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Abstract: Accurate brain tissue segmentation of MRI is vital to diagnosis aiding, treatment planning,
and neurologic condition monitoring. As an excellent convolutional neural network (CNN), U-Net is
widely used in MR image segmentation as it usually generates high-precision features. However, the
performance of U-Net is considerably restricted due to the variable shapes of the segmented targets
in MRI and the information loss of down-sampling and up-sampling operations. Therefore, we
propose a novel network by introducing spatial and channel dimensions-based multi-scale feature
information extractors into its encoding-decoding framework, which is helpful in extracting rich
multi-scale features while highlighting the details of higher-level features in the encoding part, and
recovering the corresponding localization to a higher resolution layer in the decoding part. Concretely,
we propose two information extractors, multi-branch pooling, called MP, in the encoding part, and
multi-branch dense prediction, called MDP, in the decoding part, to extract multi-scale features.
Additionally, we designed a new multi-branch output structure with MDP in the decoding part to
form more accurate edge-preserving predicting maps by integrating the dense adjacent prediction
features at different scales. Finally, the proposed method is tested on datasets MRbrainS13, IBSR18,
and ISeg2017. We find that the proposed network performs higher accuracy in segmenting MRI brain
tissues and it is better than the leading method of 2018 at the segmentation of GM and CSF. Therefore,
it can be a useful tool for diagnostic applications, such as brain MRI segmentation and diagnosing.

Keywords: magnetic resonance images; brain tissue segmentation; multi-scale feature learning;
multi-branch pooling; multi-branch dense prediction; multi-branch output

1. Introduction

The segmentation of brain tissues from magnetic resonance (MR) images is of primary
importance for subsequent diagnosis, pathological analysis, prognosis assessment, and
brain development monitoring [1]. MR images have different kinds of modalities, including
T1, T1C, T2, PD, T1IR, and FLAIR, and each reflects particular characteristics of tissue
regions in brain.

For example, both T2 and FLAIR sequences describe low signals in the white matter
region and high signals in the gray matter region. T2 depicts marked high signals for the
cerebrospinal fluid, where FLAIR shows low or no intensity signals [2,3]. Hence, we can
aggregate these multiple modalities to capture richer information to improve brain tissue
segmentation performance.

Generally, the goal of brain segmentation is to classify brain voxels as three major
brain structures: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF).
Traditional manual segmentation is time-consuming and tedious, and it is easy to produce
bias due to the operator’s subjective experience. Thus, the research on automatic brain
tissue segmentation algorithm has been receiving extensive attention [4–7].

A few machine learning methods for automatic brain tissue segmentation have been
proposed in literature, including methods based on hand-crafted features [7–10] and
methods based on multi-atlas registration [11,12]. However, the performances of these
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methods are limited, owing to the fuzzy brain tissue edge [13], the multi-source noise, and
the inhomogeneous intensity in brain MR images.

Recently, deep learning has been extensively applied in medical image segmentation;
for example, segmenting local lesions such as tumors [14–16] and organs such as brain
tissues [5,17,18]. By pooling features with different resolutions in the encoding path and
recovering sharp object boundaries in the decoding path, the U-Net [19] can capture rich
contextual information because of this encoding-decoding manner. The U-Net framework
and its extensions have become the most common deep neural networks used in medical
image segmentation.

However, it still faces challenges considering the complex anatomical structures and
variable shapes of brain tissues. Five examples are shown in Figure 1, where the intensity
of white matter is similar to the gray matter in the rugged edge (in the yellow box), hence,
it is difficult to segment these brain tissues successfully because of the description of
confused boundaries.
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Figure 1. Illustration of complex anatomical structures and variable shapes in MRBrain2013S dataset.
The first row lists the brain MR images in different areas. The second row shows the corresponding
ground truth labels, where the colors denote different regions of the brain: red represents the
cerebrospinal fluid (CSF), green the gray matter (GM), and blue the white matter (WM). Other tissues
are represented with gray.

In terms of segmenting brain tissues accurately, we discovered that the problem of
the U-Net-based models is the lack of multi-scale context information with a suitable
receptive field. Unfortunately, the exploitation of multi-scale CNN features for semantic
segmentation is a challenging task.

Conventionally, the multi-scale technique can be divided into two typical strategies:
pooling at multiple scales and convoluting at multiple fields-of-views. For the former, [20]
applies pooling operations with different grid scales. However, without a suitable number
of grid scales, the detailed boundary information will be lost. For the latter, mainstream
methods [21,22] adopt multiple rates of atrous convolution with a larger receptive field
to harness multi-scale context information. However, although they can capture global
information by multiple rates of atrous convolution, it is easy to encourage irrelevant
redundant information [23] if without a suitable receptive field. In [21,22], extracting the
multi-scale information is encoded in the last feature map; however, extracting multi-
scale information in the previous feature layer is equally important, especially in medical
image processing.

In addition, the above methods focus on extracting the multi-scale feature information
on the spatial dimension. To learn better feature representation, the channel dimension-
based multi-scale feature extracting is crucial; however, the related study is still lacking.
Zhang et al. [24] suggest that a structure called “Densely Adjacent Prediction” might be
used to encode spatial information into channels, and utilizes the adjacent channel infor-
mation to predict results; however, it lacks the complementary multi-scale features [25].
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To solve the aforementioned problems, https://orcid.org/0000-0001-7365-0053, (ac-
cessed on 29 April 2021) jointly obtain high-precision multi-scale CNN features. In this
work, we propose to segment brain tissues with a novel Multi-scale Spatial and Channel
Dimension U-Net (MSCD-UNet).

Our proposed architecture is based on UNet and influenced by the information ex-
tractors named multi-branch pooling (MP) and multi-branch dense prediction (MDP). To
overcome the limitation of the 3D-UNet network, we propose a novel network by embed-
ding the MP and MDP into 3D-UNet. The embedded network can capture more context
cues while enhancing the details of multi-scale information by using the extractor MP in the
encoding part and recovering the corresponding localization to a higher resolution layer by
using the extractor MDP in the decoding part. Extensive experiments on three benchmarks
with MRBrain2013, IBSR18, and ISeg2017 datasets demonstrate that our approach performs
competitively against other state-of-the-art methods. The contributions of our paper are
itemized in the following:

1. We have proposed a novel network by introducing spatial dimension and channel
dimension-based multi-scale CNN feature information extractors into its encoding-
decoding framework. In the encoding part, we propose the multi-branch pooling
information extractor, called MP, to capture multi-scale spatial information for the
information compensating. As pooling is easy to lose the useful spatial information
when the feature map resolution is reduced, we propose the MP by using multiple
max pooling with different kernel sizes in parallel to reduce the information missing
and collect the neighborhood information with a suitable receptive field;

2. In the decoding part, we propose the multi-branch dense prediction, an information
extractor, called MDP, to capture multi-scale channel information for the informa-
tion compensating. During the decoding phase, after the maps resolution upsizing,
the spatial information in these decompressed feature maps is fixed and the de-
tailed information is represented more in channel dimension, so we consider that
the prediction results at the adjacent position are related to the result of the center
position. We divided the prediction result into multiple channel groups, and the
multi-scale channel information of the center position can be created by averaging
these groups for the purpose of information compensation. In addition, we designed
a multi-branch output structure with MDP in the decoding part to form more accurate
edge-preserving predicting maps by integrating the dense adjacent prediction features
at different scales.

The two proposed ideas are first used in this paper. We carry out extensive experi-
ments on three benchmarks (MRBrainS12, IBSR18, and ISeg2017) to evaluate our method.
The results have proved the feasibility of our proposed method and the performance
of improvement.

The remainder of the paper is structured as follows. The related work of brain tissue
segmentation is described in Section 2. In Section 3, a detailed scheme of our solution is
presented, including spatial-based multi-scale feature extractor in encoding, channel-based
multi-scale feature extractor in decoding, multi-branch output structures, and MSCD-UNet.
We perform MSCD-UNet experiments with MRBrain2013, IBSR18 and ISeg2017 datasets in
Section 4, and discuss the results in Section 5. Finally, we conclude the paper with future
work suggestions in Section 6.

2. Related Works

In this section, we briefly describe the related work of MRI brain tissue segmentation.
Subsequently, we list the typical brain segmentation approaches in three categories: atlas-
based registration, traditional machine learning-based, and deep learning-based. Atlas-
based approaches are widely used in multi-modal circumstances [26,27]. These methods
rely on registering several atlases to the target image, and then propagating the manual
labels to this image. The label fusion strategy [28–30] is used to adjust the registered
labels of different atlases to form the final segmentation. Because the accuracy of the
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registration processing is the key affecting the final segmentation result, it needs a large
number of target templates to adapt the difference of brain anatomy, and these approaches
are computationally expensive and perform poorly.

To address the above problems, many traditional methods based on machine learning
are applied to segment brain tissues. For example, [31] adopted both intensity and spatial
features to complete brain segmentation by using support vector machine. Tong et al. [17]
used discriminative dictionary learning and sparse coding techniques to label brain tis-
sues. Wang et al. [32] effectively integrated 3D Haar-like features from multi-source
images together by utilizing the random forest technique to perform tissue segmentation.
Zhang et al. [33] proposed a novel hidden Markov random field (HMRF) model which can
encode spatial information through the mutual influences of neighboring sites to improve
its accuracy and robustness. K. Mishro et al. [34] proposed a type-2 AWSFCM clustering
algorithm to perform segmentation tasks. It assigned the problematic equidistant pixels to
a single cluster by offering larger weight to pixel closing to the expected decision boundary.
However, the main limitation of these traditional methods is that the intensity profiles of
more detailed brain tissues overlap [16], and it is hard to distinguish between tissues in
different brain regions.

Recently, deep learning methods based on CNN have become a powerful tool for
segmenting brain tissues, which can overcome the drawback of atlas-based registration
and traditional machine learning models. Zhang et al. [35] trained a CNN model for infant
brain tissue segmentation by harnessing 2D single patches on axial plane slices of T1, T2,
and FLAIR images. Moeskops et al. [36] introduced multiple patch sizes and multiple
convolution kernel sizes into CNN to obtain multi-scale information to recognize the
detailed information for brain tissue segmentation. Chung et al. [37] proposed to combine
the dynamic random walker with the decay region of interest into CNN to acquire smooth
segmentation of subcortical structures. However, these patch-based voxel classification
methods still face troubles such as the limitation of local information and the complexity of
boundaries surrounded by adjacent voxels.

Recently, fully CNN (FCNN) has been widely applied in brain segmentation to solve
the above problems, as they predict the labels of voxels within the input patch simultane-
ously. Nie et al. [38] trained a shared network for each modality image, then fused their
high-layer features in the final predicting layer. Xu et al. [39] regarded three serial slices as
input of three channels to predict the middle slice by using the fully CNN. Chen et al. [40]
proposed a model named VoxResNet to segment brain MR images, which can jointly
encourage features of high-level context information and low-level image appearance to
compensate the missing information at different levels. Dolz et al. [41] proposed Hyper-
DenseNet, which can learn more complex combinations between modalities to expand
the learning ability of all levels of abstraction and representation. Li et al. [42] captured
and aggregated multi-scale features of brain tissues by using a multi-modality aggre-
gation network named MMAN to accomplish brain segmentation with better accuracy.
Chen et al. [43] presented a Dense-Res-Inception network to segment the cerebrospinal
fluid, which is able to produce distinct features in terms of intensity, location, shape, and
size. Lei et al. [44] proposed a dual aggregation network to adaptively aggregate differ-
ent information of infant brain MRI modalities. Qamar et al. [18] proposed to combine
dense connection, residual connection, and inception module to achieve excellent results.
Yu et al. [45] developed a densely connected 3D-DenseVoxNet to preserve maximum infor-
mation flow to ease the network training. Taoc et al. [46] presented a network very deep in
architecture based on dense convolution network for volumetric brain segmentation. They
used a model of bottleneck with compression to reduce the number of feature maps in each
dense block, so as to reduce the number of learned parameters and result in computational
efficiency. Dolz et al. [47] proposed a FCNN that adopts 3D spatial context of triplanar
data and both global and local information for MRI brain segmentation. Sun et al. [48] pro-
posed a volumetric feature recalibration (VFR) layer, which could richly capture the spatial
contextual information, then leverage it for volumetric weighting between spatial layers.
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An in-depth summarization of some of the related works in brain MRI segmentation
along with techniques, advantages, and limitations is documented in Table 1.

Table 1. An overview of some related works on brain MRI segmentation problems.

Paper Technique Advantage Limitation

[27–31] Atlas-based registration Robustness to weak edges, strong
adaptability.

Limited by the fuzzy brain tissue
edge, multi-source noise, and

inhomogeneous intensity.

[31] SVM

Preserves information in the
training images, and easy to

implement.

Response time increase
dramatically with dataset size.

Slow training, memory intensive,
and performance patient-specific

learning.

[17] Discriminative dictionary
learning

[32] Hidden Markov random field

[33] Clustering algorithm

[35–37] Patch-wise CNN

Fast, easy to implement, and low
resource hungry.

Capture discriminative
features from a large input patch.

Sensitive to the patch size, lack of
global information, difficult to

converge small dataset.

[18,41,43–47] FCNN with dense
connection

Extract more reasonable and
contextual information. Large training time and storage

space. High computational
complexity.[48] FCNN with richer spatial

information
Learn required weight for spatial

feature extracting.

In this paper, we present a 3D U-Net-based architecture that includes multi-branch
pooling and multi-branch dense prediction to capture the multi-scale features, which are
the important factors that enable a FCNN to capture the complex contextual information
and enlarge its limited receptive field.

3. Materials and Methods

Deep learning, one of the most effective methods in computer vision, is widely used.
As illustrated in Figure 2, we designed a novel, fully convolutional neural network (FCNN)
constructed by a 3D UNet with the proposed feature information extractors (MP and MDP).
The proposed network is called Multi-scale MSCD-UNet. The details of the proposed
approach are listed in the next subsection.

3.1. Model Overview

In Figure 2, the input slices were randomly cropped with the same center point from
3 modalities (T1, FLARI, T1_IR); thus, they have the corresponding position information.
The concrete architecture of the MSCD-UNet consists of three main modules: MP, MDP,
and multi-branch output. We exploit MSCD-UNet to capture the rich multi-scale semantic
information in the encoding path by using multiple max pooling with different kernel sizes
in parallel, and allow the detailed object boundary recovering in the decoding path by
dividing the dense prediction maps into multiple groups. For each scale in the decoding
path, we use a concatenation operation to connect these dense prediction maps for the
information compensating. The multi-branch output module under a deeply supervised
network component aims at largely discovering the learning ability of CNN from bottom to
top layers, and producing more precise segmentation results by integrating the predicting
maps of identical size at the last layer.
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3.2. Multi-Branch Pooling and Multi-Branch Dense Prediction

The information loss of down-sampling and up-sampling operations of an FCNN-
based model is a common problem, which is mentioned as the weak ability of feature
extracting in the encoding and decoding paths. In the encoding path, the repeated ac-
cumulation of pooling and convolution with strides at consecutive layers meaningfully
reduces the spatial resolution of feature maps, then causing a loss of spatial information.
In the decoding path, deconvolutional layers have been used to recover the correspond-
ing localization for the higher resolution layer; it will result in great losses in channel
dimension. In order to enhance the ability of feature extracting in spatial and channel
dimensions, we propose to utilize a multi-scale spatial and channel dimensions-based
network to capture higher semantic information during encoding and gradually recover
the spatial information during decoding.

Multi-branch pooling (MP): pooling is employed to improve the invariants of the
transformed image, the compact representations of semantic information, and the better
robustness to noise and clutter [49]. The size of the feature map can be reduced by using
different pooling scales, which will effectively ensure the validity of information and speed
up the calculation. Empirically, max-pooling is widely used in the field of medical image
processing; however, it is easy to lose the useful spatial contextual information when the
feature map resolution is reduced. In order to reduce the loss of information, inspired
by [20], they have adopted multiple rates of atrous convolution in parallel to harness
multi-scale context information. However, although they can capture global information
by multiple rates of atrous convolution, it is easy to encourage irrelevant redundant
information without a suitable receptive field. Thus, we propose multi-branch pooling
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to collect the multi-scale spatial information during the encoding procedure, which in
parallel consists of multiple max pooling with different kernel sizes. The parallel max-
pooling separates the feature maps into different adjacent regions and produces pooled
representations for the same location, while the neighborhood information with a suitable
receptive field can be captured for the information compensating. After the MP operation,
these parallel feature maps pooled with different kernels finally have identical size, and
each time the feature map size is reduced by factor of two. In addition, we can see from
Figure 3, the intensities of different brain tissues in different local regions of the brain
are close to each other; thus, a lot of redundant information will be produced by using
atrous convolution with a large receptive field. However, the proposed MP, as illustrated
in Figure 4, can capture the multi-scale context information with a suitable receptive field.
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Our proposed MP contains a three-branch structure with bin size 2 × 2 × 2, 3 × 3 × 3,
and 5 × 5 × 5 in first pooling stage, and a two-branch structure with bin size 2 × 2 × 2 and
3 × 3 × 3 in last pooling stage. The key idea of MP is to use suitable kernels, whose size is
controlled by the parameter K. In order to gain the optimal combination of kernel size K,
we enumerate different kernel sizes and validate the performance respectively; the results
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are detailed in Section 4.1. Additionally, we perform extensive experiments to compare the
performance between the max pooling and the average pooling in Section 4.1.

Multi-branch dense prediction (MDP): as in the work of [19], the decoding module
consists of a series of simple bilinear up-samplings by a consecutive factor of 2, which
could be regarded as a naive decoding module. However, this naive decoding module
may not fully recover the segmented object details. During the decoding phase, the
compressed feature maps from the deepest encoding layer will be used to recover feature
maps resolution by using deconvolution and up-sampling operation. After the maps
resolution upsizing, the spatial information in these decompressed feature maps is fixed
so the detailed information is represented more in channel dimension; thus, it implies we
will be supposed to focus on the collection of complex information in channel dimension.
Inspired by [24], considering that the predict results at the adjacent position are related
to the result of the center point, they have divided the feature channels into one group
in each up-sampling operation, where the number of feature channels has been fixed,
resulting in a loss of information. In order to enhance the ability of feature extracting in
channel, we design a channel-based multi-scale feature extractor (see Figure 5), named
MDP, in which the feature channels are divided into multiple groups to free the fixed
feature channels; the result of center point can be created by averaging these groups for the
information compensating.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 5. The components of multi-branch dense prediction (MDP). 

For the decoding path, the feature point at the spatial location (݈, ݊,݉) is responsible 
for its semantic information. In order to collect as much spatial information as possible 
into channels, this information extractor can be considered to predict results at the adja-
cent position, e.g., (݈ − 1, ݊ + 1,݉ + 1). When obtaining the final predicted results, results 
at the center position (݈, ݊,݉) can be created by averaging the related scores. Concretely, 
supposing that the three window sizes are	݇ଵ × ݇ଵ × ݇ଵ, ݇ଶ × ݇ଶ × ݇ଶ, ݇ଷ × ݇ଷ × ݇ଷ, respec-
tively, we divided the feature channels into three groups ݇ଵ × ݇ଵ × ݇ଵ, ݇ଶ × ݇ଶ × ݇ଶ, ݇ଷ ×݇ଷ × ݇ଷ, respectively. The outputs of MDP R	are formed as follows: R௟,௠,௡௞ଵ = 1݇ଵ × ݇ଵ × ݇ଵ 	 ෍ ௟ା௥ିቔ௞భଶݕ ቕ,௠ା௦ିቔ௞భଶ ቕ,௡ା௧ିቔ௞భଶ ቕ(௥×௞భା௦ା௧)଴ஸ௥,௦,௧ழ௞భ , (1)

R௟,௠,௡௞ଶ = 1݇ଶ × ݇ଶ × ݇ଶ 	 ෍ ௟ା௥ିቔ௞మଶݕ ቕ,௠ା௦ିቔ௞మଶ ቕ,௡ା௧ିቔ௞మଶ ቕ	(௥×௞మା௦ା௧) ,଴ஸ௥,௦,௧ழ௞మ  (2)

R௟,௠,௡௞ଷ = 1݇ଷ × ݇ଷ × ݇ଷ 	 ෍ ௟ା௥ିቔ௞యଶݕ ቕ,௠ା௦ିቔ௞యଶ ቕ,௡ା௧ିቔ௞యଶ ቕ(௥×௞యା௦ା௧)଴ஸ௥,௦,௧ழ௞య , (3)

where R௟,௡,௠ represents the result at the position	(݈, ݊,݉) and ݕ௟,௡,௠௖  is the feature map at 
position (݈, ݊,݉) belonging to channel group c. The MDP scheme is illustrated in Figure 
5. 

Figure 5. The components of multi-branch dense prediction (MDP).



Sensors 2021, 21, 3232 9 of 20

For the decoding path, the feature point at the spatial location (l, n, m) is responsible
for its semantic information. In order to collect as much spatial information as possible
into channels, this information extractor can be considered to predict results at the adjacent
position, e.g., (l − 1, n + 1, m + 1). When obtaining the final predicted results, results at the
center position (l, n, m) can be created by averaging the related scores. Concretely, suppos-
ing that the three window sizes are k1 × k1 × k1, k2 × k2 × k2, k3 × k3 × k3, respectively,
we divided the feature channels into three groups k1 × k1 × k1, k2 × k2 × k2, k3 × k3 × k3,
respectively. The outputs of MDP R are formed as follows:

Rk1
l,m,n =

1
k1 × k1 × k1

∑
0≤r,s,t<k1

y(r×k1+s+t)

l+r−b k1
2 c, m+s−b k1

2 c, n+t−b k1
2 c

, (1)

Rk2
l,m,n =

1
k2 × k2 × k2

∑
0≤r,s,t<k2

y(r×k2+s+t)

l+r−b k2
2 c, m+s−b k2

2 c, n+t−b k2
2 c

, (2)

Rk3
l,m,n =

1
k3 × k3 × k3

∑
0≤r,s,t<k3

y(r×k3+s+t)

l+r−b k3
2 c, m+s−b k3

2 c, n+t−b k3
2 c

, (3)

where Rl,n,m represents the result at the position (l, n, m) and yc
l,n,m is the feature map at

position (l, n, m) belonging to channel group c. The MDP scheme is illustrated in Figure 5.
We employed MDP as the output of our decoding module (see Figure 2). We set

k1 = 1, k2 = 3, k3 = 4 to conduct our experiments. In order to prove the validity of MDP,
we tested the baseline model U-Net only with k1 = 1 in the experimental section, and the
results show that the MDP can improve the final performance. The results are detailed in
Section 4.2.

3.3. Multi-Branch Output Modules and Loss Functions

The idea of multi-branch output modules is widely used in the deeply supervised
network. In view of our proposed network, collecting multi-scale information in the
decoding path can encourage more reliable and accurate predictions of the final results.
Thus, we integrate multiple branch output in each scale after MDP operation (see Figure 2
for an illustration). Concretely, given a total H branch output, each output will generate
the prediction by an up-sampling operation with the associated weights. The multiple loss
function of the whole network can be defined as a weighted sum of all of the branch output
loss; its calculation formula is as follows:

Lossside(W, w, gT) =
H

∑
h=1

βhlh
side

(
W, wh, gT

)
, (4)

where βh stands for the weight of the hth output loss function, lh
side is the cross-entropy loss

function, and the count of the additional output H is set to 3. lside is unfolded with the
following formula:

lside

(
W, wh, gT

)
= − ∑

i∈gT
∑

c
ωcgTclogP

(
W, wh

)
, (5)

where gT is the label of ground truth, c denotes the cth classification label and ωc is the
associated weight, and P(·) indicates the output of network as the probabilistic prediction
in the cth output way. Finally, a fusion layer can be applied to aggregate the prediction
from each additional output by:

Loss f use(W, w, f ) = ∅
(

gT, σ

(
H

∑
h=1

fn Aph
side

) )
, (6)
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where fn represents the fusion weight, Aph
side indicates the activation of the hth output way,

σ denotes the softmax activation function, and ∅ is the cross-entropy loss function. Finally,
the final loss function of the network can be formed as:

Loss f inal = Loss f use(W, w, f ) + Lossside(W, w). (7)

3.4. Network Architecture

The U-Net [19] has been widely applied in medical image segmentation, which
adequately combines the low-level high resolution and the high-level low resolution
feature maps. Our proposed MSCD-UNet is similar to the 3D-UNet [50], but it can make
up for the deficiency of information missed in U-Net by using MP and MDP to capture
rich multi-scale context information.

The architecture of MSCD-UNet in this paper is shown in Figure 2. We follow the
strategy in [48], where sub-volumes of 32× 32× 32 are used as input for training. Instead
of using the standard 3D U-Net with multi-channel inputs, we use a parallel feed forward
network with different modalities and fuse their deep-high level features for voxel-wise
prediction. The parallel feed forward network consists of three parts: input part, encoding
part, and decoding part. The input part is divided into three parallel paths where the
input data are T1, T2-FLAIR, and T1-IR, respectively. The encoding part includes two
stages, each stage contains two 3 × 3 × 3 convolution layers and each is followed by
a batch normalization (BN) and a non-linear activation function (ReLU). At the end of
each stage, the MP is attached to reduce resolution. The number of feature channels is
doubled after each stage. Similarly, the decoding part also contains two stages, each stage
consists of a deconvolution layer of 2× 2× 2 followed by BN and ReLU. There are also
two 3× 3× 3 convolution layers each followed by BN and ReLU. Additionally, MDP
is used to collect complex multi-scale channel information to recover the corresponding
localization to higher resolution layer in each stage. Finally, a fusion layer can integrate
the prediction result from each MDP output to produce more accurate edge-preserving
segmentation results.

3.5. Dataset Introduction

Our proposed method is successful on the MRBrainS13 dataset of brain segmentation
challenge. The method is evaluated in this section by three different datasets: MRBrainS13,
IBSR18, and ISeg2017.

(1) MRBrainS13 is from the official website [51]. In the training dataset, it has five
brain MR images, including 2 male subjects and 3 female subjects, and each subject is
associated with 3 modality-channels (i.e., T1, T1_IR, FLAIR) and the manually marked
labels of 4 classes, namely, gray matter (GM), white matter (WM), cerebrospinal fluid (CSF),
and background, as shown in Figure 6. In the test dataset, it has 30 brain MR images. All
the modality has been bias-corrected and the data of each subject is aligned. The voxel
size is 0.958 mm× 0.958 mm× 3 mm for all modalities. Each modality of the MRI data is
represented by a 240× 240× 48 volume;

(2) IBSR18 is also used to evaluate our MSCD-UNet [52]. The IBSR18 training dataset
contains 18 subjects, each subject in training data has a single T1-weighted modality. All
volumes have a size of 256× 256× 128 voxels, with voxel space ranging from 0.8 mm×
0.8 mm× 1.5 mm to 1.0 mm× 1.0 mm× 1.0 mm. A total of 4 anatomical brain structures
are targeted for segmentation.

(3) ISeg2017 is also used to evaluate our MSCD-UNet [53]. ISeg2017 dataset has
the combined modalities of T1w and T2w. MRT1 images are obtained with 144 sagittal
slices utilizing the following parameters: flip angle = 7◦, TR/TE = 1900/4.38 ms, and
resolution = 1 × 1 × 1 mm3. Likewise, MR-T2 images are obtained with 64 axial slices by
using: flip angle = 150◦, TR/TE = 7380/119 ms, and resolution = 1.25 × 1.25 × 1.95 mm3.
Ten infant subjects with manual labels were provided for training.
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Figure 6. Example of MR images with different image modalities and the labels manually marked
by experts; the first three images from left to right are FLAIR, T1, and T1_IR. The fourth image is
the ground truth labels where the colors denote different regions of brain tissues: red represents
cerebrospinal fluid (CSF), green the gray matter (GM), and blue the white matter (WM). Gray denotes
the other tissues.

3.6. Evaluation Metrics

The following common segmentation indicators are employed to evaluate and com-
pare our model with other state-of-the-art methods. The Dice Coefficient (DC), the 95th
percentile of the Hausdorff Distance (HD), and the Absolute Volume Difference (AVD)
are applied on MRBrainS13 to complete our experiments. For the IBSR18, DC is used for
evaluation [54]. For the ISeg2017, DC and ASD is used for evaluation.

Dice coefficient (DC) is defined by the area overlap between the ground truth and
segmentation prediction results as:

DC(G, P) = 2
G ∩ P
G + P

× 100%, (8)

where G is the ground truth and P represents the predicted segmentation result. DC is a
metric of area overlap between the predicted segmentation result P and the ground truth G.

Because the conventional Hausdorff distance is very sensitive to the outliers, the Kth
ranked distance, i.e., h95 = Kth

p∈Pming∈G ‖ g− p ‖, is used as to suppress the outliers [52];
it is defined as:

HD(G, P) = max{h95(G, P), h95(P, G)}, (9)

A smaller value HD(G, P) represents a higher proximity between ground truth and
segmentation result.

The absolute volume difference (AVD) is used to evaluate the difference between the
predicted volume and the true volume as:

AVD(G, P) =

∣∣Vg −Vp
∣∣

Vg
× 100%, (10)

where Vp is the volume of prediction and Vg is the volume of truth. A lower value of AVD
means the ground truth and prediction result are closer to each other.

The Average Surface Distance (ASD) is used to calculate for the predicted result P and
the corresponding ground truth G; it is defined as:

ASD(G, P) =
1
2

(
∑a∈G minb∈pd(a, b)

∑ G
+

∑b∈p mina∈gd(b, a)

∑ P

)
, (11)

where d(a, b) =‖ a− b ‖ represents Euclidean distance between points a and b.
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3.7. Implementation Details

Tensorflow is used on the workstation with a NVIDIA GTX_1080Ti GPU in our
experiments. In the pre-processing step for the MRBrainS13, IBSR18, and ISeg2017 datasets,
MR images are normalized with the zero-mean method, which is calculated as follows:
(1) each image is processed by subtracting a Gaussian smoothed image and applying a
contrast-limited adaptive histogram equalization to enhance local contrast, (2) the resulting
intensity value is subtracted by the mean intensity value and then divided by the standard
deviation.

In the training phase, to avoid overfitting, data augmentation techniques (flipping,
rotation, elastic stretching, shifting, zoom) are applied in the training procedure to get
good performance. The network is trained for 18,000 iterations with ADAM optimizer
and Xavier initialization, and the epoch is set as 1. The learning rate is set as 0.001, then
being reduced by a factor after every 5000 iterations. Due to the limited capacity of GPU
memory, for the input samples and the label samples, both of them with size 32 × 32 × 32,
are randomly cropped with a same center point from 4 modalities (T1, FLARI, T1_IR, the
label image); thus, they have the corresponding position information. A total of around
72,000 sub-volume samples are extracted by random sampling to feed into the network. For
the loss function, the weight of hth output loss function βh is set as [1,1,1], the associated
weight of the cth class label ωc is set as [1,1,2,2], and the fusion weight fn is set as [1,1,1].

In the test phase, the final prediction result is obtained by the majority voting strategy
on the results of overlapping with a stride of 8.

4. Results

We performed an ablation study to investigate the efficacy of employing multi-branch
pooling (MP), multi-branch dense prediction (MDP), and multi-branch output module by
using five-fold cross-validation.

4.1. Ablation for Multi-Branch Pooling (MP)

In order to gain the optimal combination kernel sizes of MP, we enumerated different
kernel sizes and test the performance on the MRBrain13 training dataset. We tried different
kernel sizes K ranging from 2 to 7 to exploit the optimal combination in the two pooling
stages. We named the combination of kernel in the first pooling stage “FP”, and the
combination of kernel in the second pooling stage “SP”. In the case K = 7, which roughly
equals to the feature map size (8 × 8), the structure becomes “really global pooling”. The
results are presented in Table 2. From the results, we can find that the performance is better
when the “FP” is the combination kernel size of 5, 3, 2, and “SP” is the combination kernel
size of 3, 2. When the “FP” is 2 and “SP” is 2, it represents the standard 3D-UNet.

Table 2. Performances of the combination kernel sizes in the two pooling stages by 5-fold cross-
validation in MRBrain13 training dataset (DC:%, HD:mm, AVD:%). The “FP” represents the first
pooling stage, the “SP” represents the second pooling stage, and the “K” represents the combination
of kernels.

GM WM CSF

K K DC HD AVD DC HD AVD DC HD AVD

FP 7,5,3,2 SP 7,5,3,2 82.47 2.10 7.99 83.59 3.61 7.71 78.22 3.30 8.61

FP 5,3,2 SP 5,3,2 83.12 1.94 7.79 85.40 2.89 7.52 81.45 2.58 8.59

FP 5,3,2 SP 3,2 86.08 1.71 6.76 89.02 1.76 6.71 84.15 2.24 7.82

FP 5,3,2 SP 2 84.50 1.75 7.01 86.04 2.75 7.17 83.23 2.44 8.02

FP 3,2 SP 3,2 85.98 1.90 7.22 88.90 2.32 6.59 84.63 2.18 8.13

FP 3,2 SP 2 82.25 2.03 8.07 84.34 3.48 7.42 83.01 2.98 8.66

FP 2 SP 2 85.94 1.85 7.09 88.83 2.39 6.82 83.79 2.31 8.30
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In additional, in order to exploit the collecting ability of spatial information between
max pooling and average pooling, each max pooling was replaced with average pooling
in MP. The result of UNet_MP_Aver is shown for MP using average pooling in Table 3. It
indicates that the UNet_MP_Max achieves higher performance over the UNet_MP_Aver.
Comparing with average pooling, max pooling can effectively reduce the collection of
redundant information.

Table 3. Performances of UNet, UNet_MP_Max, and UNet_MP_Aver by 5-fold cross-validation (DC:%, HD:mm, AVD:%).

Tissue GM WM CSF

Evaluation Metric DC HD AVD DC HD AVD DC HD AVD

UNet 85.94 1.85 7.09 88.83 2.39 6.82 83.79 2.31 8.30

UNet_MP_Max 86.08 1.71 6.76 89.02 1.76 6.71 84.15 2.24 7.82

UNet_MP_Aver 85.08 1.98 8.05 88.27 2.23 7.47 82.71 2.70 8.84

4.2. Ablation for Multi-Branch Output with Multi-Branch Dense Prediction (MDP)

As described in Section 3.2, we utilized MDP on the feature maps after using the
concatenation layer. To analyze the performance of using MDP at each branch output,
Table 4 provides the results of each branch output (B1, B2, B3) with MDP in each scale, in
which B1-MDP is 1/4 scale of output, B2-MDP stands for 1/2 scale, and B3-MDP represents
1/1 scale. Additionally, B1, B2, and B3 respectively represent the branch output without
MDP. According to the results (displayed in Table 4), it can be seen that the performance
is improved by increasing the scale of feature maps and the results of Dice score on WM,
GM, and CSF satisfy B1-MDP < B2-MDP < B3-MDP, and B1 < B2 < B3. The fusion of multi-
branch output is the key prediction result in the proposed network because it controls the
network prediction compensation and performance in different scales. When fusing the
branch output prediction with B1-MDP + B2-MDP + B3, named as B4, the segmentation
performance is obviously improved for the evaluation metrics on GM and CSF compared
with those of two other fusions, B5 (B1 + B2 + B3) and B6 (B1-MDP + B2-MDP + B3 MDP).

Table 4. Performances of B1, B2, B3, B1-MDP, B2-MDP, B3-MDP, B4, B5, B6, and MSCD-UNet by
5-fold cross-validation (DC:%, HD:mm, AVD:%).

Tissue GM WM CSF

Evaluation Metric DC HD AVD DC HD AVD DC HD AVD

B1 72.35 3.12 8.37 75.97 2.79 9.31 70.59 3.78 11.47

B2 75.42 3.06 7.92 79.49 2.37 8.92 77.51 3.69 10.15

B3 (UNet) 85.94 1.85 7.09 88.83 2.39 6.82 83.79 2.31 8.30

B1-MDP 73.04 2.05 8.14 74.33 2.93 9.56 71.06 3.02 9.75

B2-MDP 76.08 2.19 7.66 76.02 2.53 8.74 77.15 3.24 9.82

B3-MDP 85.88 2.01 8.05 88.87 2.23 7.47 83.81 2.70 8.84

B4 86.12 1.91 6.81 88.30 2.06 7.17 83.98 2.23 8.43

B5 85.96 1.93 7.05 89.03 1.88 7.03 83.62 2.40 8.11

B6 85.97 1.99 6.81 89.30 2.09 7.12 83.86 2.31 8.55

MSCD-UNet 86.41 1.52 5.76 89.18 2.13 7.21 84.29 2.16 7.73

Figure 7 provides a visual comparison of the segmentation results produced by the
trained UNet and our MSCD-UNet on the MRBrainS13 dataset. It shows that, with MP
and MDP, more accurate segmentation results can be generated. Specifically, additional
details are preserved, including boundaries and edges.
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Figure 7. Segmentation results of the UNet and MSCD-UNet on the MR BrainS13 dataset. The rows
show the segmentation results of different slices. From first column to last column: FLAIR, manual
segmentation, segmentation result of UNet, segmentation result of MSCD-UNet. Center patch in
solid yellow box of each segmentation result is highlighted. Each color denotes different brain tissue
class, i.e., gray matter (blue), white matter (green), cerebrospinal fluid (red), and other tissues (gray).

Finally, it is observed that the result using MSCD-UNet (UNet_MP_Max + B4) is
visually more accurate than those of other fusion strategies.

We also evaluate the MP and MDP on IBSR18 by five-fold cross-validation, where the
IBSR18 consists of a larger single-modality T1-weighted MRI with more tissue labels. The
evaluation is performed by using five-fold cross-validation on 18 subjects. However, the
proposed MSCD-UNet has three channels as the input. Thus, a single subnetwork (e.g.,
subnetwork for T1 MR images presented in Figure 2) was reserved in MSCD-UNet while
the remaining network structures were removed. The results are shown in Table 5. The
Dices on GW, WM, and CSF are 85.39%, 89.08%, and 88.14% for UNet, respectively, and
89.82%, 91.18%, and 90.57% for MSCD-UNet, respectively. It reveals that, along with the
using of MP and MDP, the performance of MSCD-UNet is obviously improved. Figure 8
provides a visual comparison of the segmentation results produced by the trained UNet
and MSCD-UNet on the IBSR18 dataset.

Table 5. Cross-validation results of MRI brain segmentation using UNet and MSCD-UNet on IBSR18.
(DC:%).

Evaluation Metric DC

Tissue GM WM CSF

UNet 85.39 89.08 88.14

MSCD-UNet 88.42 90.31 90.57
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We have evaluated our proposed MSCD-UNet on ISeg2017, where the ISeg2017
consists of T1W, T2W, and label image. Like [44], the evaluation is performed by using
nine subjects for training and one subject for validation. We evaluated our results on the
ninth subject of the dataset. However, the proposed MSCD-UNet has three channels as
the input. Thus, a subnetwork (e.g., subnetwork for T1, FLARI MR images presented
in Figure 2) was reserved in MSCD-UNet while the remaining network structures were
removed. The results are shown in Table 6. The Dices on GW, WM, and CSF are 91.36%,
89.91%, and 94.70% for UNet, respectively, and 92.17%, 90.47%, and 95.60% for MSCD-
UNet, respectively. We can see that using the MP and MDP can yield improvements over
the baseline of 3D-UNet.

Table 6. The validation results of MRI brain segmentation using UNet and MSCD-UNet on ISeg2017.

Methoed
GM WM CSF Average

DSC ASD DSC ASD DSC ASD DSC

UNet 0.9136 0.354 0.8991 0.385 0.9470 0.135 0.9136

Ours 0.9217 0.322 0.9047 0.362 0.956 0.110 0.9274

4.3. Comparison with Existing State-of-the-Art Methods

We compare the results between our proposed MSCD-UNet and the state-of-the-art ap-
proaches on MRBrainS13 online test dataset. The segmentation of WM, GM, and CSF is eval-
uated by using the three metrics. A comparison listed in Table 7 indicates that the MSCD-
UNet achieves better performance than many state-of-the-art methods [39–41,46,55,56].
The reason that our MSCD-UNet performs better is that our model can capture multi-scale
information in spatial and channel dimensions by using MP and MDP to alleviate the lack
of contextual information and the information loss during the encoding and decoding.
Comparing with the similar U-Net architectures [42,48], Li et al. [42] have proposed a
Dilated-Inception block to extract multi-scale features from brain MRI; however, it is easy
to harness the irrelevant redundant information by using a larger dilation rate. In order
to avoid harnessing the irrelevant redundant information, the proposed MP can capture
multi-scale feature information with a suitable receptive field. From Table 7, we can see
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that our proposed architecture achieves better performance than [42]. Sun et al. [48] had
the leading method in 2018; however, our proposed method obtained the best score on the
GM and CSF, although [48] has a higher score on the CSF. Additionally, our architecture
is parameter more efficient compared to [48], with 15 million learned parameters, less
than [48], which has 20 million learned parameters. Our proposed multi-branch pooling
(MP) and multi-branch dense prediction (MDP) can capture multi-scale feature information
with a suitable receptive field, and it is sensitive to segment these brain tissues in edge
because the intensity of tissues in edge vary greatly. Thus, our method achieves the best
performance on the GM and CSF due to the greatly variation of intensity in the edge.

Table 7. A comparison with the state-of-the-art methods on MRBrainS2013 online test Dataset.

Tissue GM WM CSF

Evaluation Metric DC HD AVD DC HD AVD DC HD AVD

MSCD-UNet 86.69 1.23 5.65 89.73 1.75 6.21 85.15 1.66 5.70

Sun [48] 86.58 1.29 5.75 89.87 1.73 5.47 84.81 1.84 6.84

Li [42] 86.40 1.38 5.72 89.70 1.88 6.28 84.86 2.03 6.75

Dolz [41] 86.33 1.34 6.19 89.46 1.78 6.03 83.42 2.26 7.31

Chen [40] 86.15 1.44 6.60 89.46 1.93 6.05 87.25 2.19 7.68

Bui [46] 86.06 1.52 6.60 89.00 2.11 5.54 83.76 2.32 6.77

Geraud [39] 86.03 1.44 6.05 89.29 1.86 5.83 82.44 2.28 9.03

Andermatt [55] 85.40 1.54 6.09 88.98 2.02 7.69 84.13 2.17 7.44

Stollenga [56] 84.89 1.67 6.35 88.53 2.07 5.93 83.47 2.22 8.63

We also compare the results between our proposed MSCD-UNet and the state-of-
the-art approaches on ISeg2017. The segmentation of WM, GM, and CSF is evaluated by
using the three metrics. The results are shown in Table 8. The Dices on GW, WM, and
CSF are 92.17%, 90.47%, and 95.60%, respectively, for our method. Compared to four
other approaches [18,44–46], the performance has a higher average Dice score than [45,46].
Although the average Dice is lower than [18], the Dice on GM is higher; additionally, the
optimal parameters are waiting to be found, and we will further exploit the potential of
MP and MDP in future work.

Table 8. A comparison between proposed architecture and other 3D-based state-of-art methods in
terms of DSC and ASD.

Method
GM WM CSF Average

DSC ASD DSC ASD DSC ASD DSC

Ours 0.9217 0.322 0.9047 0.362 0.956 0.110 0.9274

Lei [44] 0.926 0.307 0.908 0.353 0.959 0.114 0.931

Yu [45] 0.8851 - 0.8546 - 0.9371 - 0.8922

Qamar [18] 0.9205 - 0.9050 - 0.958 - 0.9278

Taoc [46] 0.9157 - 0.9125 - 0.9469 - 0.9250

5. Discussion

In this paper, we proposed a Multi-scale Spatial and Channel Dimension-based U-
Net for MRI brain segmentation. In our approach, an information extractor multi-branch
pooling (MP) is used to capture spatial information in the encoding part, and an infor-
mation extractor multi-branch dense prediction (MDP) is used to collect as much spatial
information as possible into channels in the decoding part. As the intensity of white
matter is similar to the gray matter in the rugged edge, enlarging the size of receptive field
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can improve the recognition performance. In our experiments, we validated that using
multiple max pooling with different kernel sizes in parallel can dramatically improve the
segmentation performance comparing to the standard 3D U-Net. For example, as shown
in Table 2, the Dice coefficients of GM, WM, and CSF by using five-fold cross-validation
are 85.94%, 88.83%, and 83.79, respectively, while using the MP can improve the Dice to
86.08%, 89.02%, and 84.15%, respectively. Integration of the multi-scale spatial information
in the encoding part can further improve the segmentation accuracy.

Regarding the decoding part, this naive decoding module may not fully recover the
segmented object details. During the decoding phase, the compressed feature maps from
the deepest encoding layer will be used to recover feature map resolution by using decon-
volution and up-sampling. After the maps resolution upsizing, the spatial information in
these decompressed feature maps is fixed, so the detailed information is represented more
in channel dimension. Hence, it is necessary to collect the complex information in channel
dimension. To probe the influence of channel-based multi-scale feature extractor (MDP),
we conducted the experiments with and without MDP. The evaluation performance results
including DC, HD, and AVD can be seen in Table 4. From these results, we can see the
performance of GM, WM, and CSF segmentation improved from 85.94% to 86.41%, 88.83%
to 89.18%, and 83.79% to 84.29% on Dice, respectively.

However, our study has some limitations. Although our analysis shows that the
MP and MDP with multi-branch output are effective in segmentation of GM, WM, and
CSF, if the combination of different kernel sizes in MP and different groups in MDP are
selected by a manual setting, which may be tedious and prone to errors if applied in some
extreme cases. Nevertheless, this is evidence of the capability of MP and MDP in brain
tissue segmentation tasks, indicating the need of further study on this issue to increase
the accuracy of such approaches. Another limitation of our model is that it has more than
15 million learned parameters and therefore the training of this model takes more than
8 h. The parameter of the proposed MSCD-UNet is three times larger than the standard
3D-UNet because the MSCD-UNet has three subnetworks for the T1, FLAIR, and T2 in
parallel. We used T1, T2, and FLAIR as multi-channel input in the MSCD-UNet, and
while the training time was substantially reduced, the performance of segmentation was
not satisfactory. Therefore, we should focus on the relationship between this parallel
architecture and the performance of segmentation. We believe that the performance of
segmentation would be improved, even without this parallel architecture.

6. Conclusions

We propose a novel Multi-scale Spatial and Channel Dimension-based U-Net, referred
to as MSCD-UNet, by integrating the multi-scale context information in spatial and channel
dimensions for brain tissue segmentation. It contains three modules: MP, MDP, and multi-
branch output. The MP is an extractor to capture spatial information during the encoding
procedure, which consists of multiple max pooling with different kernel sizes in parallel.
Extensive experiments indicate that the proposed information extractor MP can effectively
enhance the representative ability by exploiting the multi-scale spatial information. The
MDP and multi-branch output is a channel-based multi-scale feature extractor, which can
recover the corresponding localization to a higher resolution layer in the decoding path.
An ablation study demonstrates the effectiveness of the proposed MDP and multi-branch
output. This reflects the importance of capturing multi-scale features in enhancing the
learning ability in the encoding and decoding paths. We validated our proposed network
on the MRBrainS13, IBSR18, and ISeg2017 datasets for brain tissue segmentation and
achieved state-of-the-art results as compared to other existing approaches. The proposed
method can promote the research on automated brain tissue segmentation as well as offer
a useful and effective tool for assessing and diagnosing neurodegenerative diseases and
disorders of human brain. In future work, we will explore the proposed network for other
medical image challenges.
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