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Neuroprotective Effect of SCM-198 through Stabilizing
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Leonurine, also named SCM-198, which was extracted from Herba leonuri, displayed a protective effect on various
cardiovascular and brain diseases, like ischemic stroke. Ischemic stroke which is the leading cause of morbidity and
mortality, ultimately caused irreversible neuron damage. This study is aimed at exploring the possible therapeutic potential
of SCM-198 in the protection against postischemic neuronal injury and possible underlying mechanisms. A transient
middle cerebral artery occlusion (tMCAO) rat model was utilized to measure the protective effect of SCM-198 on neurons.
TEM was used to determine neuron ultrastructural changes. The brain slices were stained with Nissl staining solution for
Nissl bodies. Fluoro-Jade B (FJB) was used for staining the degenerating neurons. In the oxygen-glucose deprivation and re-
oxygenation (OGD/R) model of bEnd.3 cells treated with SCM-198 (0.1, 1, 10 μM). Then, the bEnd.3 cells were cocultured
with SH-SY5Y cells. Cell viability, MDA level, CAT activity, and apoptosis were examined to evaluate the cytotoxicity of
these treatments. Western blot and immunofluorescent assays were used to examine the expression of protein related to the
p-STAT3/NOX4/Bcl-2 signaling pathway. Coimmunoprecipitation was performed to determine the interaction between p-
STAT3 and NOX4. In the transient middle cerebral artery occlusion (tMCAO) rat model, we found that treatment with
SCM-198 could ameliorate neuron morphology and reduce the degenerating cell and neuron loss. In the in vitro model of
bEnd.3 cell oxygen-glucose deprivation and reoxygenation (OGD/R), treatment with SCM-198 restored the activity of
catalase (CAT), improved the expression of Cu-Zn superoxide dismutase (SOD1), and decreased the malondialdehyde
(MDA) production. SCM-198 treatment prevented OGD/R-induced cell apoptosis as indicated by increased cell viability and
decreased the number of TUNEL-positive cells, accompanied with upregulation of Bcl-2 and Bcl-xl protein and
downregulation Bax protein. The results were consistent with SH-SY5Y cells which coculture with bEnd.3 cells. The
forthcoming study revealed that SCM-198 activated the p-STAT3/NOX4/Bcl-2 signaling pathway. All the data indicated that
SCM-198 protected against oxidative stress and neuronal damage in in vivo and in vitro injury models via the p-
STAT3/NOX4/Bcl-2 signaling pathway. Our results suggested that SCM-198 could be the potential drug for neuroprotective
effect through stabilizing endothelial cell function.
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1. Introduction

Stroke is one of the leading cause of morbidity and mortal-
ity worldwide [1], owing to its incredibly short therapeutic
time window and fewer effective emergency medicines,
tissue-type plasminogen activator (tPA) serving as priority
therapeutic drug in ischemic stroke, with only 10% patients
of which applicable to this therapy [2]. Clinically speaking,
stroke could be categorized into two types: around 85% of
ischemic stroke and hemorrhagic stroke which includes
intracerebral bleeding and subarachnoidal bleeding
accounting for 10% and 3%, respectively [3]. Meanwhile, in
the ischemic stroke, secondary damage led by reperfusion will
worsen prognosis including a breakdown of blood-brain
barrier (BBB), inflammation, oxidative stress, excitotoxicity,
and finally irreversible neuronal damage [4].

NADPH oxidases (NOX) are one kind of the main
sources of ROS and the only kind of enzyme known that
has ROS formation function solely [5]. In mammals, the
NOX family includes seven members: NOX1 to NOX5, dual
oxidase- (Duox-) 1, and Duox-2 [6–8]. Among NOX, NOX4
appears mostly as a target for ischemia-reperfusion (IR) ther-
apy [9, 10] because it is induced under hypoxia in various cell
and tissues making it seem to be the most possible key point
of IR injury [11]. In addition, recent researches demonstrated
that NOX4 exerted the protective effect against blood-brain
barrier breakdown, oxidative stress, and neuronal apoptosis
during ischemic stroke [12, 13].

Research revealed that the activated signal transducers
and transcription 3 (STAT3) is involved in the protection
against cerebral ischemic reperfusion injury [14–16].
Previous studies investigated that activated STAT3 in stroke
model could promote numerous genes which play a protec-
tive effect on neural injury and repair [17, 18]. Further
experiments revealed that the regulation of the STAT3
signaling pathway could prevent neuroapoptosis [19].
However, the further mechanism of the downstream regula-
tors is unclear. On the contrary, there also some other differ-
ent results which reveal that blocking the STAT3 pathway
could improve cerebral recovery and neurological outcomes
[20]. Therefore, the rigid contribution of activated STAT3
after stroke remains incompletely explored.

Herbaleonuri, also called Chinese Motherwort or Sibe-
rian Motherwort, is found in China, central Europe, Scan-
dinavia, and Russia and has been documented for
treatment of vaginal bleeding, dystocia, retained fatal
membranes, bruising, metrorrhagia, metrostaxis, hemuresis,
and some other diseases. Leonurine (C14H21N3O5), extracted
from the leaves of Herbaleonuri, also named SCM-198, was
reported to be protective in cardio cerebral vascular diseases.
Our previous results firstly provide the evidence that SCM-
198 could prevent cardiac fibrosis and activate cardiac
fibroblasts partly through modulation of the NOX4-ROS
pathway [21]. And our investigation found that SCM-198
could maintain the BBB integrity by regulating the HDAC4/-
NOX4/MMP-9 tight junction pathway [22–25]. SCM-198
may directly inhibit the overactivated microglia, maintain
their ramified morphology, and decrease proinflammatory
cytokines via the NF-κB and JNK pathways in microglia

and Aβ1-40-injected SD rats [26]. Therefore, we investigated
the protective effect of SCM-198 on neuron and microvascu-
lar endothelial cells in both tMCAO rat model and OGD/R
in vitro model and put forward new mechanisms that
contribute to the protective effects of SCM-198 via the
STAT3/NOX4/Bcl-2 pathways.

2. Materials and Methods

2.1. Animal Model and Treatment.All the experimental pro-
tocol was approved by the institutional ethical committee
with internationally accepted ethical standards. Protocols
and animal handling were performed in accordance with
the guidelines of the National Institutes of Health Guide
for the Care and Use of Laboratory Animals. Male
Sprague-Dawley (SD) rats were supplied by the laboratory
animal center, Fudan University. Rats weighing 180-220 g
were housed with enough food and water under diurnal
lighting condition.

Briefly, we performed the surgery as described previously
[27]. All the animals mentioned above were randomly
divided into five groups: control operation group, tMCAO
group treated with saline, edaravone- (3mg/kg/day) treated
group, and SCM-198 (15mg/kg/day in normal saline) treat-
ment groups that were posttreated (0.5 h and 2h after opera-
tion). All the drugs were given through tail vein injection
once daily for 3 times.

2.2. Transmission Electron Microscopy (TEM). TEM was
used to determine neuron ultrastructural changes. All of
the ultrathin sections were examined with a Jeol JEM
1200 EX (Jeol Ltd., Tokyo, Japan) transmission electron
microscope. An investigator blinded to the study protocol
examined tissues [28].

2.3. Tissue Prepared. After three days of treatment, the rats
(n = 6) were anesthetized with pentobarbital sodium
(50mg/kg), then perfused with 0.9% saline and subsequently
with 4% paraformaldehyde in PBS. The brains were removed
and postfixed over 12h in the same aldehyde fixative
solution, then immersed in 15% and 30% sucrose solution
over 6 days at 4°C. The brains were sectioned at 20 μmwhich
were used for the next experiments [29].

2.4. Nissl Staining. Brain slices described above were stained
with Nissl staining solution (Beyotime) for 20min. The slices
were dehydrated in 70%, 95%, and 100% ethanol, cleared in
xylene, then covered with neutral resin. Five sections were
selected from each rat and three images for cortex and
striatum, respectively. The images were analyzed by ImageJ.

2.5. Fluoro-Jade B (FJB) Staining. FJB was used for staining
the degenerating neurons. Brain sections described above
were stained according to Liu et al. [30].

2.6. Immunofluorescent Staining. Immunofluorescence was
assessed as described earlier [31, 32]. Coronal brain slices
described above were blocked and incubated in polyclonal
rabbit anti-NeuN antibody (Abcam, 1 : 500) overnight in
4°C, followed by Alexa Fluor 488-conjugated goat anti-
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rabbit IgG (1 : 1000, Life Technologies) and counterstaining
with DAPI. Fluorescence staining was viewed with a laser
scanning confocal microscope (Zeiss, Oberkochen,
Germany).

2.7. bEnd.3 Cell Culture and Treatment. Mouse bEnd.3 cells
were bought from the American Type Culture Collection
(ATCC). Cells were cultured according to our previous
method [25].

To mimic ischemic-like conditions in vitro, bEnd.3 cells
were exposed to OGD and reperfusion as we described
previously [33]. In brief, the cells were washed with PBS
then replaced with glucose-free medium (Invitrogen). The
cells were placed in a BioSpherix incubator chamber
(ProOx C21, USA), which was flushed with 95% N2 and
5% CO2 for 6 h then transferred to 95% air, 5% CO2, and
continued to be cultured in the glucose-containing medium
for 4 h each time. The cells were divided into five groups:
control, OGD, and cells treated with SCM-198 (0.1 μM,
1μM, and 10μM) 2h before OGD. The inhibitors were
added 1h before OGD until the end of the experiment.

2.8. SH-SY5Y Cell Culture and Coculture with bEnd.3 Cells.
SH-SY5Y cell lines were purchased from the American Type
Culture Collection. SH-SY5Y cells were cultured with
Dulbecco’s modified Eagle’s medium (DMEM, HyClone,
USA) containing 10% fetal bovine serum (FBS, Gibco,
USA) and 100 μg/mL penicillin/streptomycin (Gibco) and
cultured at 37°C containing 5% CO2 and 95% O2.

The coculture system was set up according to a previous
study with some modifications [34]. After coculture for 24 h,
the SH-SY5Y cells were washed with PBS then replaced with
glucose-free medium (Invitrogen). The cells were placed in a
BioSpherix incubator chamber (ProOx C21, USA), which
was flushed with 95%N2 and 5% CO2 for 9 h then transferred
to 95% air, 5% CO2, and continued to be cultured in the
glucose-containing medium for 2 h each time.

2.9. MTT and Lactate Dehydrogenase (LDH) Assay. Cell
viability was determined by the mitochondrial-dependent
reduction of MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphe-
nyl tetrazolium bromide) to formazan by adding 10 μL of
the MTT agent (5mg/mL; Sigma-Aldrich) to cells in the
plates [35].

LDH activity was detected using the LDH activity assay
kit according to the manufacturer’s instructions.

2.10. The Measurement of the Level of MDA and the Activity
of CAT. Lipid peroxidation is quantified by measuring the
level of malondialdehyde (MDA) assay kit (Byotime). The
catalase activity (CAT) was determined following the manu-
facturer’s instructions (Beyotime).

2.11. TUNEL. To measure the cell apoptosis after OGD/R
insult, we counted the TUNEL- (terminal deoxynucleotidyl
transferase-mediated dUTP-biotin nick-end labeling-) posi-
tive cells which were determined by a cell death detection
kit, according to the manufacturer’s protocol (Biotool).

2.12. Coimmunoprecipitation. Coimmunoprecipitation was
carried out as described previously [36]. Briefly, bEnd.3 cells
were subjected to OGD treatment and reperfusion, then lysed
on ice in RIPA buffer. After preclearing with normal IgG, cell
lysates (0.5mg of protein) were incubated overnight at 4°C
with 2 μg of anti-NOX4 (Proteintech, 1 : 100) and anti-p-
STAT3 (CST, 1 : 100), followed by precipitation with 20μL
of protein A/G Plus-Agarose (Santa Cruz Biotech.) for 1 h
at 4°C. The precipitated complexes were used for western blot
analysis, as described below.

2.13. Western Blot. Western blot analyses were performed as
previously described [36, 37].

Each membrane was incubated with specific antibodies
as follows: Bcl-xl (Cell Signaling Technology, 1 : 1000),
Bcl-2 (Cell Signaling Technology, 1 : 1000), Bax (Cell
Signaling Technology, 1 : 1000), SOD1 (Cell Signaling Tech-
nology, 1 : 1000), NOX4 (Proteintech, 1 : 1000), STAT3 (Cell
Signaling Technology, 1 : 1000), p-STAT3 (Cell Signaling
Technology, 1 : 1000), Akt (Cell Signaling Technology,
1 : 1000), and p-Akt (Cell Signaling Technology, 1 : 1000).
To measure the expression of each protein, the relative
intensity was calculated by comparing the intensity of
GAPDH using densitometry.

3. Results

3.1. The Protection of SCM-198 on Neuron Morphology
after Ischemic Stroke. As we know, reperfusion can cause
secondary brain injury, including irreversible neuron
losses, injury, and degeneration. According to a previous
research, we hypothesized whether SCM-198 exerts the
effect on neurons in the tMCAO model. Firstly, we inves-
tigated brain tissue ultrastructural conditions. Three days
after tMCAO operation, large vacuoles and lysosomes
appeared in the cytoplasm. Nearly all of the mitochondria
in the model group showed ultrastructural pathological
changes and most of them were swollen. We could hardly
find normal neurons in this group (Figure 1(a)). SCM-198
treatment groups revealed less intercellular edema, better
neuron ultrastructure, and better mitochondrial protection
than the tMCAO-insulted group. Well-protected neurons
and slight dendritic swelling in 0.5 h post operation treatment
groups demonstrated great amelioration after SCM-198 treat-
ment. In the 0.5 h post operation treatment with edaravone
group, neurons were swelling and with less dense cytoplasm
comparedwith normal neurons.Mitochondrial accumulation
occurred which implicated oxidative stress in the insulted
region. We next measured the neural cell loss in the peri-
ischemic region of tMCAO cortex by Nissl staining. The
results revealed that SCM-198 reduced cell shrinkage and
empty spaces (Figure 1(b)).

3.2. SCM-198 Reduced Neuron Loss after I/R Insult. Fluoro-
Jade B, a kind of cell death marker used for staining
degenerating neurons, was chosen for further demonstra-
tion of neuroprotection. No FJB-positive cells were found
in the control group. On the contrary, vast degenerating
neurons were detected in the peri-ischemic regions of the
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tMCAO group. SCM-198, in the 0.5 h and 2h post operation
treatment groups, significantly reduced the number of
degenerating neurons. Edaravone also decreased the degen-
erating neurons; the effect was a little weaker than the
SCM-198 0.5 h group but there was no significant difference
(Figures 2(a) and 2(b)). This result was confirmed by NeuN
immunoreactivity (Figure 2(c)); from the result we found
that there was a substantial amount of NeuN-positive cells
in the control group. tMCAO led to more neuron loss, while
SCM-198 could reduce neuron loss in the ipsilateral brain
cortex. There was also no significant difference between
SCM-198 and edaravone. With this, these results demon-
strated that SCM-198 could significantly protect against
ischemic injury and improve neuronal survival.

3.3. SCM-198 Improved bEnd.3 Cells Antioxidative Capacity
In Vitro. No obvious cytotoxicity was observed at concen-
trations from 0.001 to 100 μM SCM-198 [26]. Possible
antioxidative mechanisms of SCM-198 were studied
mainly using bEnd.3 cells in vitro. To elucidate the
involvement of SCM-198 on OGD/R-induced cellular
injury, the content of MDA, activity of CAT, and SOD1
expression were measured. As shown in Figure 3(a), cell
viability, evaluated by an MTT assay, was significantly
reduced after exposure to OGD for 6 h and reperfusion for
2 h, while SCM-198 could increase cell viability in a
concentration-dependentmanner. OGD/R led to cell viability
decrease to 57:56% ± 3:47; 1 and 10 μMof SCM-198 improve
the viability to 76:54% ± 4:15 and 81:73% ± 5:18, respectively.
TheMDA level of the SCM-198 (1 and 10 μM) group was sig-

nificantly decreased as compared to the OGD/R group
(Figure 3(b)). The level of MDA in the OGD/R group was
two- and threefold than SCM-198 (1 and 10μM). The dose
1 and 10μMof SCM-198 could predominantly increase inter-
cellular antioxidative capacity by restoring the activity of CAT
(Figure 3(c)) and increase the expression of SOD1
(Figure 3(d)). SCM-198, 1 and 10 μM, could enhance the
activity of CAT from 0:35U ± 0:03 to 0:47U ± 0:07 and 0:49
U ± 0:03. OGD/R-induced cell apoptosis was determined by
TUNEL staining; the result showed that OGD/R obviously
increased the apoptosis ratio about 58:36% ± 2:72, whereas
treatment with SCM-198 (1 and 10μM) inhibited cell apopto-
sis to 19:56% ± 4:50 and 14:70% ± 3:47 (Figure 3(e)).

3.4. SCM-1 98 Protected Neurons via Modulating BMECs in
BMEC/Neuron Coculture System. As SCM-198 could effec-
tively protect against OGD/R insult in BMEC cells, we then
utilized a coculture system to determine whether SCM-198
has an effect on neurons through protecting the BMECs.
After 4 h reperfusion, bEnd.3 cells were cocultured with the
SH-SY5Y cell line for 24 h before SH-SY5Y was subjected to
OGD for 9 h and reperfusion for 2 h. bEnd.3 treatment with
SCM-198 coculture with SH-SY5Y exhibited protection
against OGD/R injury by improving the cell viability and
antioxidant ability and reducing apoptosis. Figure 4(a) shows
that conditioned medium with SCM-198, especially 1 μM
and 10μM, increased the cell viability to 77:52% ± 5:84 and
80:09% ± 5:42, respectively, when compared with the
OGD/R group without SCM-198 (52:95% ± 1:85). SCM-198
could reduce the LDH leakage and the MDA level in the

Control tMCAO tMCAO+SCM-198 tMCAO+edaravone

(a)

Control tMCAO SCM-198 (2 h) SCM-198 (0.5 h)

(b)

Figure 1: The protection of SCM-198 on neuron morphology after ischemic stroke. (a) The representative TEM of neurons in the peri-
ischemic region in the tMCAO model. SCM-198 diminished the changes in neuron morphology after I/R injury. Scale bar = 5μm and
500 nm, n = 3. (b) Representative pictures of coronal sections from the ischemic rat brain stained with Nissl staining. SCM-198 reduced
cell shrinkage and empty spaces. Scale bar = 20μm (n = 5).
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SH-SY5Y cells and increase the activity of CAT
(Figures 4(b)–4(d)). The leakage of LDH and MDA level in
the OGD/R group was three times larger than the control
group, while SCM-198 (1 μM and 10μM) was nearly half
of the OGD/R group. SCM-198, 1μM and 10μM, increased
CAT activity by about 50% compared with the model group.
SCM-198 could markedly decrease cell apoptosis, which was
confirmed by TUNEL stain. Figure 4(e) shows that OGD/R
increased the apoptosis ratio to 50:51% ± 3:59, whereas treat-
ment with SCM-198 (1 and 10 μM) dropped down cell
apoptosis to 23:12% ± 4:59 and 14:36% ± 6:53. Consistent
with these observations, we believe that SCM-198 could exert
a protective effect on neurons via modulating BMECs.

3.5. The Mechanism of SCM-198 Inhibited Apoptosis Induced
by OGD/R. Apoptosis is mainly responsible for cell death
after ischemia. As we mentioned above, SCM-198 could
reduce neuron loss in vivo and cell apoptosis in vitro.
We examined the effect of SCM-198 on the Bcl-2 family,
including the antiapoptosis protein Bcl-2 and Bcl-xl and

proapoptosis protein Bax. Our results showed that following
OGD/R injury Bcl-2 and Bcl-xl significantly decreased,
whereas they were improved with SCM-198 treatment (1
and 10 μM) (Figures 5(a)–5(c)). At the same time, the
coculture results are consistent with the findings in bEnd.3
cells. BMEC treatment with SCM-198 cocultured with SH-
SY5Y exerted protection against apoptosis induced by
OGD/R by increasing the expression of Bcl-2 and Bcl-xl
and reducing the Bax level (Figures 5(d)–5(f)).

Next, we further explored the mechanism of SCM-198
in reducing cell apoptosis caused by OGD/R in bEnd.3
cells. The results indicated that SCM-198, 1 and 10μM,
protected against apoptosis through improving the level
of p-STAT3 and inhibiting the expression of NOX4, then
modulated p-Akt, the proteins which were involved in cell
apoptosis (Figures 5(g)–5(i)).

3.6. SCM-198 Inhibited Apoptosis through the
STAT3/NOX4/Bcl-2 Pathway. As we know, STAT3 and
NOX4 are both involved in regulating apoptosis by modulating
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Figure 2: SCM-198 reduced neuron loss after I/R insult. (a) FJB staining of brain sections after reperfusion. Representative pictures of FJB
staining of brain sections after reperfusion. No FJB-positive cells were found in the control group. Vast degenerating neurons were
detected in the peri-ischemic regions of the tMCAO group. SCM-198 significantly reduced the number of degenerating neurons. (b) The
quantitative analysis of the number of degenerating neurons. Scale bar = 50 μm. Values are expressed as mean ± SD. #p < 0:05 versus
control group, ∗p < 0:05 versus tMCAO group (n = 5). (c) Immunofluorescence staining for NeuN after ischemia reperfusion. SCM-198
could reduce neuron loss in the ipsilateral brain cortex. Scale bar = 50μm.
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Figure 3: SCM-198 improved bEnd.3 cell antioxidative capacity in vitro. SCM-198 exhibited antioxidant abilities and improved the cell
viability of bEnd.3. (a) Cell viability, evaluated by an MTT assay, was significantly reduced after OGD/R injury exposure, while 1μM and
10μM of SCM-198 could increase cell viability. (b) MDA level of the SCM-198 group was remarkably decreased as compared to the
OGD/R group. (c) SCM-198 could predominantly increase intercellular antioxidative capacity by restoring the CAT activity. (d) SCM-198
obviously improved the expression of SOD1. (e) SCM-198 reduced the cell apoptosis in bEnd.3. OGD/R-induced cell apoptosis was
determined by TUNEL staining. (f) The result showed that OGD/R obviously increased the apoptosis ratio, whereas treatment with SCM-
198 reduced cell apoptosis. Values are expressed as mean ± SD. #p < 0:05 versus control group, ∗p < 0:05 versus OGD group (n = 3).
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the PI3K/Akt pathway, but the connection between STAT3 and
NOX4 remains unclear. Firstly, we used IL-6 to upregulate p-
STAT3 in different concentrations or WP1066 to inhibit
STAT3 1h before OGD/R injury; western blot indicated that
the level of NOX4 was inhibited by the overexpression of p-
STAT3 and increased by inhibiting STAT3, respectively
(Supplementary 1). But when we used DPI or GKT137831 to

inhibit NOX4 before being subjected to OGD/R, the level of
STAT3 was unchanged (Supplementary 2). We deemed that
STAT3 could regulate the expression in ischemic stroke, so we
used WP1066 for further study. The results revealed that treat-
ment with 10 μM of SCM-198 still observably decreased the
overexpression of NOX4 induced by WP1066 and improved
the expression of p-Akt. Then, SCM-198 further reduced the
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Figure 4: SCM-198 protected neurons via modulating BMECs in BMEC/neuron coculture system. bEnd.3 treated with SCM-198 and
cocultured with SH-SY5Y exhibited protection against OGD/R injury by improving the cell viability and the antioxidative ability. (a)
Treatment with SCM-198, especially 1 μM and 10 μM, increased bEnd.3 cell viability in OGD/R irritation. (b) SCM-198 could reduce the
LDH leakage in SH-SY5Y cells. (c) SCM-198 decreased the production of MDA in SH-SY5Y cells after OGD/R injury. (d) SCM-198
increased the activity of CAT. (e) SCM-198 reduced cell apoptosis in SH-SY5Y. OGD/R-induced cell apoptosis was determined by
TUNEL staining; the result showed that OGD/R obviously increased the number of apoptosis, whereas treatment with SCM-198 reduced
cell apoptosis. (f) The quantitative analysis of apoptotic cells was calculated. Values are expressed as mean ± SD. #p < 0:05 versus control
group, ∗p < 0:05 versus OGD group (n = 3).
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level of Bax and increased the expression of Bcl-xl and Bcl-2
(Figure 6).

3.7. SCM-198 Upregulates Interaction between p-STAT3 and
NOX4. Our previous results have indicated that p-STAT3
participated in OGD/R-mediated NOX4 expression. We
speculated that SCM-198 could affect the interaction between
p-STAT3 and NOX4. Coimmunoprecipitation analysis
demonstrated that the interaction between p-STAT3 and
NOX4 was increased by treatment with SCM-198
(Figures 7(a) and 7(b)). These data suggested that SCM-198

improved p-STAT3-NOX4 interaction, which may inhibit
NOX4 activation and subsequent apoptosis.

4. Discussion

In the present study, we demonstrated that NOX4 and
apoptosis pathway mediated the protective effects of SCM-
198 on endothelial cells and neurons during stroke in vivo
and in vitro. In addition, we newly discovered and elucidated
the p-STAT3/NOX4 pathway influenced by SCM-198 during
BBB breakdown. The expression of p-STAT3 serves as a
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Figure 5: The mechanism of SCM-198 inhibited apoptosis induced by OGD/R. (a–c) SCM-198 regulated the expression of apoptosis-related
protein in bEnd.3. OGD/R increased the expression of Bax. OGD/R also decreased the expression of Bcl-2 and Bcl-xl, while SCM-198 could
markedly improve the expression of Bcl-2 and Bcl-xl and reduce Bax expression. (d, e) SCM-198 regulated the expression of apoptosis-related
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of NOX4, then modulated p-Akt. Values are expressed as mean ± SD. #p < 0:05 versus control group, ∗p < 0:05 versus OGD group (n = 3).
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negative regulator of NOX4, and maybe it is achieved
through direct binding in this hypoxia occasion affected by
SCM-198. These results provide new insights into the stroke
protective roles of SCM-198 apart from BBBmaintenance we
have reported recently [25].

In ischemic stroke, the brain firstly suffers from a vast loss
of oxygen and nutrient causing tissue damage mainly in the
cortex and striatum [38], and reperfusion aggravates the
insult due to the fresh oxygen [3]. Conventional remedies
for stroke include tPA, an enzyme that recommended for
clinical use to catalyze blood clots less than 3 hours after
acute ischemia occurs, and edaravone, a free radical scaven-
ger and the only neuroprotective agent clinically approved
for acute ischemic stroke in Japan [39]. However, studies
have reported that treatment with tPA is frequently accom-
panied with a detrimental complication such as brain edema
because of reperfusion pursued. Edaravone could suppress
ROS production and potentially suppress the open of mito-
chondrial permeability transition pore (MPTP) [39]. Until
now, edaravone is the only clinically approved treatment for
stroke in Japan and treatment for amyotrophic lateral sclero-
sis (ALS) in theUS and Japan. The limited availability of effec-
tive clinicalmedicine leads to a large unmet need in society, so

the development of new approaches for acute stroke manage-
ment is urgent.

SCM-198 has been reported to have cardioprotective
effects against ischemic myocardial injuries through
scavenging intracellular ROS and increasing antiapoptosis-
associated protein levels [40]. In addition, several studies
have reported that SCM-198 can ameliorate the infarction
area of the cerebral cortex and improve neurological damage
[24, 41]. In this study, we found that the administration of
SCM-198 0.5 h post I/R in rat could preserve neuron
morphology while neurons in the edaravone treatment group
were still swelling and with less dense cytoplasm mass. In the
meantime, SCM-198 could prevent neural cell loss in the
peri-ischemic region of the cortex (Figure 1). Furthermore,
this was repeatedly confirmed by FJB staining and NeuN
detecting. The effect of SCM-198 was a little better than
edaravone although there was no significance. But as we
know, SCM-198 has fewer side effects and is easier to obtain.
In the in vitro study, we induced bEnd.3 cells or coculture
system with OGD/R model. The results reveal that SCM-
198 significantly improved cell viability and inhibited cell
apoptosis without obvious cytotoxicity in the OGD/R-
induced cells. But the results displayed that the effect of
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Figure 6: SCM-198 inhibited apoptosis through the STAT3/NOX4/Bcl-2 pathway. (a) SCM-198 (10 μM) still observably decreased the
overexpression of NOX4 induced by WP1066. (b) SCM-198 (10 μM) improved the expression of p-Akt. (c–e) SCM-198 (10 μM) could
enhance the protection against apoptosis after inhibiting the activation of p-STAT3 in bEnd.3. (f) SCM-198 (10 μM) improved the
expression of SOD1 after using WP1066. Values are expressed as mean ± SD. #p < 0:05 versus control group, ∗p < 0:05 versus OGD group
(n = 3).
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SCM-198 with 1 and 10 μM sometimes showed a dose
response effect between bEnd.3 cells and SH-SY5Y cells. In
SH-SY5Y cells, 1 and 10μM sometimes worked the same
way; we speculated that there may be two reasons: (1) condi-
tioned media influenced the results and (2) different experi-
mental systems. Taken together, SCM-198 might play a
neuroprotective role in I/R and OGR/R conditions.

STAT3 was reported to be a controversial contributor to
cerebral ischemic reperfusion injury. The JAK2/STAT3 path-
way is made up of JAK and STAT protein family. Among the
STAT proteins, STAT3 is considered the most conserved,
and it can be stimulated by various factors and stimuli [18],
such as inflammatory cytokines and chemokines. There are
contrary functional options about JAK2/STAT3 activation
in cerebral ischemia [42]. Many previous studies are agree
with that the activation of the JAK2/STAT3 pathway attenu-
ates brain ischemia/reperfusion injury [43]. It is reported that

estradiol or catalpol could protect against I/R injury through
activating STAT3 [44], which is consistent with the results of
ours. In order to make sure the relationship between STAT3
activation and the neuroprotective effects of SCM-198,
WP1066, a STAT3 inhibitor, was utilized. Our results
revealed that WP1066 could partially counteract the protec-
tive effect of SCM-198 (Figure 6), while the overexpression
of p-STAT3 could inhibit the expression of NOX4. Co-IP
experiment confirmed the direct binding of p-STAT3 and
NOX4, and the binding activity could be regulated by
SCM198. In addition, the inhibition of NOX4, expression
of p-STAT3, was not influenced, indicating that NOX4 was
regulated by p-STAT3.

NOX4, a primary source of ROS, is highly expressed in
many tissues during hypoxia which suggested that NOX4
could be an important uniform therapeutic target for postis-
chemic injuries. Furthermore, Kleinschnitz et al. reported
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that NOX4 predominantly localizes in endothelial cells and
neurons in the brain (rodent and human) [12]. In the
meantime, the breakdown of BBB, the special structure that
differentiates the brain from the heart and other organs,
could be attributed to the ROS produced by the endothelial
NOX4 during ischemic stroke [13]. Neuronal NOX4 also
contributes majorly to neuronal cellular autotoxicity upon
ischemia or hypoxia [13]. Pharmacological inhibition of
NOX4 could be a promising approach to develop stroke
protective drugs. Large-animal stroke models and prepara-
tion for clinical trial are ongoing (European Research
Council-Proof of Concept Project 737586 SAVEBRAIN).
In our study, SCM-198 could markedly reduce the upregu-
lation of NOX4 in endothelial cells and neuronal cells
suffering from ischemic condition, which was consistent
with our previous studies [21, 25].

5. Conclusion

In summary, our results showed that SCM-198 could exert
neuroprotective effects by stabilizing endothelial cell function
through regulating the p-STAT3/NOX4/Bcl-2 pathway
(Figure 8). Moreover, the regulation of NOX4 could be due
to the direct binding to p-STAT3 protein, which could be
affected by SCM-198. SCM-198 could be the potential drug
for I/R injury.
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