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ABSTRACT: Here, we report the intramolecular Heck cross-coupling of 1,3-dienylphosphonates, affording unique and
regioselective access to unprecedented benzofused phostone and phostam derivatives. The reactions proceeded under operationally

simple and mild conditions with a wide substrate scope.

1. INTRODUCTION

Phosphorus heterocycles continue to receive widespread
attention due to their wide range of applications in the
agrochemical, pharmaceutical, and material industries."?
Phostones, phostines, and phostams, which formally consist
of 1,2-oxaphosphaheterocycle and 1,2-azaphosphaheterocycle
2-oxide derivatives, are the phosphorus analogues of lactones
and lactams and thus constitute an important subclass of
phosphorus-containing heterocyclic compounds with wide-
spread applications in both medicinal and material science.”
The sizes of these O,P- and N,P-heterocycles extend generally
from four to nine members. However, five-membered 1,2-
azaphosphaheterocycles (y-phostams) and oxaphosphahetero-
cycles, such as 1,2-oxaphospholanes and 1,2-oxaphospholes,
also called y-phostones and y-phostines,” as well as their
analogous six-membered §-phostones” and §-phostines,”® are
the most studied due to their biological interest. Indeed, they
are crucial structural motifs of many biologically active
compounds serving as antagonists of lysophosphatidic acid
receptors,” inhibitors of autotaxin and tumor cell metastasis,"’
antibiotics,"' anti-inflammatory agents,12 and antitumor agents
against human tumor cell lines such as glioblastoma, melanoma
and pancreatic cancer,’”” antioxidant,'* and inhibitors of
acetylcholinesterase, protein tyrosine phosphatase, and pan-
creatic cholesterol esterase'” (Figure 1). Of particular interest
are carbohydrate-based phostones and phostines, known as
phosphonosugars, which exhibit interesting biological activities
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due to their potential to serve as carbohydrate mimics'®

(Figure 1, phostine PST3.1a).

Numerous methodologies for the synthesis of phostones,
phostines, and phostams have been developed over the past
two decades. Among the most commonly applied strategies are
those involving cyclization and annulation reactions via ring-
closing olefin metathesis (RCM) and transition metal-
catalyzed oxidative cyclizations, which are the most reported
3HSOTIAINT Degpite the diversity of these
synthetic methods, there is an ongoing search for new and
efficient approaches to other varieties of these valuable
heterocyclic scaffolds through alternative modern synthetic
processes.

With this in mind, and motivated by the aforementioned
biological importance of these 1,2-aza/oxaphospha hetero-
cycles, and in continuation of our interest in developing

in the literature.

efficient protocols for the synthesis of novel heterocyclic
systems,'® we now report the first intramolecular Heck cross-
coupling on 1,3-dienylphosphonates, affording unique and

Received: July 17, 2024

Revised: ~ October 10, 2024
Accepted: October 16, 2024
Published: October 23, 2024

https://doi.org/10.1021/acsomega.4c06616
ACS Omega 2024, 9, 4454244548


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hamdi+Sanaa"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Soufiane+Touil"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Muriel+Durandetti"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ali+Samarat"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.4c06616&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06616?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06616?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06616?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06616?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06616?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06616?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06616?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06616?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/9/44?ref=pdf
https://pubs.acs.org/toc/acsodf/9/44?ref=pdf
https://pubs.acs.org/toc/acsodf/9/44?ref=pdf
https://pubs.acs.org/toc/acsodf/9/44?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.4c06616?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

ACS Omega

http://pubs.

acs.org/journal/acsodf

O
O )J\
O3/ 0" >R
MeO™
R = Cy5H3q, Cq7H33

antagonists of lysophosphatidic

—Ph

HN
o /

/o ’ CO,R

OEt R = Me, Et

acid receptors, inhibitors of autotaxin antibiotic anti-inflammatory agents
and tumor cell metastasis.
N\N (@]
(o}
NEt W Ph Eto\\;\3~NH
2 HN B
SH \
(¢}
/
/
gy R=Me, Et 07 "NH,
melanoma antitumor anti-pancreatic cancer agent antioxidant /
antitumorB
o
O. Bn
o/
(o]
e
HO™ "R
/\\ \
Me0,C EtC %
Acetylcholinesterase tyrosine phosphatase pancreatic cholesterol  C\ phostine PST3.1a

inhibitor inhibitor

antiglioblastoma properties
both in vitro and in vivo

esterase inhibitor

Figure 1. Examples of biollogically active molecules containing 1,2-oxaphospholane 2-oxide, 1,2-azaphospholine 2-oxide, 1,2-oxaphosphinine, and

1,2-oxaphosphinine units.

Scheme 1. Synthesis of Ethyl(2-Iodobenzyl)Buta-1,3-Dienylphosphonate Derivatives 3a-e

R! o] H(S equiv.) R! ©/\ ‘©\/\/\ o)
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regioselective access to unprecedented benzofused phostone
and phostam derivatives.

2. RESULTS AND DISCUSSION

We recently reported a two-step protocol for the substitution
reactions at the phosphorus atom of 1,3-dienylphosphonates
through chlorination of the phosphonate group, followed by
amination or thiolation of the phosphonochloridate inter-
mediates.'” We reasoned that it would be interesting to apply
this methodology to 2-iodobenzyl alcohol, 2-iodophenols, and
2-iodoanilines as nucleophiles to access the corresponding (2-
iodobenzyl)buta-1,3-dienylphosphonates, (2-iodophenyl)buta-
1,3-dienylphosphonates, and N-(2-iodophenyl)-P-buta-1,3-di-
enylphosphonamidates, which could undergo cyclization via an
intramolecular Heck coupling reaction to access the target
benzofused phostone and phostam derivatives. While the Heck
reaction has long been known in its intermolecular version,?’
the extension to the intramolecular process is less widespread
but it allows the formation of useful heterocycles,”" and for our
part, we have already developed a base-free intramolecular

Heck-type coupling catalyzed by a nickel complex, enabling us
to obtain benzofurans or indole-type cores. This process has
been extended to trisubstituted olefins to construct an ACE
ring system of morphine with an all-carbon quaternary center
at a ring junction.”” Based on this expertise, we decided to
evaluate this coupling process with dienylphosphonates. We
first started with the synthesis of phosphonochloridate
intermediates 2, which were prepared from 1E,3E-dienyl-
phosphonates 1, in excellent yields, using oxalyl chloride as the
chlorinating agent.'” Subsequent selective substitution at the
phosphorus atom of 1,3-dienylphosphonochloridates 2 by 2-
iodobenzyl alcohol was carried out under mild conditions in
the presence of triethylamine in toluene as solvent, providing
the corresponding ethyl(2-iodobenzyl)buta-1,3-dienylphosph-
onate derivatives 3a—d in good yields. Gratifyingly, this
process can also convert the sterically crowded diethyl-
(hydroxy(2-iodophenyl)methyl)-phosphonate and ethyl(4-
phenylbutadienyl)phosphonochloridate 2a to the desired
product 3e in moderate yield (Scheme 1).
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Scheme 2. Synthesis of Ethyl(2-lodophenyl)Buta-1,3-Dienylphosphonate Derivatives 4a—h

2 I

X
OH

Et3N (2 equiv.)
toluene, r.t.
2h

2a-d

R'=H,R?=H, 4a, 61%
R'=H, R? = Me, 4b, 84%
R'=H,R2=F, 4c, 81%

R' = p-OMe, R? = H, 4d, 60%
R' = p-OMe, R? = Me, 4e, 86%
R' = p-OMe, R2 = F, 4f, 86%
R' = p-NO,, R? = H, 4g, 69%
R'=0-NO,, R?=H, 4h, 67%

To expand the scope of the process, the reaction of 2-
iodophenol derivatives as nucleophiles with phosphonochlor-
idates 2 was examined. We found that 2-iodophenol derivatives
react smoothly with phosphonochloridates 2, in the same
conditions, to afford the expected ethyl(2-iodophenyl)buta-
1,3-dienylphosphonate derivatives 4a—h in good yields
(Scheme 2).

When we examined the reactivity of 2-iodoanilines, the
formation of the corresponding phosphoramides § was
incomplete when using Et;N (2 equiv) in toluene at room
temperature. However, switching the base to MeLi afforded
the target N-(2-iodophenyl)-P-buta-1,3-dienylphosphonami-
dates Sa—d in satisfactory yields (Scheme 3).

Scheme 3. Synthesis of 1,3-Dienylphosphonamidate
Derivatives Sa-d
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In the second part of this work, we focused our efforts on
using precursors 3, 4, and S5 as building blocks for the
construction of the target benzofused phostone and phostam
derivatives through intramolecular Heck cross-coupling, which
is well recognized as a powerful tool for Csp*-Csp® bond
formation, particularly, in its intermolecular variant, which has

found widespread application for the assembly of natural
products and other molecules containing complex ring
systems.”">* To this end, we took precursor 3a as a model
substrate for optimization of the reaction conditions. The
major challenge in such intramolecular Heck reactions is the
lack of regioselectivity.”ﬂ23 In fact, in our case, the cyclization
may thus generate either the expected six-membered
oxaphosphinine 6a resulting from a 6-exo-trig process or the
seven-membered oxaphosphepine 6a’ regioisomer obtained
according to a 7-endo-trig ring closure, despite its rarity.””**
The reactions were studied under different conditions, such as
the palladium source, temperature, reaction time, and various
bases and solvents. The results of these comparative experi-
ments are summarized in Table 1. First, the reaction was
experimented without PPh; ligand using 10 mol % of
Pd(PPh;), in the presence of potassium carbonate as the
base in toluene at 100 °C for 12 h. In this case, the starting
dienylphosphonate 3a remained unchanged (Table 1, entry 1).
When palladium trifluoroacetate (Pd(TFA), 10 mol %) was
used with triphenylphosphine ligand (20 mol %) in the
presence of K,CO; in toluene at 80 °C for 12 h, low
conversion of 3a to the expected oxaphosphinine 6a was
observed, accompanied by the seven-membered regioisomer
6a’, while the major amount of the starting material remained
unconsumed (Table 1, entry 2). Increasing the temperature to
100 °C with a longer reaction time led to a higher conversion
of dienylphosphonate 3a but, unfortunately, to less regiose-
lectivity (Table 1, entry 3). In order to improve the
regioselectivity of the process, we then tested PdCl, (10 mol
%) as a palladium source in the presence of PPhy and K,CO,

Table 1. Optimization of the Reaction Conditions”
0
[Pd] cat., PPh3 (mol%)

Ph
\/\/\P\I‘OEt
|

(0]
-0

base (2 equiv.), solvent,

Entry Palladium source (mol %) PPh; (mol %)

1 Pd(PPh,), (10 mol %) None

2 Pd(TFA),(10 mol %) 20 mol %
3 Pd(TFA),(10 mol %) 20 mol %
4 PdCL,(10 mol %) 20 mol %
S Pd(OAc), (10 mol %) 20 mol %
6 Pd(OAc), (5 mol %) 10 mol %
7 Pd(OAc), (10 mol %) 20 mol %
8 Pd(OAc), (10 mol %) 20 mol %
9 Pd(OAc), (10 mol %) 20 mol %
10 Pd(OAc), (10 mol %) 20 mol %
11 Pd(OAc), (10 mol %) 20 mol %

PR\ N Q‘QOEt Pho é)/OEt
o} + o)
T
6a 6a’

Base Solvent T°C/Time Ratio(%)b 3a/6a/6a’
K,CO;4 toluene 100 °C/12 h 100/0/0
K,CO, toluene 80 °C/12 h 40/35/25
K,CO;, toluene 100 °C/16 h 10/45/45
K,CO; toluene 100 °C/12 h 10/60/30
K,CO,4 toluene 100 °C/12 h 0/100(82)¢/0
K,CO;4 toluene 100 °C/12 h 70/30/0
Et;N toluene 100 °C/12 h 0/100/0
iPr,NH toluene 100 °C/12 h 0/100/0
Ag,CO; toluene 100 °C/12 h 0/100/0
K,CO, MeCN 100 °C/12 h 0/100/0¢
K,CO;4 DMEF 100 °C/12 h 0/100/0

“Reaction conditions: 3a (0.2 mmol), [Pd] (0.02 mmol), PPh; (0.04 mml), base (0.4 mmol), solvent (3 mL). “Determined by 3'P NMR on the

crude. “Tsolated yield. “Reaction performed in sealed tube.

44544

https://doi.org/10.1021/acsomega.4c06616
ACS Omega 2024, 9, 44542—44548


https://pubs.acs.org/doi/10.1021/acsomega.4c06616?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06616?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06616?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06616?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06616?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06616?fig=tbl1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c06616?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega

http://pubs.acs.org/journal/acsodf

Scheme 4. Synthesis of 1,4-Dihydrobenzo[d][1,2]Oxaphosphninine 3-Oxide Derivatives 6a-e

Pd(0AC), (10 mol%), PPhs (20 mol%)

1
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) K,COj3 (2 equiv.), Toluene, 100°C

3a-e
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Scheme S. Synthesis of Benzo[d][1,2]Oxaphosphole 2-Oxide Derivatives 7a—h
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K,COj3 (2 equiv.), Toluene, 100°C

7 (73%)

Q OoEt

(P

in toluene at 100 °C for 12 h. Although complete conversion
could not be reached, we slightly improved the regioselectivity
of the reaction with a better 6a/6a’ ratio of 2/1 (Table 1, entry
4). Gratifyingly, upon switching to Pd(OAc), (10 mol %) as
the catalyst, in the presence of 20 mol % of PPh,, the
conversion of 3a to 100% with total regioselectivity
dramatically improved in favor the oxaphosphinine 3-oxide
derivative 6a (82% isolated yield), and no trace of the
competitive seven-membered regioisomer 6a’ could be
observed (Table 1, entry S). However, by decreasing the
amount of Pd(OAc), to S mol % only the expected benzofused
oxaphosphinine 3-oxide derivative 6a was produced during the
cyclization process, but lower conversion was observed (Table
1, entry 6).

It should be noted that the reaction also showed complete
stereoselectivity with the exclusive formation of the E,E-6a
isomer. The E configuration of the newly generated C=C
double bond, after intramolecular Heck coupling, was
unambiguously established from the NMR data based on the

Tup and ¥Jcp coupling constants values (14.4 and 21.3 Hg,
respectively), which indicate, according to some literature
data,”® that the vinylic proton is cis to the phosphorus atom
and that the benzylidene group is trans.

Furthermore, to test the effect of the base on the cyclization
process, we conducted the reaction under the same catalytic
conditions [Pd(OAc), 10 mol %, PPh; 20 mol %] in the
presence of various bases, such as triethylamine, diisopropyl-
amine, and silver carbonate. As a result, the reactions
proceeded with total conversion and regioselectivity, leading
to benzofused phostone 6a, but along with traces of some
degradation products that could not be identified (Table 1,
entries 7—9). Moreover, the solvent’s effect was also
investigated through the use of polar and aprotic solvents,
such as acetonitrile or DMF, under the same conditions, but an
increase in the quantity of side products was observed in those
cases (Table 1, entries 10 and 11).

The optimized reaction conditions involving the use of
Pd(OAc), (10 mol %), PPh; (20 mol %), and K,CO; (2

https://doi.org/10.1021/acsomega.4c06616
ACS Omega 2024, 9, 44542—44548
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Scheme 6. Synthesis of 1,3-Dihydrobenzo[d][1,2]Azaphosphole 2-Oxide Dervatives 8a-d

Pd(OAc), (10 mol%), PPh3 (20 mol%)

8a (20%)

K,CO3 (2 equiv.), Toluene, 100°C R’ O
8a-d
R

equiv) in toluene at 100 °C (Table 1, entry S) were also
successfully applied to ethyl(2-iodobenzyl)buta-1,3-dienyl-
phosphonates 3b—e. In analogy, the corresponding benzofused
phostones 6b—e were obtained in good yields with complete
regio- and stereoselectivity through a 6-exo-trig cyclization
process. An exception was made for compound 6d, where the
corresponding seven-membered ring regioisomer 6d” was also
present, with a 64/6d’ ratio of 70/30 in the crude. It should
also be mentioned that phostone 6e was obtained as a mixture
of two inseparable diastereomers in an approximate 55:45
ratio, as evidenced by its NMR spectral data (Scheme 4).

To further extend the scope of this methodology, we
examined the behavior of (2-iodophenyl)buta-1,3-dienyl-
phosphonates 4a—h. The reactions proceeded efliciently
under the predefined optimized conditions, allowing total
conversion of the starting materials and affording the y-
photone derivatives 7a—h in good yields as unique products
arising from complete regioselective 5-exo-trig cyclization, even
with the nitro compounds 7g—h in this case (Scheme 5). It is
noteworthy to mention that both electron-donating and
electron-withdrawing substituents at the para position of the
2-iodophenyle moiety were well tolerated during the reactions,
as well substituents on the phenylallylidene side chain, and no
significant electronic effects were observed for the aryl
substituents on the regio- and stereoselectivity of the process.
Indeed, the E,E stereochemistry of 7a—h was determined from
the coupling constants obtained from the NMR data, where
both the coupling constants of the vinylic proton *Jp (~15
Hz) and *Jcp (~20 Hz) indicate an E conﬁguration25 of the
newly generated double bond.

The promising results obtained with (2-iodobenzyl)- and (2-
iodophenyl)-buta-1,3-dienylphosphonates 3 and 4 prompted
us to further investigate the behavior of N-(2-iodophenyl)-P-
buta-1,3-dienylphosphonamidates Sa—d in this Heck-type
cyclization process, allowing a straightforward approach to
unprecedented benzofused phostam derivatives. To our
delight, the reactions proceeded efficiently under the same
optimized conditions affording the target y-phostams 8a—d,
resulting from S-exo-trig cyclization, in moderate to good
yields, although 8a showed incomplete conversion of the
starting material (Scheme 6). As in the previous case, the
reactions showed full regioselectivity except for compound 8d,
which was obtained as a mixture with a trace of the 6-endo-trig
regioisomer product.

3. CONCLUSION

We successfully developed an efficient and straightforward
approach to unprecedented benzofuzed phostone and phostam

derivatives via fully regioselective intramolecular Heck
cyclizations of (2-iodobenzyl)buta-1,3-dienylphosphonates,
(2-iodophenyl)buta-1,3-dienylphosphonates, and N-(2-iodo-
phenyl)-P-buta-1,3-dienylphosphonamidates. Given the pres-
ence of the synthetically very flexible dienyl functionality on
the heterocyclic ring, the synthesized compounds may serve as
branching points for accessing a wide variety of phostone and
phostam derivatives for the evaluation of their pharmacological
profiles. Further work aims at biological evaluation of the
synthesized compounds and the application of the method-
ology for the synthesis of libraries with high molecular
diversity.

B ASSOCIATED CONTENT

@ Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.4c06616.

Spectroscopic characterization and NMR spectra of the
synthesized compounds (PDF)

B AUTHOR INFORMATION

Corresponding Authors

Muriel Durandetti — Univ Rouen Normandie, INSA Rouen,
CNRS, Normandie Univ, COBRA UMR6014, Rouen F-
76000, France; ® orcid.org/0000-0002-5136-9655;
Email: muriel.durandetti@univ-rouen.fr

Ali Samarat — Faculty of Sciences of Bizerte, LRI8ESI1,
Laboratory of Hetero-Organic Compounds and
Nanostructured Materials, University of Carthage, Bizerte
7021, Tunisia; ©® orcid.org/0000-0002-8334-7565;
Email: ali.samarat@fsb.ucar.tn

Authors

Hamdi Sanaa — Faculty of Sciences of Bizerte, LRISES11,
Laboratory of Hetero-Organic Compounds and
Nanostructured Materials, University of Carthage, Bizerte
7021, Tunisia; Univ Rouen Normandie, INSA Rouen,
CNRS, Normandie Univ, COBRA UMRG6014, Rouen F-
76000, France

Soufiane Touil — Faculty of Sciences of Bizerte, LRISESI1,
Laboratory of Hetero-Organic Compounds and
Nanostructured Materials, University of Carthage, Bizerte
7021, Tunisia; © orcid.org/0000-0002-2878-5757

Complete contact information is available at:

https://pubs.acs.org/10.1021/acsomega.4c06616

Notes
The authors declare no competing financial interest.

https://doi.org/10.1021/acsomega.4c06616
ACS Omega 2024, 9, 44542—44548


https://pubs.acs.org/doi/10.1021/acsomega.4c06616?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c06616/suppl_file/ao4c06616_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Muriel+Durandetti"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-5136-9655
mailto:muriel.durandetti@univ-rouen.fr
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ali+Samarat"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-8334-7565
mailto:ali.samarat@fsb.ucar.tn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hamdi+Sanaa"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Soufiane+Touil"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-2878-5757
https://pubs.acs.org/doi/10.1021/acsomega.4c06616?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06616?fig=sch6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06616?fig=sch6&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c06616?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega

http://pubs.acs.org/journal/acsodf

B ACKNOWLEDGMENTS

The authors warmly thank the Tunisian Ministry of Higher
Education and Scientific Research, which funded Hamdi Sanaa.
This work has been partially supported by University of Rouen
Normandy, INSA Rouen Normandy, the Centre National de la
Recherche Scientifique (CNRS), European Regional Develop-
ment Fund (ERDF), and by Region Normandie. Data
Availability: The data that support the findings of this study
are available in the Supporting Information of this article.

B REFERENCES

(1) Shi, D. —. Q. Sheng, Z.-L; Liu, X.-P.; Wu, H. Unsaturated
Cyclic a-Hydroxyphosphonates. Heteroat. Chem. 2003, 14, 266—268.

(2) (a) Pirat, J.-L.; Virieux, D.; Clarion, L.; Jean, J.-N.; Bakalara, N.;
Mersel, M.; Montbrun, J.; Cristau, H.-J. Centre National de la
Recherche Scientifique, WO 2,009,004,096 A1, 2009. (b) Elliott, T. S.;
Slowey, A.; Ye, Y.; Conway, S. J. The use of phosphate bioisosteres in
medicinal chemistry and chemical biology. Med. Chem. Commun.
2012, 3, 735-751.

(3) (a) Gnawali, G. R; Rath, N. P; Spilling, C. D. Synthesis of
Phostones via the Palladium-Catalyzed Ring Opening of Epoxy vinyl
phosphonates. J. Org. Chem. 2019, 84, 8724—8730. (b) McReynolds,
M. D,; Dougherty, J. M.; Hanson, P. R. Synthesis of Phosphorus and
Sulfur Heterocycles via Ring-Closing Olefin Metathesis. Chem. Rev.
2004, 104, 2239—2258.

(4) Sabourin, A.; Dufour, J.; Vors, J.-P.; Bernier, D.; Montchamp, J.-
L. Synthesis of P-Substituted 5- and 6-Membered Benzo-Phostams:
2,3-Dihydro-1H-1,2-benzazaphosphole 2-Oxides and 2,3-Tetrahydro-
1H-1,2-benzazaphosphinine 2-Oxides. ]. Org. Chem. 2021, 86,
14684—14694.

(S5) Brewster, R; Vandergeten, M.-C.; Montel, F. Syntheses of
Heteraphosphacyclanes: Follow the Guide. Eur. . Org. Chem. 2014,
2014, 905—-917.

(6) Xu, J. Syntheses of 1,2-Oxaphospholane 2-Oxides and 1,2-
Oxaphosphole 2-Oxides. ChemistrySelect 2023, 8, No. €202300217.

(7) (a) Xu, J. Synthesis of 1,2-oxaphosphinane 2-oxides and 1,2-
oxaphosphinine 2-oxides: d-phosphonolactones and d-phosphinolac-
tones. New J. Chem. 2023, 47, 5441—5469. (b) Fu, Z.; Sun, S.; Yang,
A.; Sun, F; Xu, J. Transition metal-free access to 3,4-dihydro-1,2-
oxaphosphinine-2-oxides from phosphonochloridates and chalcones
through tandem Michael addition and nucleophilic substitution.
Chem. Commun. 2019, S5, 13124—13127.

(8) (a) Luo, Y.; Fu, Z,; Fu, X; Dy, C; Xu, J. Microwave-assisted
periselective annulation of triarylphosphenes with aldehydes and
ketones. Org. Biomol. Chem. 2020, 18, 9526. (b) Yuan, X; Ke, X,; Xu,
J. Pyrimidine Nucleosides Syntheses by Late-Stage Base Hetero-
cyclization Reactions. Org. Lett. 2022, 24, 9141-9145.

(9) Xu, Y; Jiang, G. W.; Tsukahara, R; Fujiwara, Y,; Tigyi, G;
Prestwich, G. D. Phosphonothioate and Fluoromethylene Phospho-
nate Analogues of Cyclic Phosphatidic Acid: Novel Antagonists of
Lysophosphatidic Acid Receptors. J. Med. Chem. 2006, 49, 5309—
S31S.

(10) (a) Uchiyama, A,; Mukai, M.; Fujiwara, Y.; Kobayashi, S.;
Kawai, N.; Murofushi, H.; Inoue, M.; Enoki, S.; Tanaka, Y.; Niki, T;
Kobayashi, T.; Tigyi, G.; Murakami-Murofushi, K. Inhibition of
transcellular tumor cell migration and metastasis by novel carba-
derivatives of cyclic phosphatidic acid. Biochim. Biophys. Acta 2007,
1771, 103—112. (b) Gupte, R;; Siddam, A.; Ly, Y.; Li, W.; Fujiwara,
Y.; Panupinthu, N.; Pham, T.-C.; Baker, D. L.; Parrill, A. L.; Gotoh,
M.; Murakami-Murofushi, K.; Kobayashi, S.; Mills, G. B.; Tigyi, G.;
Miller, D. D. Synthesis and Pharmacological Evaluation of the
Stereoisomers of 3-Carba Cyclic-Phosphatidic Acid. Biorg. Med. Chem.
Lett. 2010, 20, 7525—7528.

(11) Abdou, W. M.; Shaddy, A. A. Novel Microwave-Assisted One-
Pot Synthesis of Heterocycle Phosphor Esters and Cyclic Oxophosp-
holes with Antibiotic Activity. Lett. Org. Chem. 2008, S, 569—575.

(12) (a) Abdou, W. M,; Kamel, A. A; Shaddy, A. A. Use of
phosphonyl carbanions in the synthesis of anti-inflammatory active
phosphorus-containing fused heterocycles and relevance phospho-
nates. Eur. J. Med. Chem. 2010, 45, 5217—5224. (b) Abdou, W. M,;
Khidre, R. E.; Shaddy, A. A. Synthesis of Tetrazoloquinoline-Based
Mono- and Bisphosphonate Esters as Potent Anti-Inflammatory
Agents. ]. Heterocycl. Chem. 2013, 50, 33—41.

(13) (a) Bousseau, S.; Marchand, M.; Soleti, R.; Vergori, L.; Hilairet,
G.; Recoquillon, S.; Le Mao, M.; Gueguen, N.; Khiati, S.; Clarion, L.;
Bakalara, N.; Martinez, M. C.; Germain, S.; Lenaers, G
Andriantsitohaina, R. Phostine 3.1a as a pharmacological compound
with antiangiogenic properties against diseases with excess vascula-
rization. Faseb J. 2019, 33, 5864—5875. (b) Abdou, W. M.; Barghash,
R. F; Khidre, R. E. Antineoplastic activity of fused nitrogen-
phosphorus heterocycles and derived phosphonates. Monatsh. Chem.
2013, 144, 1233—1242. (c) Balam, S. K.; Harinath, J. S;
Krishnammagari, S. K; Gajjala, R. R; Polireddy, K; Baki, V. B,;
Gu, W,; Valasani, K. R.; Avula, V. K. R;; Vallela, S.; et al. Synthesis and
Anti-Pancreatic Cancer Activity Studies of Novel 3-Amino-2-
hydroxybenzofused 2-Phospha-y-lactones. ACS Omega 2021, 6,
11375—11388. (d) Fernindez, I; Ortiz, F. L,; Veldzquez, A. M,;
Granda, S. G. Regio- and Diastereoselective Preparation of
Tetrahydrobenzo[c]-1-aza-243-phospholes through Dearomatization
Cyclization of Lithiated N-Benzyl-N-alkyl(diphenyl)phosphinamides:
Synthesis of y-(N Alkylamino)phosphinic Acids. J. Org. Chem. 2002,
67, 3852—3860.

(14) Ali, T. E.; Assiri, M. A; El-Shaaer, H. M.; Hassan, M. M,;
Fouda, A. M,; Hassanin, N. M. Reaction of 2-imino-2H-chromene-3-
carboxamide with some phosphorus esters: Synthesis of some novel
chromenes containing phosphorus heterocycles and phosphonate
groups and their antioxidant and cytotoxicity properties. Synth.
Commun. 2019, 49, 2983—2994.

(18) (a) Kaur, K; Adediran, S. A.;; Lan, M. J. K; Pratt, R. F.
Inhibition of p-Lactamases by Monocyclic Acyl Phosph(on)ates.
Biochemistry 2003, 42, 1529—1536. (b) Li, B.; Zhou, B.; Lu, H.; Ma,
L.; Peng, A. Y. Phosphaisocoumarins as a new class of potent
inhibitors for pancreatic cholesterol esterase. Eur. ]. Med. Chem. 2010,
45, 1955—1963. (c) Dutta, S.; Malla, R. K; Bandyopadhyay, S.;
Spilling, C. D.; Dupureur, C. M. Synthesis and kinetic analysis of
some phosphonate analogs of cyclophostin as inhibitors of human
acetylcholinesterase. Bioorg. Med. Chem. 2010, 18 (18), 2265—2274.
(d) Point, V.; Malla, R. K.; Diomande, S.; Martin, B. P.; Delorme, V,;
Carriere, F.; Canaan, S.; Rath, N. P.; Spilling, C. D.; Cavalier, J.-F.
Synthesis and Kinetic Evaluation of Cyclophostin and Cyclipostins
Phosphonate Analogs As Selective and Potent Inhibitors of Microbial
Lipases. . Med. Chem. 2012, 55, 10204—10219.

(16) (a) Clarion, L.; Jacquard, C.; Sainte-Catherine, O.; Loiseau, S.;
Filippini, D.; Hirlemann, M.-H.; Volle, J. —. N.; Virieux, D.; Lecouvey,
M,; Pirat, J. —. L.; Bakalara, N. Oxaphosphinanes: New Therapeutic
Perspectives for Glioblastoma. J. Med. Chem. 2012, SS, 2196—2211.
(b) Hassani, Z.; Saleh, A,; Turpault, S.; Khiati, S.; Morelle, W,;
Vignon, J.; Hugnot, J. —. P.; Uro-Coste, E.; Legrand, P.; Delaforge,
M,; Loiseau, S.; Clarion, L.; Lecouvey, M.; Volle, J. —. N; Virieux, D;
Pirat, J. —. L.; Duffau, H.,; Bakalara, N. Phostine PST3.1a Targets
MGATS and Inhibits Glioblastoma-Initiating Cell Invasiveness and
Proliferation. Mol. Cancer Res. 2017, 15, 1376—1387. (c) Hanessian,
S.; Galéotti, N.; Rosen, P.; Oliva, G.; Babu, S. Synthesis of
carbohydrate Phostones as potential glycomimetics. Bioorg. Med.
Chem. Lett. 1994, 4, 2763—2768. (d) Darrow, J. W.; Drueckhammer,
D. G. Cyclic Phosphonate Analogs of Hexopyranoses. J. Org. Chem.
1994, 59 (59), 2976—298S.

(17) (a) Xu, J. Synthesis of medium and large phostams, phostones,
and phostines. Beilstein J. Org. Chem. 2023, 19, 687—699. (b) Xu, J.
Synthesis of 1,2-oxaphosphinane 2-oxides and 1,2-oxaphosphinine 2-
oxides: d-phosphonolactones and d-phosphinolactones. New J. Chem.
2023, 47, 5441-5469. (c) Xu, J. Synthetic strategies for the
preparation of y-phostams: 1,2-azaphospholidine 2-oxides and 1,2-
azaphospholine 2-oxides. Beilstein J. Org. Chem. 2022, 18 (18), 889—
91S. (d) Essid, I; Laborde, C.; Legros, F.; Sevrain, N.; Touil, S;

https://doi.org/10.1021/acsomega.4c06616
ACS Omega 2024, 9, 44542—44548


https://doi.org/10.1002/hc.10139
https://doi.org/10.1002/hc.10139
https://doi.org/10.1039/c2md20079a
https://doi.org/10.1039/c2md20079a
https://doi.org/10.1021/acs.joc.9b00905?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.joc.9b00905?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.joc.9b00905?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr020109k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr020109k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.joc.1c01501?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.joc.1c01501?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.joc.1c01501?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/ejoc.201301299
https://doi.org/10.1002/ejoc.201301299
https://doi.org/10.1002/slct.202300217
https://doi.org/10.1002/slct.202300217
https://doi.org/10.1039/D2NJ06106F
https://doi.org/10.1039/D2NJ06106F
https://doi.org/10.1039/D2NJ06106F
https://doi.org/10.1039/C9CC06352H
https://doi.org/10.1039/C9CC06352H
https://doi.org/10.1039/C9CC06352H
https://doi.org/10.1039/D0OB02011G
https://doi.org/10.1039/D0OB02011G
https://doi.org/10.1039/D0OB02011G
https://doi.org/10.1021/acs.orglett.2c03878?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.orglett.2c03878?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm060351+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm060351+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm060351+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.bbalip.2006.10.001
https://doi.org/10.1016/j.bbalip.2006.10.001
https://doi.org/10.1016/j.bbalip.2006.10.001
https://doi.org/10.1016/j.bmcl.2010.09.115
https://doi.org/10.1016/j.bmcl.2010.09.115
https://doi.org/10.2174/157017808785982220
https://doi.org/10.2174/157017808785982220
https://doi.org/10.2174/157017808785982220
https://doi.org/10.1016/j.ejmech.2010.08.036
https://doi.org/10.1016/j.ejmech.2010.08.036
https://doi.org/10.1016/j.ejmech.2010.08.036
https://doi.org/10.1016/j.ejmech.2010.08.036
https://doi.org/10.1002/jhet.968
https://doi.org/10.1002/jhet.968
https://doi.org/10.1002/jhet.968
https://doi.org/10.1096/fj.201801450RRR
https://doi.org/10.1096/fj.201801450RRR
https://doi.org/10.1096/fj.201801450RRR
https://doi.org/10.1007/s00706-013-0950-6
https://doi.org/10.1007/s00706-013-0950-6
https://doi.org/10.1021/acsomega.1c00360?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.1c00360?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.1c00360?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jo025587+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jo025587+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jo025587+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jo025587+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1080/00397911.2019.1652323
https://doi.org/10.1080/00397911.2019.1652323
https://doi.org/10.1080/00397911.2019.1652323
https://doi.org/10.1080/00397911.2019.1652323
https://doi.org/10.1021/bi020602q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.ejmech.2010.01.038
https://doi.org/10.1016/j.ejmech.2010.01.038
https://doi.org/10.1016/j.bmc.2010.01.063
https://doi.org/10.1016/j.bmc.2010.01.063
https://doi.org/10.1016/j.bmc.2010.01.063
https://doi.org/10.1021/jm301216x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm301216x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm301216x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm201428a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm201428a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1158/1541-7786.MCR-17-0120
https://doi.org/10.1158/1541-7786.MCR-17-0120
https://doi.org/10.1158/1541-7786.MCR-17-0120
https://doi.org/10.1016/S0960-894X(01)80591-6
https://doi.org/10.1016/S0960-894X(01)80591-6
https://doi.org/10.1021/jo00090a014?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3762/bjoc.19.50
https://doi.org/10.3762/bjoc.19.50
https://doi.org/10.1039/D2NJ06106F
https://doi.org/10.1039/D2NJ06106F
https://doi.org/10.3762/bjoc.18.90
https://doi.org/10.3762/bjoc.18.90
https://doi.org/10.3762/bjoc.18.90
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c06616?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega

http://pubs.acs.org/journal/acsodf

Rolland, M.; Ayad, T.; Volle, J.-N.; Pirat, J.-L.; Virieux, D.
Phosphorus-Containing Bis-allenes: Synthesis and Heterocyclization
Reactions Mediated by Iodine or Copper Dibromide. Org. Lett. 2017,
19, 1882—1885. (e) Enchev, D. D. Synthesis and biological activity of
2,5-Dihydro-1,2-oxaphosphole-2-oxide derivatives. In Phosphorus
heterocycles II. Topics in heterocyclic chemistry, Bansal, R., Ed.; Springer:
Berlin, Heidelberg, 2010, Vol. 21, pp. 23—62. (f) Hong, F.; Xia, J.; Xu,
Y. Palladium-catalysed Carbocyclization of Organophosphorus
Compounds: A Novel and Effective Method for the Synthesis of
Cyclic Organophosphorus Compounds Including the Phosphorus
Analogues of a-Methylene Lactones. J. Chem. Soc,, Perkin Trans. 1994,
1, 1665—1666.

(18) (a) Hkiri, S.; Coskun, K. A.; Ustiin, E.; Samarat, A,; Tutar, Y.;
Sahin, N.; Sémeril, D. Silver(I) Complexes Based on Oxadiazole-
Functionalized a-Aminophosphonate: Synthesis, Structural Study,
and Biological Activities. Molecules 2022, 27, 8131. (b) Hkiri, S;
Mekni-Toujani, M.; Ustiin, E; Hosni, K; Ghram, A.; Touil, S,
Samarat, A.; Sémeril, D. Synthesis of Novel 1,3,4-Oxadiazole-Derived
a-Aminophosphonates/a-Aminophosphonic Acids and Evaluation of
Their In Vitro Antiviral Activity against the Avian Coronavirus
Infectious Bronchitis Virus. Pharmaceutics 2023, 15, 114. (c) Ha-
syeoui, M.; Lassagne, F.; Erb, W.; Nael, M.; Elokely, K. M.; Chaikuad,
A.; Knapp, S.; Jorda, A; Vallés, S. L.; Quissac, E.; Verreault, M.;
Robert, T.; Bach, S.; Samarat, A; Mongin, F. Oxazolo[S$,4-
f]quinoxaline-type selective inhibitors of glycogen synthase kinase-
3a (GSK-3ax): Development and impact on Temozolomide treatment
of glioblastoma cells. Bioorg. Chem. 2023, 134, 106456.

(19) (a) Sanaa, H.; Touil, S.; Durandetti, M.; Samarat, A. Selective
Substitution Reactions at the Phosphorus Atom of 1,3-Dienyl
Phosphonates. Chem. Lett. 2023, 52, 658—660. (b) Yahyaoui, M.;
Touil, S.; Samarat, A. An Efficient and Facile Access to Substituted
1E,3E-Dienylphosphonates via Horner-Wadsworth-Emmons Olefina-
tion of a,f-Unsaturated Aldehydes with Tetraethyl Methylene
bisphosphonate. Chem. Lett. 2018, 47, 729—731.

(20) Beletskaya, I. P.; Cheprakov, A. V. The Heck Reaction as a
Sharpening Stone of Palladium Catalysis. Chem. Rev. 2000, 100,
3009—-3066.

(21) (a) Dounay, A. B,; Overman, L. E. The Asymmetric
Intramolecular Heck Reaction in Natural Product Total Synthesis.
Chem. Rev. 2003, 103, 2945—2964. (b) Link, J. T. The Intramolecular
Heck Reaction. In Organic Reactions; Overman, L. E., Ed.; John Wiley
and Sons: New York, 2002, Vol. 60, pp. 157—534. (c) Link, J. T.;
Overman, L. E. Intramolecular Heck Reactions in Natural Products
Chemistry. In Metal Catalyzed Cross-Coupling Reactions; Stang, P. J.;
Diederich, F., Eds.; Wiley-VCH: New York, 1998, pp. 231-269.

(22) Lhermet, R; Durandetti, M.; Maddaluno, J. Intramolecular
carbonickelation of alkenes. Beilstein J. Org. Chem. 2013, 9, 710—716.

(23) (a) Rigby, J. H.,; Hughes, R. C.; Heeg, M. J. Endo-Selective
Cyclization Pathways in the Intramolecular Heck Reaction. J. Am.
Chem. Soc. 1995, 117, 7834—783S. (b) Grigg, R.; Logonathan, V.;
Santhakumar, V.; Sridharan, V.; Teasdale, A. Suppression of Alkene
Isomerisation in Products from Intramolecular Heck Reactions by
Addition of TI(1) Salts. Tetrahedron Lett. 1991, 32, 687—690.
(c) Sabourin, A.; Dufour, J.; Vors, J.-P.; Bernier, D.; Montchamp, J.-L.
Synthesis of Carbon- and Nitrogen-Substituted S- and 6- Membered
Benzophostams. Eur. J. Org. Chem. 2022, 2022, 82—89. (d) Liu, Q.-
H.; Ma, Y,; Zhang, H.-Y,; Zhang, Y.; Zhao, J.; Cao, X,; Hang, Y.-P;
Liang, Y.-M. Experimental and computational studies on the
palladium-catalyzed intramolecular dearomatization, electrophilic
addition, intermolecular coupling sequence. Org. Chem. Front. 2024,
11, 1357—1365. (e) Liang, R.-X.; Jia, Y.-X. Aromatic 7-Components
for Enantioselective Heck Reactions and Heck/Anion-Capture
Domino Sequences. Acc. Chem. Res. 2022, S5, 734. (f) Ma, Y.; Liu,
Q.-H.; Han, Y.-P. Palladium-Catalyzed Enantioselective Intramolec-
ular Heck Dearomative Annulation of Indoles with N-Tosylhydra-
zones. J. Org. Chem. 2023, 88, 15881. (g) Duan, S.-B.; Zhang, H.-Y,;
Hao, B.-Y,; Zhao, J.; Han, Y.-P.; Zhang, Y.; Liang, Y.-M. Palladium-
catalyzed intramolecular diastereoselective dearomatization reaction
of indoles with N-tosylhydrazones. Org. Chem. Front. 2021, 8, 5895.

44548

(24) (a) de Meijere, A.; Meyer, F. E. Fine Feathers Make Fine Birds:
The Heck Reaction in Modern Garb. Angew. Chem., Int. Ed. 1995, 33,
2379—2411. (b) limura, S.; Overman, L. E.; Paulini, R.; Zakarian, A.
Enantioselective Total Synthesis of Guanacastepene N Using an
Uncommon 7-Endo Heck Cyclization as a Pivotal Step. J. Am. Chem.
Soc. 2006, 128, 13095—-13101.

(25) (a) Xiong, Z.—C.; Huang, X. The stereospecific preparation of
(Z)-a-stannyl-1-alkenylphosphonates as precursors of stereodefined
a-substituted vinylphosphonates. J. Chem. Res. 2003, 2003, 372—373.
(b) Quntar, A. A; Srebnik, M. cis-Vinylphosphonates and 1,3-
Butadienylphosphonates by Zirconation of 1-Alkynylphosphonates.
Org. Lett. 2001, 3, 1379—1381. (c) Kenyon, G. L.; Westheimer, F. H.
The Stereochemistry of Unsaturated Phosphonic Acids. J. Am. Chem.
Soc. 1966, 88, 3557—3561.

https://doi.org/10.1021/acsomega.4c06616
ACS Omega 2024, 9, 44542—44548


https://doi.org/10.1021/acs.orglett.7b00648?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.orglett.7b00648?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/P19940001665
https://doi.org/10.1039/P19940001665
https://doi.org/10.1039/P19940001665
https://doi.org/10.1039/P19940001665
https://doi.org/10.3390/molecules27238131
https://doi.org/10.3390/molecules27238131
https://doi.org/10.3390/molecules27238131
https://doi.org/10.3390/pharmaceutics15010114
https://doi.org/10.3390/pharmaceutics15010114
https://doi.org/10.3390/pharmaceutics15010114
https://doi.org/10.3390/pharmaceutics15010114
https://doi.org/10.1016/j.bioorg.2023.106456
https://doi.org/10.1016/j.bioorg.2023.106456
https://doi.org/10.1016/j.bioorg.2023.106456
https://doi.org/10.1016/j.bioorg.2023.106456
https://doi.org/10.1246/cl.230255
https://doi.org/10.1246/cl.230255
https://doi.org/10.1246/cl.230255
https://doi.org/10.1246/cl.180149
https://doi.org/10.1246/cl.180149
https://doi.org/10.1246/cl.180149
https://doi.org/10.1246/cl.180149
https://doi.org/10.1021/cr9903048?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr9903048?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr020039h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr020039h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3762/bjoc.9.81
https://doi.org/10.3762/bjoc.9.81
https://doi.org/10.1021/ja00134a040?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00134a040?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/S0040-4039(00)74860-X
https://doi.org/10.1016/S0040-4039(00)74860-X
https://doi.org/10.1016/S0040-4039(00)74860-X
https://doi.org/10.1002/ejoc.202200141
https://doi.org/10.1002/ejoc.202200141
https://doi.org/10.1039/D3QO02087H
https://doi.org/10.1039/D3QO02087H
https://doi.org/10.1039/D3QO02087H
https://doi.org/10.1021/acs.accounts.1c00781?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.accounts.1c00781?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.accounts.1c00781?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.joc.3c01960?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.joc.3c01960?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.joc.3c01960?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D1QO00893E
https://doi.org/10.1039/D1QO00893E
https://doi.org/10.1039/D1QO00893E
https://doi.org/10.1002/anie.199423791
https://doi.org/10.1002/anie.199423791
https://doi.org/10.1021/ja0650504?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja0650504?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3184/030823403103174191
https://doi.org/10.3184/030823403103174191
https://doi.org/10.3184/030823403103174191
https://doi.org/10.1021/ol0157454?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ol0157454?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00967a016?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c06616?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

