ [
v𝑥

v𝑦

]
.

Once �̂� is computed, the gradient field ∇𝜙(𝑥) can be further computed, providing
an estimate of the irrotational component of 𝑣(𝑥) (Figure 13).

2.6.2 Estimation of curl and harmonic components

For the curl component ∇ × 𝜓(𝑧), which captures the solenoidal or divergence-free
aspect of 𝑣(𝑧), we find the scalar potential 𝜓(𝑧) such that ∇×𝜓(𝑧) optimally fits the
solenoidal part of 𝑣(𝑧). Let:
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Fig. 13 NASA MERRA-2 wind data analyzed using the Hodge decomposition. Left: the estimated
scalar field 𝜙 and 𝜓. The resulting gradient field ∇𝜙 and curl field ∇ × 𝜓.

𝝍 =


𝜓(𝑠1)
𝜓(𝑠2)
...

𝜓(𝑠𝑛)


.

The operation ∇ × 𝜓(𝑧) in 2D is defined as

∇ × 𝜓(𝑧) =
(
𝜕𝜓

𝜕𝑦
,−𝜕𝜓
𝜕𝑥

)
,

Then we solve for the matrix equation[
∇𝑦

−∇𝑥

]
𝝍 =

[
v𝑥

v𝑦

]
.

The least squares estimation is then given by

𝝍 =

( [
−∇𝑦

∇𝑥

]⊤ [
−∇𝑦

∇𝑥

] )−1 [
−∇𝑦

∇𝑥

]⊤ [
v𝑥

v𝑦

]
.

Once we estimate 𝝍, the estimated curl component is simply given as ∇ × 𝜓(𝑧) is
computed using:

∇ × 𝜓(𝑧) =
[
∇𝑦𝝍

−∇𝑥𝝍

]
.
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This vector field represents the solenoidal component of 𝑣(𝑥), capturing the inherent
rotational features in the original vector field (Figure 13).
ℎ(𝑥) is the harmonic component, which is both divergence- and curl-free. In a

simply connected domain, ℎ(𝑥) is typically zero unless there are boundary conditions
or other constraints. When ℎ(𝑥) is not zero, it is obtained as residual

ℎ̂(𝑥) = 𝑣(𝑥) − ∇𝜙(𝑥) − ∇ × 𝜓(𝑥).

3 Results

3.1 Data and Preprocessing

The study included 101 patients with temporal lobe epilepsy (TLE) and 50 healthy
controls, all part of Epilepsy Connectome Project (ECP) database, a collaborative
project between the Medical College of Wisconsin and the University of Wisconsin-
Madison (Hwang et al., 2020). We used 50 healthy controls (mean age 31.78 ± 10.32
years) and 101 chronic temporal lobe epilepsy (TLE) patients (mean age 40.23 ±
11.85). TLE participants were with a Full-Scale Intelligence Quotient (FSIQ) above
70, fluent in English, and without medical contraindications to MRI (Garcia-Ramos
et al., 2022). The TLE diagnosis and seizure onset side were confirmed by a board-
certified neurologist, following the International League Against Epilepsy criteria.
Exclusion criteria were lesions other than mesial temporal sclerosis and any active
infectious/autoimmune/inflammatory seizure etiology. Control participants were ex-
cluded if they had an Edinburgh Laterality Quotient under 50, were non-native En-
glish speakers, had a history of learning disabilities, brain injuries, substance abuse,
major psychiatric illnesses, were taking vasoactive drugs, or had contraindications
to MRI (Garcia-Ramos et al., 2022). All participants provided written informed con-
sent, with the study approved by the Medical College of Wisconsin’s and University.

The resting-state fMRI were collected on 3T General Electric 750 scanners at two
institutes (University of Wisconsin-Madison and Medical College of Wisconsin).
T1-weighted MRI were acquired using MPRAGE (magnetization prepared gradient
echo sequence, TR/TE = 604 ms/2.516 ms, TI = 1060.0 ms, flip angle = 8°, FOV
= 25.6 cm, 0.8 mm isotropic) (Hwang et al., 2020). Resting-state functional MRI
(rs-fMRI) were collected using SMS (simultaneous multi-slice) imaging (Moeller
et al.) (8 bands, 72 slices, TR/ TE = 802 ms/33.5 ms, flip angle = 50°, matrix = 104
. 104, FOV = 20.8 cm, voxel size 2.0 mm isotropic) and a Nova 32-channel receive
head coil. The participants were asked to fixate on a white cross at the center of a
black screen during the scans (Patriat et al., 2013).

MRIs were processed following the Human Connectome Project (HCP) minimal
processing pipelines, which are based on FreeSurfer and FSL (Glasser et al., 2013).
The T1-weighted images underwent non-linear registration to MNI space, segmenta-
tion into structures, reconstruction of cortical surfaces, and surface registration using
the ”fsaverage” template. Resting-state fMRI (rs-fMRI) images were corrected for
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spatial distortions using spin echo unwarping maps, realigned to account for subject
motion, registered to structural images, bias field corrected, normalized to a global
mean, masked, and mapped to native cortical surface space (Garcia-Ramos et al.,
2022). Additional preprocessing on rs-fMRI images was conducted using AFNI,
which included motion regression using 12 parameters, removal of signal changes in
white matter and cerebrospinal fluid, global signal regression, and band-pass filtering
(0.01–0.1 Hz) (Cox, 1996; Hwang et al., 2020).

For connectivity analysis, 360 regions from the Glasser parcellation and 19 sub-
cortical regions from FreeSurfer were used (Glasser et al., 2016; Fischl et al., 2002).
In building the Pearson correlation over a sliding window, Shirer et al. (2012) and
Leonardi and Van De Ville (2015) reported that brain states could be identified
with a window size in the range of 30–60 seconds. Allen et al. (2014) suggested a
window size of 44 seconds. Huang et al. (2020) used 43 seconds for Human Brain
Connectome Data. Chung et al. (2024b) used 40 seconds for Wisconsin Twin study.
In our study, we used two different window size: 20 TRs = 16.04 seconds and 50
TRs = 40.1 seconds. We used up to 1444 time points that are common across all
subjects. There are a total of 𝑇=1444-20+1 = 1425 sliding windows for 20 TRs
and 𝑇=1444-50+1 = 1395 sliding windows for 50 TRs. The 180 cortical regions in
Glasser’s parcellation are indexed from 1 to 180 for the left hemisphere and 181 to
360 for the right hemisphere, while the 19 subcortical regions are indexed from 361
to 379. Thus we have 1425 time varying correlation matrices of size 379 × 379 for
each subject as the input to the analyses performed in this study.

3.2 Interpretation of Topological Phase Diagram

Based on the proposed method, we embedded time varying brain network into
Topological Phase Diagrams (TPD) for sliding window of size 20TRs. We have per-
formed the Gaussian kernel smoothing on TPD to obtain their empirical probability
distributions, which are smooth enough to guarantee the application of the random
field theory. Kernel bandwidth 𝜎 = 0.01 is used. We then computed the mean and
standard deviation of TPD within each group (Figure 8-left).

HC exhibits slightly wider cumulative birth values compared to individuals with
TLE, this suggests that in HC, new components (0D topology) appear across a
broader range of filtration values. This indicates a more diverse and possibly more
dynamic change of modular structure in HC over time, where various components
emerge at different stages of graph filtration. The wider range of birth values in
HC could reflect a more heterogeneous or adaptable brain network, where different
regions or modules become connected at various thresholds, possibly allowing for
more dynamic functional integration and segregation over time.

A death value indicates the scale at which a loop disappear as the filtration
parameter increases. TLE patients show wider cumulative death values, this implies
that the cycles (1D topology) in their brain networks persist across a broader range
of filtration values before disappearing. This suggests that the brain networks of
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TLE under goes more rapid topological changes in 1D topology compared to HC
over time. These observations could be related to the underlying pathology of TLE,
where altered neural connectivity or brain network disruptions are common. These
findings align with static graphic theory metrics on rs-fMRI that demonstrate global
changes in connectivity like a decreased clustering coefficient and increased rich club
proportion, both suggestive that networks in TLE are less integrated into the global
brain networks with a more rigid structure (Struck et al., 2021; Mazrooyisebdani
et al., 2020; Liao et al., 2010; Lopes et al., 2017). In our previous study on static rs-
fMRI brain networks (Chung et al., 2023), we found TLE is far more sparse compared
to more densely connected HC. This could be due to the brain’s adaptation to chronic
epilepsy, resulting in a network that tend to fluctuate more in its loops or cycles to
maintain connections.

We formally tested the mean smoothed TPD differences shown in Figure 8 using
the random field theory in a small square domain of size 0.1 containing the signal re-
gions. The 𝑡-random field (HL - TLE) with 50+101-2 = 149 degrees of freedom was
constructed (Figure 8-right). The maximum 𝑡-statistic is 4.10 (significant at 0.0057)
while the minimum 𝑡-statistic is -2.66 (not significant). The multiple comparisons
correction was done through the proposed random field theory. Only the red regions
are statistically significant. In summary, the presence of more dynamically changing
features (0D topology) in HC could imply a more dynamically reconfigurable and
adaptable network, where subnetworks are made connected and dissolved as neces-
sary. For TLE patients, the persistence of 1D topological features (which connected
nodes might indicate a more rigid or less adaptable network structure, potentially
reflecting pathological or compensatory mechanisms.

We repeated the analysis with larger sliding window size of 50TRs with smaller
kernel bandwidth 𝜎 = 0.005 in a small square domain of size 0.1 containing the
signal regions (Figure 9). The use of a larger sliding window provides a broader tem-
poral context, potentially capturing more stable and persistent patterns in the brain’s
connectivity over time. The subtle distributional differences observed in smaller
temporal resolution of 20TRs disappeared. Still we detected statistically significant
TPD differences. The maximum 𝑡-statistic is 4.59 (significant at 0.0036) while the
minimum 𝑡-statistic is -4.57 (significance at 0.0039). The multiple comparisons
correction was done through the proposed random field theory. The maximum cu-
mulative birth and death values occur at (0.8778, 0.0998) for HC and at (0.8725,
0.0998) for TLE, suggesting a subtle difference in the persistence of connected com-
ponents between the groups. The lower maximum birth for TLE indicate a tendency
for their brain networks to maintain connected components (0D topology) for a
longer duration when observed at the larger temporal resolution. Conversely, the
close alignment in the maximum accumulated death values for both groups suggests
that the 1D topological features, such as cycles and loops, exhibit a similar degree of
persistence between HC and TLE over larger temporal resolution (50TRs) but more
rapid changes for TLE over shorter temporal resolution (20TRs).

The mean maps presented in Figures 8 and 9 demonstrate the robust nature of
TPD as a feature, with both healthy controls (HC) and temporal lobe epilepsy (TLE)
patients showing similar distribution of average cumulative birth and death values.
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Fig. 14 Ratio of within over between cluster distance for window size 20 TRs. The point of most
rapid change (𝑘=3) of ratio determines the optimal number of cluster in the elbow method. The
ratio is stable across group labels.

This similarity underscores the stability of the topological features captured by TPD,
regardless of the underlying condition.

3.3 Topological transient state space

The application of random field theory to TPD revealed two distinct signal clusters
in the 𝑡-field for window size 20 TRs. By performing topological clustering, we will
confirm that these signal regions correspond to two unique transient states within the
dynamics of resting-state fMRI connectivity (top middle in ). This relation between
the statistical findings and the topological clustering underscores the effectiveness
of our approach in capturing meaningful patterns in the temporal evolution of brain
networks.

For 𝑝=379 brain regions, we estimated 𝑝 × 𝑝 dynamically changing correlation
matrices𝐶 (𝑡) for each subject over sliding windows of size 20. Let C(𝑡) represent the
vectorization of the upper triangle of 𝐶 (𝑡) at time 𝑡 into a vector of size 𝑝(𝑝 + 1)/2.
The collection of C(𝑡) over all timepoints is then fed into topological clustering to
identify the recurring brain connectivity states in each subject. This results in the
time series of sorted birth and death sets 𝐵(𝑡) and 𝐷 (𝑡). Every birth and death sets
over all time points are then feed into topological clustering. We cluster individual
brain networks without imposing any group-level constraints (Chung et al., 2024b).
After clustering, each correlation network 𝐶 (𝑡) is assigned a discrete state indexed
with integer between 1 and 𝑘 . These discrete states serve as the foundation for
investigating the dynamic patterns of brain connectivity (Ting et al., 2018). To ensure
convergence, both topological clustering and 𝑘-means clustering were repeated 10
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Fig. 15 Topological phase diagram (TPD) illustrating the temporal evolution of functional brain
network topology for two representative subjects for the window size of 20 TRs (16 seconds).
Despite the lack of synchronization in rs-fMRI connectivity across individuals, the phase diagram
reveals a consistent pattern. Topological clustering identifies transient states, each represented by a
distinct color. We determined that 𝑘 = 3 is the optimal number of clusters to represent these states.
The threds-like patterns observed to the left of the clusters are likely to be topological noise, which
is not observed with longer window sizes.

times with different initial centroids, and the best result (the one with the smallest
within-cluster distance) is reported.

For each value of 𝑘 , we computed the ratio of the within-cluster to between-
cluster distances. The ratio assesses the goodness-of-fit of the cluster model. The
optimal number of clusters 𝑘 was determined using the elbow method (Allen et al.,
2014; Rashid et al., 2014; Ting et al., 2018; Huang et al., 2020). The elbow method
identifies the point where there is the most significant change in the ratio’s slope,
which corresponds to 𝑘 = 3 in our study (Figure 14). Compared to standard 𝑘-
means clustering, topological clustering achieves up to a six-fold reduction in the
ratio, indicating a superior model fit over 𝑘-means (Chung et al., 2024b). Figure 14
illustrates the results of this ratio comparison over different 𝑘 . The TPD is color-
coded according to cluster labels, revealing two dominating states, while the third
state is likely a noisy intermediate state. Figures 15 and Figure 6 displays the result
for 20 and 50 TRs respectively. Once the network reaches a state, it tends to remain
in the same state for an extended period resulting in the observed clustering pattern.
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Fig. 16 The estimated scalar functions 𝜙 and 𝜓 for two representative subjects, for window size
20 TRs, are shown. Colored dots represent rs-fMRI brain networks at each sliding window, totaling
1425 networks per subject. Arrows denote the topological gradient 𝑤𝑘 derived from TPD.

3.4 Hodge decomposition

We further explored if the Hodge decomposition can be used to quantify the direction
or flow information in TPD. Figure 16 displays the estimated scalar fields 𝜙 and 𝜓
for two regenerative subjects for smaller window of size 20 TRs. Even though
the patterns of scalar fields 𝜙 and 𝜓 are varied, they show consist pattern of one
dominant positive and one dominant negative domains that split TPD. All three states
(colored differently) are mostly observed in regions of positive 𝜙, while regions
of negative 𝜓 might correspond to transitional or less active brain states. Thus,
we computed the mean scalar fields within each group (Figure 17) and tested for
statistical significance. We observed consistent population specific patterns having
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Fig. 17 The mean estimated scalar functions 𝜙 and 𝜓 for both the HC and TLE groups, computed
over sliding windows of size 20 TRs. A consistent within-group pattern is observed, characterized
by two distinct modes of positive and negative domains in the scalar fields 𝜙 and 𝜓. The one-sample
𝑡-statistic in each group (2nd and 4th columns) shows significant, consistent population-level signals
detected mainly in two clearly separable regions, indicating the existence of two major topological
states. However, no statistically significant regions are detected through the two-sample 𝑡-statistic
between the mean scalar fields of the groups.

two distinct modes of positive and negative domains in the scalar fields in each group.
The one-sample 𝑡-statistic in each group (2nd and 4th columns) shows significant,
consistent population-level signals detected mainly in two clearly separable regions,
indicating the existence of two major topological states. However, in the two sample
𝑡-test comparing the groups, we could not find any region in TPD that is statistically
significant at 0.01 level after the multiple comparison corrections using the random
field theory.

3.5 Time-frequency analysis of topological phase diagram

To examine the dynamical behavior of topological features over time, we applied a
time-frequency analysis to the evolution of cumulative birth and death values using
the Short-Time Fourier Transform (STFT) Durak and Arikan (2003). This method
partitions the time series data into shorter segments of equal length and computes
the Fourier Transform separately on each segment. This approach captures both
temporal and frequency information, allowing us to analyze the changes in network
topology across different scales and moments using the TPD trajectories. The STFT
was computed from the time series of both the birth and death sets. The STFT is
mathematically represented as:

𝑋 (𝜏, 𝜔) =
∫

𝑥𝑡𝑤(𝑡 − 𝜏)𝑒− 𝑗𝜔𝑡𝑑𝑡
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Fig. 18 Spectrogram for a representative HC (left) and TLE (right) subject. The power spectral
density (PSD) levels indicate the intensity of topological signals across the frequency spectrum. The
consistently high PSD in the low-frequency range (0-0.03 Hz) for 0D homology suggests a persistent
presence of a tree-like backbone (maximum spanning tree), which remains stable throughout the
observation period. In contrast, the 1D homology exhibits more variable signals, corresponding to
the dynamic formation and dissolution of cycles as nodes within the tree connect or disconnect.
This variability underscores the transient nature of higher-dimensional topological structures in the
brain networks.

where 𝑥𝑡 is the time series of the normalized cumulative birth values used in plotting
the 𝑥-coordinates of TPD in (2). 𝑤(𝑡) is the window function, 𝜏 represents the time
shift, and 𝜔 is the angular frequency. We can compute STFT similarly for death
values using 𝑦𝑡 in (3). The power spectral density (PSD) is then calculated from the
STFT to quantify the power of frequencies present in the birth and death sequences
over time:

𝑃(𝜏, 𝜔) = |𝑋 (𝜏, 𝜔) |2

The PSD is subsequently converted to a logarithmic scale (decibels, dB) to enhance
the dynamic range and visual interpretation:

𝑃𝑑𝐵 (𝜏, 𝜔) = 10 log10 𝑃(𝜏, 𝜔).

For the time-frequency analysis, we used time varying correlation matrix obtained
from the sliding window of size 50TRs. We chose parameters for the STFT that bal-
ance time and frequency resolution, which are critical for capturing the relevant
dynamics in the data. The sampling rate given as 1/0.802 = 1.247 Hz, correspond-
ing to the inverse of the sampling interval of the rs-fMRI data. This rate defines the
temporal granularity at which the Fourier Transform is applied. We used the window
size set to 10% of the total duration of the time series of birth and death values. This
window size is selected to provide a reasonable trade-off between time and frequency
resolution, allowing us to detect changes over a meaningful time scale without blur-
ring important features. Then we sliced the window one time step at a time ensuring
high resolution in the time-frequency representation by providing a smooth transi-
tion between consecutive windows. The results are visualized using spectrograms
that plot the time-varying frequency content of TPD for two representative subjects
(Figure 18).

We conducted a group-level statistical analysis on the spectrograms. Tradition-
ally, it has been challenging to directly compare time-varying rs-fMRI connectivity
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Fig. 19 Mean spectrogram for HC (top left) and TLE (top right) groups. The consistently high PSD
in the low-frequency range (0-0.02 Hz) for 0D homology suggests a persistent presence of a tree-
like backbone (maximum spanning tree), which remains stable throughout time in both groups. In
contrast, the 1D homology exhibits more variable signals, corresponding to the dynamic formation
and dissolution of cycles as nodes within the tree connect or disconnect. Thus the mean PSD of 1D
homology is weaker in the low-frequency range compared to 0D homology. Bottom: Two sample
𝑡-statistic at each time and frequency. HC shows stronger PDS in 0D homology indicating the
backbone of normal control is more stable and consistent over time. TLE shows stronger PDS in
1D homology indicating more dynamic changes of connections that form or destroys cycles.

matrices at identical time points across subjects due to lack of synchronization in
neural activity patterns. Our approach addresses this challenge by focusing on the un-
derlying topological structures rather than precise temporal alignment, allowing for
a comparison that bypasses synchronization issues. We computed group mean spec-
trograms (Figure 19-top). For 0D topology, the frequency bands between 0-0.02Hz
exhibited highly consistent activity across different subjects, suggesting common
stable patterns of maximum spanning tree over time. These stable frequencies likely
correspond to fundamental underlying backbone of brain network that are preserved
across individuals and over time. For 1D topology, the consistently observed fre-
quency bands between 0-0.02Hz correspond to the birth and death of cycles, which
are formed when nodes in the underlying 0D structure (tree) are connected or dis-
connected. These transitions manifest as the transient topological changes observed
in our previous state space modeling.
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The statistical significance of differences in group means was determined using
a two-sample 𝑡-test under the assumption of equal variances. Given the discrete
sampling over the frequency domain, we could not apply the random field theory.
Instead, we utilized the online permutation testing to assess significance (Chung
et al., 2019b). Any regions showing dark blue or dark red are statistically significant
below the 0.01 level. There were numerous statistically significant time points in the
frequency range 0-0.02Hz for 0D homology (underlying MST), indicating that the
dynamics of 0D homology is significant discriminating factor between groups. Still
the underlying backbone of brain network is fairly stable across subjects and groups
in the temporal resolution of 50 seconds (corresponding to 0.02Hz). Much higher
PSD for HC implies that brain networks of HC is more dynamically changing in the
underlying MST compared to more rigid backbone of TLE which is less changing
over time.

In contrast, the group difference in 1D homology is not as significant as 0D ho-
mology. However, we still observed that PSD is stronger for TLE in the 0-0.02Hz
range for 1D homology, indicating more frequent and pronounced topological trans-
formations in TLE patients compared to HC. The brain network of TLE is more
dynamically connecting and disconnecting edges between the nodes of the MST that
create or destroy cycles. This suggests that TLE is associated with more dynamic
alterations in network cycles, potentially reflecting compensatory mechanisms or
heightened neural plasticity in response to rigidity in the underlying backbone of
brain network.

3.5.1 Relating general intelligence to topology

Temporal lobe epilepsy (TLE) is a neurological condition where seizures primarily
originate in the temporal lobes of the brain, which are crucial for processing sen-
sory input and are important in memory, speech, and visual recognition processing
(Khalife et al., 2022; Rzezak et al., 2017). Thus, TLE can affect various cognitive
functions. Since the temporal lobes play a key role in memory formation and re-
trieval, individuals with TLE often experience memory problems. The left temporal
lobe is particularly important for language. Damage or disruption in this area due
to epilepsy can affect language comprehension and production, skills that are often
measured in IQ tests. While the frontal lobes are more commonly associated with
executive functions, seizures in the temporal lobe can also impact these higher-order
cognitive processes due to the interconnectedness of neural pathways. TLE can in-
fluence mood and behavior, which indirectly might affect cognitive performance.
Depression and anxiety are common in individuals with epilepsy and can impair
cognitive function and overall performance on tasks that measure aspects of the
g-factor.

Thus, we investigated if g-factor is related to the over all dynamics of the topo-
logical changes in brain networks (Johnson et al., 2008). The general intelligence or
g-factor represents the common skills and cognitive abilities that underpin a wide
range of intellectual tasks. General intelligence is thought to reflect a common cog-



Topological Embedding of Human Brain Networks 33

Fig. 20 Correlation of power spectral density (PSD) with g-factor across 0D and 1D homological
features at each time and frequency. The 0D homology correlations with the g-factor do not
significantly differentiate between the groups. In contrast, the 1D homology correlations with
the g-factor show significant differences between the groups. For healthy controls (HC), the 1D
topology is predominantly negatively correlated with the g-factor, suggesting that fewer dynamic
changes in connectivity are associated with higher cognitive function. This implies that a more
stable maximum spanning tree (MST) suffices for efficient information transfer in HC brains. On
the other hand, in temporal lobe epilepsy (TLE) subjects, the 1D topology is mostly positively
correlated with the g-factor, indicating that higher cognitive function is associated with increased
dynamic connectivity, possibly as a compensatory mechanism for a less flexible backbone network.

nitive basis for all mental activities. For instance, individuals who perform well on
a verbal test are also likely to perform well on other cognitive tasks, suggesting
the presence of a general intelligence that affects all cognitive abilities. The g fac-
tor is a strong predictor of academic and occupational success, more so than any
specific ability. It’s used in educational and psychological settings to help predict
performance across a range of activities and environments. Factor analysis was used
to examine the data from multiple cognitive tests like the WASI Vocabulary and
Block Design tests among others (Irby and Floyd, 2013), to determine if they can be
explained largely or entirely by a single common factor, which would be evidence
supporting the existence of g. By standardizing these scores (mean of 0, standard
deviation 1), we ensured that the results are normalized, making it easier to compare
individuals regardless of the original scale of the measures used.

We analyzed the correlation between the power spectral density (PSD) at each
time and frequency with the g-factor in two groups: 34 HC and 94 subjects with TLE.
The results, depicted in Figure 20, show correlations thresholded at ±0.4 for clearer
visualization. We used the correlation differences between the groups in determining
statistical significance between the groups using the online permutation test (Chung
et al., 2019b). It is unclear if the correlation of 0D topology with the g-factor is
discriminative enough between the groups. However, the correlation of 1D topology
with the g-factor shows significant group differences and trends. For the HC group,
the correlation between the 1D topological features and the g-factor is predominantly
negative. This suggests that higher cognitive ability is associated with fewer dynamic
changes in 1D topology. Specifically, a more intelligent brain may not necessarily
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Fig. 21 Average correlation brain networks for 50 healthy controls (HC) and 101 temporal lobe
epilepsy (TLE) patients, overlaid on the gray matter boundary of the MNI template. The network of
TLE patients appears notably sparser than that of HCs. This static summary significantly simplifies
the data, potentially overlooking more complex differential signals that manifest over time. There-
fore, we have partitioned the network into 0D and 1D homologies. Dark red edges represent the
maximum spanning tree (MST), which characterizes the 0D homology. The relative sparsity of the
TLE network arises not from the 0D homology but rather from the 1D homology, which involves
non-MST edges forming cycles. The dynamic nature of the TLE brain network is thus characterized
by fluctuations in non-MST edges that significantly differ from those observed in HC.

exhibit increased connectivity between the nodes in the backbone network. This
implies that the maximal spanning tree (MST) of the brain network is efficient in
information transmission, and additional connections beyond this backbone may
be redundant and unnecessary. Conversely, in the TLE group, the 1D topology
shows a predominantly positive correlation with the g-factor. This indicates that for
individuals with TLE, higher cognitive function is associated with more frequent
changes in connectivity. The backbone of the TLE brain network is less dynamic
and more rigid, which may necessitate increased connectivity and disconnection to
compensate for the insufficiencies in the backbone structure.

In summary, the correlation of 1D topology with the g-factor differentiates be-
tween HC and TLE groups. For HC, cognitive efficiency seems to rely on a stable
backbone network with minimal additional connections, whereas in TLE, cognitive
function appears to be supported by a more dynamic and compensatory connectivity
pattern. This highlights the contrasting network dynamics in HC and TLE, with po-
tential implications for understanding the neural mechanisms underlying cognitive
function in these populations.
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Fig. 22 Left: Topological phase diagram of 151 subjects using the Pearson correlation matrix per
subject as input. Green circles are HC and yellow circles are TLE. The blue square is the topological
mean of HC while the red square is the topological mean of TLE. The horizontal axis represents
0D topology (connected components) through birth values while the vertical axis represents 1D
topology (circles) through death values. The embedding shows that the topological separation in
static networks is mainly through 0D topology. Right: Embedding through graph theory features
global efficiency at vertical and Q-modularity at horizontal axes.

4 Conclusion & Discussion

In our previous study focusing on the static summary of brain networks at rest
(Chung et al., 2023), we observed that networks associated with temporal lobe
epilepsy (TLE) were sparser compared to those of healthy controls (HC) (Fig 21).
In that study, we calculated pairwise Pearson correlations between brain regions
over all time points for each subject, using static summary connectivity to quantify
group differences between TLE and HC. However, this approach, which collapses
the entire time series into a single connectivity matrix, may oversimplify the data,
failing to capture potential dynamic signals present throughout the time points. If we
apply the proposed Topological Phase Diagram (TPD) to static Pearson correlation
matrices, we obtain Figure 22. Here, the topological group means (represented by
a blue square for HC and a red square for TLE) exhibit significant separation in
0D topology. This simplification correlates well with existing graph theory features
such as global efficiency and Q-modularity, yet it does not provide much insight into
the dynamics of network changes (Garcia-Ramos et al., 2022; Newman and Girvan,
2004).

In our current method, we decompose the entire time series of networks into
disjoint 0D and 1D topological components. This decomposition facilitates the em-
bedding of the entire evolution of brain networks into a visually interpretable 2D
plane via the Topological Phase Diagram (TPD). Through various analyses con-
ducted on the TPD, we have characterized the dynamics of the TLE brain network
in contrast to that of HC.
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The maximum spanning tree (MST), which characterizes 0D homology, demon-
strates remarkable stability in both healthy controls (HC) and temporal lobe epilepsy
(TLE) patients over extended periods. This stability suggests that the primary con-
nectivity pathways, as represented by the MST, are only subtly affected by epilepsy.
This could indicate that the fundamental organizational principles of brain networks
remain resilient despite the alterations associated with TLE. Further investigation
is needed to determine if the observed stability of the MST, serving as a backbone
for dynamic changes, is related to structural connectivity, which remains consistent
over time. However, subtle fluctuations in the MST can still differentiate between the
groups within shorter periods. HC exhibits more dynamic changes in the underlying
backbone network compared to TLE. TLE seems more rigid and less flexible in the
backbone network.

The group differences are primarily characterized by dynamic changes in edges
that are not part of the MST (0D topology). The connection or disconnection of
these edges leads to the creation or destruction of cycles, thereby altering the 1D
topology we observe. The cyclic changes that differentiate the groups are more
pronounced in longer periods of time, but are less distinct at shorter time scales. These
complex dynamic changes are driving the topological state changes we observe. Brain
networks of TLE seems fluctuate more in 1D topology as possible compensation
mechanism for less fluctuations in 0D topology.

In healthy individuals with higher cognitive ability, the brain exhibits less fluc-
tuation in 1D topology. The existing backbone network, represented by the MST,
appears sufficient to convey all necessary information, reducing the need for ad-
ditional redundant connections through 1D topology. This contrasts with findings
in individuals with temporal lobe epilepsy (TLE), where the brain shows greater
fluctuation in 1D topology. TLE seems to affect the underlying backbone network
(0D topology), making it less dynamic and more rigid. To compensate for the limited
information flow in such a constrained backbone network, TLE appears to introduce
more dynamic fluctuations in 1D topology, creating redundant connections. Further
investigation is needed to understand these divergent dynamics, which seem to work
in opposite directions in TLE.

In our exploration of the Hodge decomposition, we noticed that the two prominent
states predominantly reside within the positive 𝜙 and negative 𝜓 domains. This ob-
servation offers an intriguing avenue for refining state space models by incorporating
constraints based on these domains. The transition probability 𝑃 from brain network
X𝑡 having state 𝑖 to brain network X𝑡+1 having state 𝑗 can be influenced by the scalar
fields 𝜙 and 𝜓 as follows:

𝑃(𝑋𝑡+1 = 𝑗 |𝑋𝑡 = 𝑖, 𝜙, 𝜓) =
{
𝑝𝑖 𝑗 , if 𝜙 > 0 and 𝜓 < 0,
0, otherwise,

with
∑3

𝑗=1 𝑝𝑖 𝑗 = 1. The conditions 𝜙 > 0 and 𝜓 < 0 act as constraints that can
modulate the transition probabilities based on the observed Hodge decompostion.
While we did not delve into this aspect in the current study, it presents a compelling
direction for future research.
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Y. Zemel and V.M. Panaretos. Fréchet means and procrustes analysis in Wasserstein
space. Bernoulli, 25:932–976, 2019.


	Topological Embedding of Human Brain Networks with Applications to Dynamics of Temporal Lobe Epilepsy
	Moo K. Chung, Ji Bi Che, Veena A. Nair, Camille Garcia Ramos, Jedidiah Ray Mathis, Vivek Prabhakaran, Elizabeth Meyerand, Bruce P. Hermann, Jeffrey R. Binder, Aaron F. Struck
	Introduction
	Methods
	Preliminary: Graph filtrations
	Topological Distances between Brain Networks
	Topological Phase Diagram
	Random Field theory on Topological Phase Diagrams
	Topological Clustering of State Space 
	Hodge Decomposition in Topological Phase Diagram

	Results
	Data and Preprocessing
	Interpretation of Topological Phase Diagram
	Topological transient state space
	Hodge decomposition
	Time-frequency analysis of topological phase diagram

	Conclusion & Discussion
	Ethics statement
	Data availability statement
	Acknowledgements
	References
	References



