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Anne Régnier-Vigouroux,8 Pedro Mendes,9 and Rodrigo Mora-Rodrı́guez1,2,6,8,10,*
1Lab of Tumor
Chemosensitivity (LQT),
Research Center for Tropical
Diseases (CIET), Faculty of
Microbiology, University of
Costa Rica, 11501-2060 San
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SUMMARY

We hypothesize that dosage compensation of critical genes arises from systems-
level properties for cancer cells to withstand the negative effects of aneuploidy.
We identified several candidate genes in cancer multiomics data and developed a
biocomputational platform to construct a mathematical model of their interac-
tion network with micro-RNAs and transcription factors, where the property of
dosage compensation emerged for MYC and was dependent on the kinetic pa-
rameters of its feedback interactions with three micro-RNAs. These circuits
were experimentally validated using a genetic tug-of-war technique to overex-
press an exogenous MYC, leading to overexpression of the three microRNAs
involved and downregulation of endogenousMYC. In addition,MYC overexpres-
sion or inhibition of its compensating miRNAs led to dosage-dependent
cytotoxicity in MYC-amplified colon cancer cells. Finally, we identified negative
correlation of MYC dosage compensation with patient survival in TCGA breast
cancer patients, highlighting the potential of this mechanism to prevent aneu-
ploid cancer progression.

INTRODUCTION

Aneuploidy is a genomic alteration characterized by partial or whole gains and losses of chromosomes (Ha-

nahan and Weinberg, 2011), resulting in lethality for normal cells and entire organisms (Hardy and Hardy,

2015; Kojima and Cimini, 2019; Sheltzer and Amon, 2011). Aneuploidy is also the major source of autocat-

alytic genomic instability, where the cells with the highest aneuploidy also have the highest genomic

instability (Duesberg et al., 1998). This leads to many defects at the cellular level, most probably due to

the alteration of the gene dosage, where gains or losses of entire chromosomes alter the dosage of

many genes, leading to unbalanced load of critical proteins, altering energetic requirements and protein

homeostasis (Sheltzer and Amon, 2011).

Aneuploidy is also a hallmark of cancer, and it is present in 90% of solid tumors and 75% of hematologic

malignancies. Interestingly, aneuploidy was considered by early reports as the driving force of cancer

genomic evolution and seems to have a role in oncogenesis because it appears before malignant transfor-

mation (Sheltzer and Amon, 2011). It is therefore unknown how cancer cells deal with so much aneuploidy,

whereas normal cells are very sensitive. In fact, aneuploidy autocatalyzes genomic instability of transform-

ing cancer cells, leading to cell death due to catastrophic errors (Solé and Deisboeck, 2004). However, in

rare occasions, a specific combination of alterations is met, where chromosomes are gained or lost to

restore the balance and maintain viability (Ozery-Flato et al., 2011), suggesting the presence of a stable

mechanism, whose function has to be maintained to ensure survival.

A hint about the nature of these mechanisms developed by cancer cells to minimize the negative effects of

aneuploidy was provided by the fact that hyperdiploidy (higher than normal chromosome number) is more

frequently observed than hypodiploidy (lower than normal chromosome number) (Cimini, 2008; Weaver

and Cleveland, 2006). A possible explanation for this observation is given by the gene dosage
iScience 24, 103407, December 17, 2021 ª 2021 The Author(s).
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compensation hypothesis, a mechanism by which the expression of certain genes is modulated to balance

for differences in gene dosage when extra chromosomes are present (Kojima and Cimini, 2019).

Gene dosage compensation was described early for other organisms, as a means to balance the negative

effects of aneuploidy (Devlin et al., 1982), and there is accumulating evidence that it has an effect on gene

expression, population dynamics of copy number variants, and differential evolutionary fate of genes after

partial or whole-genome duplication (for more thorough reviews see Birchler and Veitia [2012] and (El-Bro-

losy and Stainier, 2017)). There are several potential mechanisms of dosage compensation. At the protein

synthesis level, the effects of gene dosage compensation are hypothesized to result from stoichiometric

differences among members of macromolecular complexes, the interactome, and signaling pathways

(Birchler and Veitia, 2012; Veitia et al., 2008). In this sense, gene dosage compensation represents a

compensatory mechanism that may ameliorate the imbalanced gene expression and restore protein ho-

meostasis in aneuploid cells due to a side effect of protein folding defects and increased protein degrada-

tion by proteosome and autophagy (Donnelly and Storchová, 2014). An approach to identify genes with

dosage compensation by increasing the copy number of individual genes using the genetic tug-of-war

technique demonstrated that 10% of the yeast genome have dosage compensation at the protein level

and consists predominantly of subunits of multiprotein complexes, which are regulated in a stoichiom-

etry-dependent manner (Ishikawa et al., 2017). Likewise, in aneuploid cancer it has been shown that

messenger RNA (mRNA) levels generally correlate well with an increased DNA copy number (gene dosage)

but these changes are not reflected at the protein level for several genes (Stingele et al., 2012). Indeed,

gene dosage compensation in cancer cells has been recently demonstrated at the protein level depending

on stoichiometry, whereby excess subunits are either degraded or aggregated (Brennan et al., 2019).

The regulation of gene transcription might be another effective mechanism to compensate the gene

dosage changes in aneuploid cells, as it maintains the stoichiometry and preserves the energy required

for transcription, translation, and eventual degradation of the extra proteins (Donnelly and Storchová,

2014). At this level, several experimental models have been used to investigate the effects of aneuploidy

on gene expression, with contradicting findings. In some of these studies it has been identified that the

acquisition of an extra chromosome results in a proportional increase in the expression of genes from

that chromosomal unit (Gao et al., 2007; Hughes et al., 2000; Lu et al., 2011; Mao et al., 2003; Pavelka et

al., 2010; Pollack et al., 2002; Ried et al., 2012; Stingele et al., 2012; Torres et al., 2007; Tsafrir et al.,

2006; Virtaneva et al., 2001; Williams et al., 2008; Xu et al., 2010). In contrast, other studies have reported

that certain genes on the aneuploid chromosomes display expression levels similar to those observed in

the euploid condition or lower than expected from their dosage (Chikashige et al., 2007; Kahlem et al.,

2004; Lyle et al., 2004; Sun et al., 2013a,b; Vacı́k et al., 2005). Moreover, the degree of compensation

may vary, and it may occur simultaneously with effects on other chromosomes (for review see Kojima

and Cimini [2019]). Despite those multiple observations, the gene dosage compensation at the transcrip-

tional level is still a phenomenon in search of a mechanism (El-Brolosy and Stainier, 2017).

Among the group of genomic elements categorized as noncoding RNAs, micro-RNAs (miRNAs) have been

widely studied due to their clinical importance. miRNAs are small endogenous RNA molecules that bind

mRNAs and repress gene expression (Fabian et al., 2010) with the ability to pleiotropically target poten-

tially hundreds or even thousands of genes (Hanna et al., 2019). Moreover, their target genes can also

be regulated by several miRNAs (Ritchie et al., 2013) establishing complex networks. Current estimates

indicate that the human genome contains 1917 annotated hairpin precursors and 2654 mature sequences

of miRNAs (Kozomara et al., 2019), estimated to directly regulate >60% of human mRNAs (Kim et al., 2016).

In consequence, there is a high probability that miRNA-transcription factor interactions may regulate the

expression of genes amplified or deleted in cancer. Therefore, we hypothesize that gene dosage compen-

sation in cancer can be mediated, at least in part, by the emerging properties of complex miRNA-TF net-

works, controlling the expression of key genes that have altered copy numbers.

In the present work we studied a potential mechanism of gene dosage compensation in aneuploid tumoral

cells with the aid of models constructed by a biocomputational platform. A criterion was established to

identify candidate genes with low tolerance in variation of gene expression despite high tolerance in

copy number variations (CNV). These genes were input to construct the models to identify compensation

circuits mediated by miRNA-TF interactions. We report the transcriptional gene dosage compensation of

MYC, STAT3, STAT5A, and STAT5B mediated in silico by an emergent property of feedback and
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feedforward loops. Thereby, we critically established that the network topology alone is not enough, as the

interactions forming these network motifs have a specific set of kinetic parameters enabling compensation,

strengthening the need for full dynamic models. We experimentally validated the compensation circuits for

MYC using a genetic tug-of-war approach and determined that this mechanism can be blocked by

depleting key miRNAs, affecting in a larger extent those cells with higher copy numbers of those compen-

sated genes. Our analysis of CCLE data confirmed MYC dosage compensation across multiple cancer

types, and the study of TCGA data indicated that MYC dosage compensation negatively correlates with

the overall survival of breast cancer patients.

Thus, we propose that a regulatory network mediated by miRNAs compensates for gene dosage changes

in aneuploid cancer cells. We suggest that the manipulation of specific nodes of this miRNA-based regu-

latory network could block gene dosage compensation, representing an alternative therapeutic strategy

specifically targeting aneuploid cancer cells.
RESULTS

Candidate genes with low tolerance to variation in their RNA expression despite high copy

number variation are present across the cancer genomes of the NCI60 panel

The identification of dosage-compensated candidate genes is not trivial. A CNV-buffering score was pro-

posed for aneuploid yeast strains, as the dosage-compensated genes had higher variation in copy number

but a constrained expression level (Hose et al., 2015). We implemented a similar criterion to identify genes

under putative dosage compensation by comparing copy number (CNV), gene expression (RNA), and pro-

teomic (Protein) data of all genes in the NCI60 panel, a collection of 59 cell lines of 7 types of cancer that are

fully characterized at different omic levels (Shoemaker, 2006). The input data are described in the STAR

methods section including the absolute values of DNA copy number, RNA expression, and protein expres-

sion (Figure 1A, left). We calculated the average RNA or protein expression of the diploid cell lines (copy

number between �0.25 and 0.25) for each gene to obtain the average diploid expression for every gene.

Afterward, we normalized all expression data against this diploid average expression for each gene and

calculated log2 transformed values. Using this approach, we could directly and simultaneously compare

the changes in DNA copy number, RNA, and protein expression across the NCI60 panel to look for genes

with high variations in DNA copy numbers but a low tolerance to variation in RNA or protein expression, as

they could represent candidate targets under dosage compensation (Figure 1A). We plotted the standard

deviation (SD) of the DNA, RNA, and protein values across the 59 cell lines and observed that several dots

separated from the main gene population, as they present high SD of DNA levels (Figure 1B).

To obtain a good separation of candidate compensated genes from the main cluster, we implemented a

Gaussian mixture model (GMM) with these data (Figure 1C). After classification, we could observe one

group of genes with high SD of DNA copies and relatively low SD of RNA and/or protein expression values

(Figure 1D). This cluster showed the expected behavior with high amplitudes in DNA values but very low

variation in RNA or protein expression (Figures 1D and Figure 1E). For instance, MYC presents high fre-

quency of CNV amplifications in the NCI60 panel without the corresponding increase in RNA levels (Fig-

ure 1F, left). A similar behavior is observed for Rab5C for both RNA and protein levels despite its copy num-

ber variation (Figure 1F middle), compared with a gene such as Sav1 where copy number and RNA

expression are well correlated (Figure 1F, right). Next, we discarded those genes with orthologues in X/

Y chromosomes because they cannot be differentiated using microarray techniques and obtained a list

of 56 gene candidates with putative dosage compensation at the transcript level. In some cases, there

was also protein data confirming this behavior, but there was no candidate with putative compensation

at the protein level only. Moreover, we reduced our list of candidates by discarding genes with high

DNA variation mostly due to deletions (more than 6 cell lines with deletions) and kept only genes with at

least 6 cell lines with amplifications. For example, MYC presents 27 amplifications within the NCI60 panel

with very similar expression levels. This approach reduced our list to 21 candidate genes with dosage am-

plifications (Figure S1) potentially compensated at the transcript level across the NCI60 panel (Table 1).

We next aimed to correlate the behavior of the CNVs among these candidate genes to their corresponding

chromosomal locations across the NCI60 panel. The clustergram in Figure 1G shows different clusters, sug-

gesting a similar behavior of copy number variations for these candidate genes. As expected, many of

these genes are correlated by their genomic locations, especially gene clusters belonging to the chromo-

somal bands 3q26, 6p25, 8q24, 9p21-22, 10q22-23, 11q22-24, 17q11, and 17q21-23. These data suggest the
iScience 24, 103407, December 17, 2021 3



Figure 1. Identification of candidate genes under dosage compensation in the NCI60 panel

(A) Input data of gene copy number (DNA, blue), gene expression (RNA, red), and protein levels (protein, green) of the

NCI60 panel. The absolute values are shown on the left panel across the 59 cell lines, and the right panel corresponds to

the log2 values normalized to the averaged RNA and protein of the diploid cell lines for the respective gene (Normalized

to diploid).

(B) Standard deviations (SD) of the DNA, RNA, and protein levels for each gene across the 59 cell lines of the NCI60 panel.

(C) Gaussian mixture model to identify a subpopulation of genes with high SD DNA and low SD RNA and/or low SD

protein (white arrow).

(D) Gene clustering according to the model in C (left). The cyan cluster contains candidate genes under dosage

compensation, characterized by high SD DNA, low SD Protein (middle), and low SD RNA (right).

(E) Absolute and normalized values of selected candidate genes under dosage compensation.

(F) Examples of candidate genes under dosage compensation (MYC and RAB5C).

(G) Clusters of candidate genes according to their copy number variations across the 59 cell lines of the NCI60 panel.
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existence of genes with low tolerance to variation in their RNA expression despite high CNV across the

NCI60 panel, partially associated by common chromosomal locations. These genes are compensated can-

didates pointing to a transcriptional dosage compensation that propagates to the protein level. However,

the protein data of the NCI60 panel is limited, thus precluding the identification of candidates compen-

sated at the protein level only.
A mathematical model of gene dosage compensation mediated by a network of miRNA-

transcription factor interactions for the NCI60 panel

We hypothesized that the inhibition of a dosage compensation mechanism would release the brake

imposed on the expression of all these additional copies, leading to significant overexpression of these

genes. If the dosage compensation of these genes was favored during cancer evolution to restrain the

expression of key lethal genes, its overexpression could potentially lead to death of cell lines with these

specific amplifications. Therefore, we focused our next steps on the description of possible mechanisms

involved in dosage compensation of amplified genes identified in the NCI60 panel.

We asked whether the dosage compensation mechanism could be mediated by systems-level properties

arising from a complex regulatory network of gene expression. Therefore, we calculated the correlation co-

efficients between the Z-scores of copy number variations of the candidate genes and the Z-scores of

miRNA/TF expression data across the NCI60 panel to identify possible regulators responding to the

dosage of our candidate genes (Figure S2). There are both miRNAs and TF with positive or negative cor-

relation to the candidate copy numbers (Figure S2A). To evaluate whether there are any reported or pre-

dicted connections between these candidate genes and miRNAs/TF, we searched for putative and vali-

dated interactions between our candidate genes and miRNA/transcription factors in several databases

(See STAR Methods). After filtering the correlation matrix of Figure S2A by these reported interactions,

we obtained only relatively low correlation coefficients for direct gene-miRNA and gene-TF interactions

as shown in Figure S2B. These results suggest that most correlations are due to indirect interactions; it

is unlikely that the direct interactions alone would be responsible for gene dosage compensation of their

corresponding candidate genes given those fairly low correlations.

In order to model these interactions, we developed BioNetUCR, a computational platform to construct

large-scale models of miRNAs and TF interactions with the reverse approach, starting with a list of genes

of interest that could be determined by differential expression analysis or customized by the researchers

(Figure S3 [steps 1]; see STARMethods, Network Construction [step 1]). Using this platform, we constructed

a network of 47,122 putative and validated regulatory interactions connecting all 21 candidate genes with

all their reported interactions with 163 miRNAs and 428 TFs and visualized it using CIRCOS table viewer

(Krzywinski et al., 2009) (Figure S2C). We identified a total number of 5,054 putative regulatory motifs

with systems-level properties including positive and negative feedback loops (between miRNAs and

TFs), coherent feedforward loops, and incoherent feedforward loops (Vera et al., 2013). For example,

miR15a participates in a coherent feedforward loop inhibiting both SEMAD3 and BRCA1, a positive regu-

lator of BRCA1. Also, BRCA1 forms an incoherent feedforward loop, activating the transcription of not only

SEMAD3 but also miR195, a negative regulator of SEMAD3. In addition, miR15a forms a negative feedback

loop with BRCA1 (Figure S2C). In total, this network includes 156 negative feedback loops between TFs and

miRNAs, 2,337 coherent feedforward loops, and 2,561 incoherent feedforward loops formed by the inter-

action of TFs andmiRNAs with the target genes. The analysis of this network topology indicates that several

putative regulatory loops link all the candidate target genes. Moreover, from the construction of this

network topology, it is easy to infer that this network could sense changes in copy number of target genes

only if they also have a TF function (red colored interactions, Figure S2C). Only a gene candidate with TF

function will trigger a signal that can be propagated throughout the network and back if this gene has a

regulatory loop. This loop would compensate gene expression in response to changes in gene dosage.

Therefore, we reduced the network complexity to include only the NCI60 target genes with TF-function, as

they are the only genes for which a copy number variation can be sensed (MYC, ZNF217, STAT3, FOXC1,

FOXF2, PGR, STAT5A, STAT5B). This resulted in a network of 517 nodes and 44,016 arcs of putative and

validated interactions. Because we collected about 450,000 experimentally validated interactions from

public databases, we decided to include only experimentally validated interactions to further reduce

model complexity, leading to a network of 78 nodes and 578 arcs. After this simplification, several target

genes became dead ends, because no validated interactions are reported influencing other nodes of
iScience 24, 103407, December 17, 2021 5



ll
OPEN ACCESS

iScience
Article
the network. Therefore, we removed them (BioNetUCR: DELETE SINK NODES, DELETE SOURCE NODES,

and DELETE AUTOREGULATED NODES), further reducing the model to include only 4 target genes with

TF-function and validated interactions influencing other nodes of the network: MYC, STAT3, STAT5A, and

STAT5B. This led to a network of 65 nodes and 506 arcs. The nodes include 45 TFs and 20 miRNAs. In order

to examine the target/miRNA/TF network for the presence of regulatory motifs with systems-level proper-

ties, we searched for positive and negative feedback loops (between miRNAs and TFs), coherent feedfor-

ward loops, and incoherent feedforward loops. For this network, the arcs formed 16 feedback loops, 28

coherent feedforward loops, and 45 incoherent feedforward loops (Figure 2A).

Thus, the regulatory motifs with potential systems-level properties to mediate dosage compensation are

widely present within this putative network. However, the network topology alone is not enough to identify

robust targets controlling the phenotype of interest because a gene-dosage response mediated by one or

several of these regulatory loops will depend on the strength of the interactions (i.e. their kinetic parameter

values). Due to the high complexity of this miRNA/TF regulatory network, we envisaged the construction of

a large-scale mathematical model in order to gain insight into a possible mechanism of gene dosage

compensation mediated by any of the many regulatory loops identified in this network. Therefore, beyond

identifying a network, we used our platform to establish a full dynamical system based on ordinary differ-

ential equations (ODEs) (Figure S3A, step 3), which can be calibrated with existing experimental data (Fig-

ure S3A, step 4). To do so, we introduced ODE expressions for the schematic representations of the

modeled interactions for the target gene, miRNAs, and associated TFs (Figures 2B and S3A step3) and

translated them into differential equations. The resulting biochemical model includes 65 species, 130 re-

actions, and 305 parameters.

A quantitative systems-level approach for the calculation of the goodness of fit of a mathematical model

describing the interactions enabled us to assess the feasibility of a proposed network topology for gene

dosage compensation. The model parameters included 65 copy numbers that were set as independent

values and 240 kinetic parameters for fitting (degrees of freedom).The model was fitted to the 3,835 exper-

imental data points (dependent variables) for a ratio of 16X the number of degrees of freedom using the

Parameter Estimation function of COPASI under the assumption that each cell line of the NCI60 panel rep-

resents a different steady state of this model depending only on the copy numbers of the genes in the

network (STAR methods: BioNetUCR [step 5]: Model parameter estimation using COPASI). Thereby, we

constructed and fitted a first ODE mathematical model, which was not able to reproduce any behavior

of dosage compensation. Despite the initial set-backs, the turning point toward the modeling of the

gene dosage compensation was the insight of the sensor loop: the group of interactions starting in a TF

and returning after a defined number of interactions with other species including miRNAs and other

TFs. These include feedback and feedforward loops but also more complex interactions. The sensor

loop itself also helps the network to adapt to fluctuations of the genes by repressing its expression. Hereby,

we enriched our network for only those arcs establishing feedback or feedforward loops obtaining smaller

models suitable for a faster parameter estimation (STAR methods: BioNetUCR [step 2]: Optional Network

Simplifications and Sensor Loops).

After constructing the new ODE model enriched in Sensor Loops, we performed a new parameter estima-

tion and proceeded with a systematic elimination of nodes with the worse fitting and low control over the

target genes of interest (STAR methods: BioNetUCR [step 6 and step 7]: Sensitivity analysis and removal of

non-fitted/weak regulators). First, we calculated the p values (paired Student’s t test to compare simulated

with experimental data) for the goodness-of-fit for the resulting model, which presents a good fit for most

species except for miR106a (p = 0.012) and no control of miR106a on any of the candidate genes. After

removing miR106a, the resulting model achieved a lower objective function value (better fit) but miR145

had the worse goodness-of-fit (p = 0.075) without significant control on the target genes. We continued

by removing miR145 from the model to construct a new network and continued the parameter estimation

to obtain an optimized model with a lower objective function (Figure 2C). For this last fit, there was no sta-

tistical difference of the values of the simulated species compared with the experimental data (p > 0.1, Fig-

ure 2D), obtaining thereby a mathematical model describing the experimental data of our target candi-

dates and their associated miRNAs and TFs.

Furthermore, we evaluated this model for gene dosage compensation by performing a parameter scan us-

ing COPASI for the copy number of the 4 target genes individually (STAR methods: Assessment of gene
6 iScience 24, 103407, December 17, 2021



Figure 2. A mathematical model driven by NCI60 data leads to a phenotype of gene dosage compensation for

MYC and STAT3

(A) Network of miRNA-TF interactions for MYC, STAT3, STAT5A, and STAT5B.

(B) Schematic representations of the modeled interactions for the target gene, miRNAs, and associated TFs for ODE

model construction. State transition arrows indicate synthesis or degradation, catalysis lines (circular-head) indicate

activation, and flat-headlines indicate inhibition.

(C) Results of the parameter estimation task to fit the ODEmathematical model to the experimental data upon systematic

removal of the species with worse fitting and lowest control on the candidate genes, leading to a reduction in the

objective function (difference between modeled and experimental data).

(D) Graphical comparison of modeled and experimental data shows no significant differences for the final resulting model

(p > 0.1).

(E) Results of parameter scan on the values of copy number for the candidate target genes showing gene dosage

compensation for MYC and STAT3.

(F) The sensitivity analysis points to some candidate regulatory molecules controlling the concentrations of MYC and

STAT3.

ll
OPEN ACCESS

iScience 24, 103407, December 17, 2021 7

iScience
Article



ll
OPEN ACCESS

iScience
Article
dosage compensation behavior and other simulations). As shown in Figure 2E, increasing the copy number

ofMYC from 1 to 5 leads only to an increase of 1.95-fold inMYC expression. For STAT3, an increase from 1

to 5 in copy number leads to an increase of 3.19-fold in STAT3 expression. This was not the case for STAT5A

and STAT5B, which copy number increases were only slightly compensated in the model. We next per-

formed a metabolic control analysis using COPASI to identify candidate miRNAs or TFs with high positive

or negative regulatory control on the expression level of the 4 target genes. We plotted the 6 miRNAs with

the highest negative control and the 6 TFs with the highest positive control (Figure 2F). The results showed

thatMYC levels are mainly controlled by an interplay betweenmiR17, miR20a, miR19a, and BRCA1 andNF-

KB1. STAT3 levels are mainly controlled by miR17, miR20a, miR19a and BRCA1, NF-KB1, ETS1, and ATF1.

Although STAT5A and STAT5B were not compensated upon changes in their copy numbers, they also pre-

sent control in their expression levels by some of the same miRNAs and TFs, suggesting that the mecha-

nism ofMYC and STAT3 compensation could also impact the levels of STAT5A and STAT5B. These obser-

vations demonstrate that our mathematical model is able to describe a theoretical network of validated

interactions between miRNAs and TFs with systems-level properties mediating direct dosage compensa-

tion of MYC and STAT3, with a possible impact on STAT5A and STAT5B. If this model is correct, the inhi-

bition of some miRNAs negatively controlling the expression levels of the target genes could potentially

perturb gene dosage compensation.
A minimal model of MYC and STAT3 dosage compensation leads to the identification of a

putative mechanism of gene-dosage compensation in aneuploid cancer

We next asked for the minimal components of the network to identify the exact regulatory loops mediating

gene dosage compensation and to design strategies to interfere with this mechanism in silico. First, we

sought to identify the essential species involved in the feedback or feedforward loops controlling gene

dosage compensation. We performed parameter scans changing the copy number of the compensated

genes (MYC and STAT3) and observed the behavior of the concentrations of the miRNAs and TFs of the

model. For MYC copy number scan, the MYC expression showed a compensated increase, observed

also for several TFs and miRNAs (Figure 3A, left), including those identified by metabolic control analysis

(miR19a, miR20a, and miR17; Figure 2F), but others, such as STAT3 and miR21, decreased with increasing

MYC copy numbers (Figure 3A, left). For STAT3, increasing gene copy numbers led to a compensated in-

crease of STAT3, several miRNAs including miR21, miR17, miR221, miR19a, and miR20a, and other TFs but

also a decrease in STAT5A, ETS1, and PPARG (Figure 3A, right).

To assess the role in dosage compensation of these miRNAs and TFs responding to the changes in MYC

and STAT3 copy numbers, we performed single in silico inhibitions of the corresponding nodes by

setting their interaction (inhibition/activation) parameters to 0. The inhibitions of single species altered

the steady state levels of expression of MYC and STAT3 for the basal conditions (copy number of 1), but

this effect is not shown due to the normalization of the expression, to better appreciate the effect on

gene dosage compensation (Figure 3B). The parameter scans under these conditions showed that

MYC and STAT3 compensations are completely abolished when their respective interaction parameters

are set to 0, confirming that their TF function is essential for the network to sense the changes in copy

number [MYC(�) and STAT3(�) conditions, Figure 3B]. In addition, MYC compensation is slightly altered

when STAT3 is inhibited [STAT3(�)], and STAT3 compensation is completely abolished when MYC is in-

hibited [MYC(�)], suggesting an interplay in the mechanisms of gene dosage compensation of these two

genes. In contrast, the single inhibition for all remaining TFs and miRNAs had little or no effect on MYC

and STAT3 dosage compensation, suggesting that this mechanism could be redundantly mediated by

more than one miRNA or TF.

Therefore, we performed another in silico experiment changing the copy number ofMYC and STAT3 while

all miRNAs or TFs were inhibited, except by MYC and STAT3 themselves (Figure 3C). The results showed

that the inhibition of all the other TFs [TF (�)] had no effect on the dosage compensation of MYC and

STAT3. However, the inhibition of all miRNAs [MiR(�)] completely abolished the dosage compensation

for both genes and led to a huge increase in their expression. We then proceeded to restore somemiRNAs

individually back into the MiR inhibited model, for example [MiR(�) + miR17] to simulate the effect of the

active miR17 alone. Surprisingly, more than one miRNA was able to restore dosage compensation for both

MYC and STAT3, confirming thereby that this mechanism is redundant. Indeed, miR17, miR19a, andmiR20a

were individually able to compensate MYC dosage, and miR17, miR20a, and miR21 were able to restore

STAT3 dosage compensation (Figure 3C). In addition, to confirm the role of these redundant miRNAs
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Figure 3. Biology-inspired experiments with themathematical model lead to the identification of aminimal model

of gene dosage compensation for MYC and STAT3

(A) A parameter scan onMYC (left) and STAT3 (right) copy numbers identifies which molecules increase (red) or decrease

(blue) together with varying copy numbers of those two genes.

(B) The single inhibition of those varying molecules has no effect on the parameter scan to evaluate gene dosage

compensation of MYC (left) and STAT3 (right). The expression remains blue similar to control conditions except for the

inhibition of MYC or STAT3 themselves.

(C) The inhibition of groups of molecules and the restoration of single miRNAs indicate a redundant mechanism for the

gene dosage compensation of MYC (left) and STAT3 (right).

(D) A minimal model of gene dosage compensation for MYC and STAT3 is hypothesized based on the results of these

experiments (simplified representation).

(E) The fitting and parameter scan demonstrates that this minimal model recapitulates the dosage compensation ofMYC

and STAT3.
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on gene dosage compensation in silico, we performed their triple inhibition in the complete model.

Indeed, the triple inhibition [miR17, miR19a, and miR20a (�)] was able to blockMYC dosage compensation

(Figure 3C, left), whereas [miR17, miR20a, and miR21 (�)] abolished STAT3 dosage compensation
iScience 24, 103407, December 17, 2021 9
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(Figure 3C, right), confirming that MYC and STAT3 dosage compensation is mediated by a redundant

mechanism in silico.

Based on these results of redundant compensation and the interplay betweenMYC and STAT3, we proposed a

minimal network topology of gene dosage compensation forMYC and STAT3 (Figure 3D). The Systems Biology

Graphical Notation (SBGN) representation of this model is presented in Figure S3B. After reconstructing the

interactions from the original network, the minimal network states that MYC is compensated by 3 redundant

negative feedback loops formed with miR17, miR19a, and miR20a. The compensation of STAT3 is mediated

by 1 feedback loop with miR21 and 2 feedforward loops: (STAT3-MYC-miR17-STAT3) and (STAT3-MYC-

miR20a-STAT3). From this minimal network topology, we constructed a minimal mathematical model of

gene dosage compensation for MYC and STAT3, including only 18 parameters against 354 experimental

data points (203 ratio). After fitting this minimal model to the experimental data and repeating the parameter

scan experiments for gene copy numbers ofMYC and STAT3, we reconstituted the samedosage compensation

mechanism observed in the original large model of interactions (Figure 3E).

These results indicate that we identified in silico a minimal model of gene dosage compensation forMYC and

STAT3 mediated by their interactions with miR17, miR19a, miR20a, and miR21. Indeed, the sensitivity analysis

and the in silico experiments enabled us to identify the most robust target nodes to regulate the phenotype

of interest, to determine the mechanism behind that phenotype and the interventions on those target nodes.

This results in a smaller model with a higher explanatory power than the original (large) network.
MYC is widely compensated across different types of cancer

To assess the extent ofMYC and STAT3 dosage compensation across different cancer types in a larger da-

taset, we used the same criteria of the NCI60 study to identify candidate genes under dosage compensa-

tion for 898 cell lines of Cancer Cell Line Encyclopedia (CCLE) having both RNA expression and CNV data

(STAR Methods: Model of MYC/STAT3 dosage compensation with CCLE). First, the expression data were

normalized to the mean of the diploid cell lines for each gene, and both the normalized expression and the

absolute copy number were log2 transformed and centered to 0 (diploidy) for a direct comparison (Fig-

ure 4A, left). Likewise, the SD of both log2 transformed data were calculated and plotted to search for clus-

ters of putative candidate genes under dosage compensation. The scatterplot shows a cluster (blue) of 152

genes with the highest SD of CNV and relatively low SD in expression, indicating the presence of some

genes with low tolerance to variation in expression despite having the highest variation in their CNVs (Fig-

ure 4B). When the expression and CNV data of this cluster are plotted, a narrower amplitude of expression

can be observed compared with the full dataset as expected (Figure 4A, right). We could also locate our

two main candidates of the NCI60 study within the CCLE data. STAT3 has lower copy number variation

compared with the NCI60 dataset but a similar low variation in expression. In contrast,MYC could be map-

ped as one of the genes with the highest variation in CNV and the lowest corresponding variation in expres-

sion (Figure 4B). A closer look at the individual MYC/STAT3 data across CCLE shows that MYC has many

more amplifications with high copy numbers, all of them probably compensated. STAT3, in contrast, has

few compensated amplifications of only one additional copy (Figure 4C). There are also several genes

with higher variation in CNV compared withMYC, and among them there is one with a particularly low vari-

ation in expression, corresponding to TBC1D3B (https://www.genecards.org/cgi-bin/carddisp.pl?

gene=TBC1D3B). TBC1D3B codes for a protein involved in RAB GTPase signaling and vesicle trafficking

and is located in chromosome 7q, a shared chromosomal location with some of our previous NCI60 can-

didates including STAT3, STAT5A, and STAT5B. These findings confirmed that MYC is one of the most

frequently amplified and compensated genes across CCLE according to our criterion to identify

dosage-compensated candidates, and there are other candidates under robust dosage compensation.

We set out to investigate whether this behavior of apparent dosage-compensation of MYC/STAT3 could

be explained by the same circuits postulated for the NCI60 data. We studied those circuits at 3 different

levels. First, we tried to fit a pan-CCLE mathematical model using all the cell lines to fit the minimal model

ofMYC/STAT3 dosage compensation. Althoughwe could not fit themodel for the different species (except

for STAT3), a tendency can be observed when the simulated dataset is compared with the experimental

data (Figure 4D), and the resulting model recapitulates the behavior of gene dosage compensation for

both genes (Figure 4E). Second, we hypothesized that the high heterogeneity of CCLE impairs a correct

fitting of the minimal model and therefore decided to fit the minimal model to tumor-type specific data-

sets. We achieved a complete fitting for all the species of most tumor-specific models of gene dosage
10 iScience 24, 103407, December 17, 2021

https://www.genecards.org/cgi-bin/carddisp.pl?gene=TBC1D3B
https://www.genecards.org/cgi-bin/carddisp.pl?gene=TBC1D3B


Figure 4. Status of MYC and STAT3 compensation across the CCLE cell lines

(A) Input data of gene copy number (DNA, blue) and gene expression (RNA, red) of CCLE normalized to diploid average

(expression) and log2 transformed for all the genes (right) and the selected cluster in B (right).

(B) Standard deviations (SD) of the copy number variation (CNV) and expression for each gene across the cell lines of the

NCI60 panel. A selected cluster of genes with low tolerance to changes in expression despite of high variability in copy

number was detected (blue). The respective positions of MYC and STAT3 are shown in red.

(C) Gene copy number (DNA, blue) and gene expression (RNA, red) of CCLE normalized to diploid average (expression)

and log2 transformed for MYC and STAT3.

(D) Fitting results of minimal model of MYC/STAT3 dosage compensation compared with the experimental dataset (p

values for miR21: 0, miR20a: 8x10�10, miR17: 1.6x10�9, STAT3: 0.126, MYC: 7x10�8).

(E) Parameter scan forMYC and STAT3 copy numbers of the pan-CCLEmodel shows gene dosage compensation for both

MYC and STAT3.

(F) Results of parameter estimation for each of the species of tumor-type specific minimal models of dosage

compensation (upper panel, p > 0.01). The corresponding parameter scans on gene copy numbers ofMYC (middle panel)

and STAT3 (lower panel) display heterogeneity in gene dosage compensation.
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Figure 4. Continued

(G) Single-experiment parameter scans of copy numbers (from 1 to 5) show the heterogeneity inMYC and STAT3 dosage

compensation. On each box, the central mark indicates themedian, and the bottom and top edges of the box indicate the

25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers, and

the outliers are plotted individually using the ‘‘+’’ symbol.

(H) Distribution of MYC and STAT3 dosage compensation indexes by tumor type.
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compensation except for lung and breast cancer (Figure 4F, upper panel). We next tested the tumor-type

models for their capability to compensate by parameter scans on MYC/STAT3 copy numbers and could

observe a generalizedMYC dosage compensation across tumor types with certain degree of heterogene-

ity, except for the prostate cancer model that showed no dosage compensation (Figure 4F, middle panel).

In contrast, there was a much higher heterogeneity in STAT3 dosage compensation across tumor types.

Eight tumor-type specific models were not able to compensate STAT3 dosage at all (Figure 4F, lower

panel).

In order to further characterize this heterogeneity in gene-dosage compensation, we used the model as a

tool to perform individual parameter estimation of single cell lines (see STAR Methods: Material and

methods: Calculation of Compensation Index). With the single-experiment models, we performed param-

eter scans to calculate the increase in gene expression in silico at steady state upon increasing gene copy

numbers from 1 to 5. The values were normalized to the expression at CNV = 1 for comparison. We could

therefore observe that themajority of cell-line-specific models have the capability ofMYC dosage compen-

sation in their current configurations (determined by their parameter values) with only few outliers, as

shown by the sub-linear increases in gene expression upon an increasing CNV (e.g. an increase in a

copy number from 1 to 5 leads to an average increase of only 2.3-fold in expression; Figure 4G, left panel).

In contrast, STAT3 dosage compensation is much weaker for the majority of cell-line-specific models with

an average increase of 4-fold upon a CNV increase from 1 to 5 (Figure 4G, right panel). We therefore

defined a compensation index for comparison as the ratio of the normalized expression fold with a copy

number of 5 divided again by 5. Thereby, a compensation index close to 1 indicates very weak compensa-

tion, and a compensation index close to 0 indicates a strong compensation in silico. When we plotted the

compensation indexes of the cell-line-specific models across tumor types, we could observe that their

parameter configurations enable a robust and wide compensation of MYC across tumor types, whereas

STAT3 is weakly compensated (Figure 4H). These results indicate that MYC dosage compensation is

enabled in most tumor types despite the high level of heterogeneity observed in cancer. Although this het-

erogeneity and the high complexity of the CCLE dataset precludes the fitting of larger mathematical

models of gene dosage compensation, it represents a very important tool to validate minimal models of

gene regulation and quantify the degree of heterogeneity in emerging systems-level properties such as

dosage compensation.

The kinetic parameters of the TF-miRNA interactions determine the capability of a putative

network motif for gene dosage compensation

To this point we were able to identify in silico a minimal model of gene-dosage compensation forMYC and

STAT3mediated by their interactions with 4 miRNAs. However, there is heterogeneity in dosage compen-

sation across tumor types and different degrees of compensation (e.g. the difference between the

compensation index of MYC and STAT3). Therefore, we asked whether we could identify the quantitative

properties of these network motifs conferring gene dosage compensation. First, we designed a rationale

for the identification of motifs mediating gene dosage compensation based on our findings withMYC and

STAT3 (Figure 5A). To evaluate this rationale, we constructed individual networks of our remaining NCI60

candidates using the experimentally validated interactions included in BioNetUCR (ZNF217, FOXC1,

FOXF2, PGR, STAT5A, STAT5B). Next, we looked for regulatory motifs of one, two, and three nodes return-

ing to the gene candidates. Only PGR, STAT5A, and STAT5B had regulatory motifs returning to them after

one, two, or three nodes. Using these 3 networks, we built corresponding COPASI models and fitted them

to the NCI60 dataset and found that only the models of STAT5A and STAT5B have the ability to compen-

sate their gene dosage (Figure 5B). Afterward, we performed in silico experiments by inhibiting

individual or groups of model species (such as those experiments performed to identify the minimal model

of MYC-STAT3) in order to identify minimal models for STAT5A and STAT5B dosage compensation. We

identified an extended feedback loop for the dosage compensation of STAT5A and 3 extended feedback

loops for the dosage compensation of STAT5B (Figure 5C). Indeed, those minimal models recapitulated

the behavior of dosage compensation as expected (Figure 5D).
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Figure 5. The gene dosage compensation depends on the kinetic parameters of the interactions of basic

regulatory network motifs

(A) Rationale of a biocomputational pipeline for the identification of motifs mediating gene dosage compensation.

(B) Evaluation of gene dosage compensation for the networks containing feedback and feedforward loops for PGR,

STAT5A, and STAT5B.

(C) The postulated network topologies of the minimal models of gene dosage compensation include 1 extended

feedback loop for STAT5A and 3 extended feedback loops for STAT5B. State transition arrows indicate synthesis or

degradation, catalysis lines (circular-head) indicate activation, and flat-head-lines indicate inhibition.

(D) These minimal models recapitulate the gene dosage compensation for STAT5A and STAT5B.

(E) A triple-parameter scan on the values of ks (synthesis rate of the miRNA), ka (activation parameter of the TF), and

kr (repression parameter of the miRNA) under the two different copy numbers of MYC (1 and 3). The ratio between

these two scans is presented to display the three-dimensional landscape of gene dosage compensation and its

dependence on the values of these kinetic parameters of some basic regulatory network motifs. Individual cases of

regulatory motifs related to dosage compensation are located within the compensated region (blue) of this

regulatory landscape.
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To study the kinetic properties of the regulatory loops of MYC, STAT3, STAT5A, and STAT5B postulated

hereby as dosage compensation circuits, we explored the kinetic parameters describing the interactions

between miRNAs and TFs by performing combined parameter scans in COPASI using the minimal model

ofMYC-STAT3. Because the compensation in that model is redundant, we inhibited miR19a and miR20a so

that we can evaluate only the behavior of the single negative feedback loop between MYC and miR17.

Next, we monitored the concentration of MYC for two conditions: a MYC copy number of 1 and a MYC

copy number of 3. Under these two conditions we scanned the effect of different values of the parameters

and found that 3 parameters were best to separate the parameter landscape into two regions, a noncom-

pensation space and a compensation space of parameters: the ks (synthesis rate of the miRNA), ka (activa-

tion parameter of the TF), and kr (repression parameter of the miRNA). After calculating the ratio of MYC

concentrations of those 2 conditions, we obtained a three-dimensional landscape of gene dosage

compensation with a color-coded heatmap of the fold increase in MYC expression upon a 3-fold increase

in copy number (Figure 5E). The blue region corresponds to the dosage compensation space of parame-

ters, whereas the red region represents the space of parameters leading to a linear increase of gene

expression as a function of copy number (no compensation). Moreover, when we located the positional

values of the parameters corresponding to the compensating motifs, they all appeared in the blue region

of compensation (Figure 5E) except by the interactions involving STAT3 that appeared close to the green/

yellow transition zone. These results confirmed that the simple identification of network motifs such as

feedback or feedforward loops is not enough to identify systems-level properties such as gene-dosage

compensation. This behavior is indeed dependent on the data-driven identification of the magnitude of

the parameter values accounting for the emergence of this property of gene dosage compensation.
A genetic tug-of-war approach enables the experimental demonstration of MYC dosage

compensation

Although our proposed minimal model of gene dosage compensation was based on reported, experimentally

validated interactions and the interaction parameters were fitted to experimental data, it was necessary to

confirm the ability of those regulatory circuits to perform gene dosage compensation. Therefore, we undertook

the experimental validation of the MYC dosage compensation circuits by designing a tug-of-war approach to

identify gene dosage compensation at the transcriptional level, inspired by the approach of Ishikawa et al. for

the identification of posttranslational dosage compensation (Ishikawa et al., 2017). In this report, the authors in-

serted a TAP tag next to the endogenous target gene to be evaluated.When the protein was overexpressed by

transfecting a plasmid with an exogenous version of the gene, they observed downregulation of the endoge-

nous protein, thus demonstrating dosage compensation at the protein level.

We developed an approach to identify gene dosage compensation at the transcriptional level based on the

same principles: (1) to differentiate the exogenous and endogenous transcripts ofMYC, we overexpressed

an exogeneous version of MYC [(exo)MYC] with a differential codon optimization compared with the hu-

man endogenous MYC [(endo)MYC]. (2) We removed the 30UTR segment of the exogenous MYC to avoid

anymiRNA regulation on this transcript so that it can exert a higher pressure on theMYC regulatory circuits.

(3) Although both transcripts will be translated into the same protein and exert the same regulatory activ-

ities, they can be differentiated at the transcript level by RT-qPCR using specific primers and probes. Under

the pressure of the dosage compensation circuits, we hypothesize that the exogenous MYC overexpres-

sion will lead to the downregulation of endogenous MYC.

First, we transfected NCH82 glioblastoma cells with either a control plasmid containing GFP (GFP-Ctrl) or a

plasmid containing GFP and the exogenous MYC [GFP-(exo)MYC] (Figure 6A). We validated the ability of

our sets of primers and probes to differentiate between the endogenous and exogenousMYC transcripts.

The expected band of 404 bp for endogenous MYC (Endo-) was observed in untransfected cells (control)

and in the GFP-Ctrl and (exo)MYC-GFP transfected cells using the corresponding primers and probe de-

signed for the endogenous MYC transcript. The band of 216 base pairs expected for the exogenous MYC

(Exo-) was observed only in the (exo)MYC transfected cells when using the primers and probe designed for

the exogenous MYC (Exo) (Figure S4A).

The efficiency of transient transfection is usually low, resulting in a subpopulation of transfected cells hin-

dering the interpretation of any quantitative assay to monitor gene expression out of whole-population ly-

sates. Therefore, we proceeded tomonitor the GFP expression and cell death by flow cytometry (Figure 6B)

and fluorescence microscopy (Figure S4B). We noticed that GFP-Ctrl transfected cells conserved a similar
14 iScience 24, 103407, December 17, 2021



Figure 6. Overexpression of exogeneous MYC decreases endogenous MYC and increases expression of the

predicted miRNA in human glioblastoma NCH82 cells

(A) Vector map of the construct pSBbi-moxGFP-P2A-T2A-cMYC-Puro for the expression of (exo)MYC with a deletion of

the 30UTR region to avoid miRNA regulation to induce miRNA overexpression and the subsequent downregulation of

endogenous MYC.

(B) Upper part: representative dot plots showing PI and GFP intensities of transfected NCH82 cells 24, 48, and 72 h after

transfection. Left panel: cells transfected with the control GFP-plasmid (GFP-Ctrl); right panel: cells transfected with the

(exo)MYC plasmid (GFP-(exo)MYC). Quadrants from upper left to lower left: Q1: PI+/GFP�; Q2: PI+/GFP+; Q3: PI�/

GFP+; Q4: PI�/GFP�. Lower part: statistical analysis of flow cytometric measurements of the PI+/GFP+ and PI�/GFP+

populations of transfected cells. Marked with * are statistically significant changes of total GFP+ cells in the GFP-(exo)

MYC transfected cells compared with GFP-Ctrl transfected cells (n = 6).

(C) Quantitative RT-PCR detection of endogenous MYC expression in the PI�/GFP+ population of GFP-(exo)MYC

transfected cells relative to the PI�/GFP+ population of GFP-Ctrl transfected cells (n = 3).

(D) Quantitative RT-PCR detection of hsa-miR-17, hsa-miR-19a, and hsa-miR-20a in the PI-/GFP+ population of GFP-(exo)

MYC transfected cells relative to the PI�/GFP+ population of GFP-Ctrl transfected cells (n = 3); t tests were performed to

analyze means of samples with a significance defined by an a of 0.05. Data are represented as meanG SEM. The resulting

p values were corrected for multiple comparisons using the Holm-Sidak method.
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intensity in their fluorescence over time as shown by the fluorescence microscopy images. In contrast, (exo)

MYC-GFP transfected cells started with a dim GFP fluorescence that did not increase over time. In fact, the

number of transfected cells decreased over time, and some of these cells showed a rounded morphology,

suggesting that exogenous MYC overexpression is cytotoxic (Figure S4B). To quantify and confirm these

results, we performed flow cytometry experiments to monitor GFP fluorescence and cell death, using pro-

pidium iodide (PI) staining. As shown in Figure 6B, the condition of GFP-Ctrl transfected cells displayed

20% GFP positive cells including 2% of dead cells at 24 h posttransfection. This amount decreased to

16% with 4% of dead cells at 72 h posttransfection. The condition of (GFP-(exo)MYC) transfected cells
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showed a significant lower efficiency of transfection (15% of GFP positive cells after 24 h of transfection).

This value decreased to 9% at 72 h posttransfection with a high proportion of dead cells (more than 50%

of the transfected cells), supporting our suggestion that MYC overexpression is cytotoxic.

In order to assess ifMYC is dosage compensated at the transcriptional level in the subpopulation of transfected

NCH82 cells, weperformed cell sorting of the viable (PI negative) GFP positive population of cells 24 h, 48 h, and

72 h posttransfection. We extracted RNA from the sorted subpopulations to confirm expression of exogenous

MYCby RT-qPCR (Figure S4C).Weobserved a strong increase of exogenousMYC 24 h and especially 48 h post-

transfection, but no difference was observed compared with the GFP negative subpopulation 72 h posttrans-

fection. To quantify the effects of exogenous MYC on the expression of endogenous MYC, we compared

the expression of endogenous MYC in the PI�/GFP+ population of GFP-Ctrl and GFP-(exo)MYC transfected

cells (Figure 6C). Overexpression of MYC led to a significant reduction of approximately 30% of endogenous

MYC expression at 24 h and 48 h posttransfection. Seventy-two hours after transfection we could not detect

a significant difference in (exo)MYCexpression (FigureS4C), neither in endogenousMYCexpression (Figure 6C),

probably caused by an exo-MYC-induced cytotoxicity, resulting in the time-dependent death of MYC overex-

pressing cells. These findings confirm the existence of regulatory circuits modulating the expression of MYC

through an increase in gene dosage, indicating that MYC dosage compensation is an active process in

NCH82 cancer cells. To further study the nature of these regulatory circuits, we evaluated the expression of

the 3 miRNAs predicted by the minimal model of MYC dosage compensation. As expected from the model,

miR17,miR19a, andmiR20a expressiondid increase upon (exo)MYCoverexpression, suggesting that thosemiR-

NAs are involved in the regulatory circuits of MYC dosage compensation (Figure 6D).
The blockade of MYC gene dosage compensation induces MYC dosage-dependent

cytotoxicity

We next asked whether the blockade of MYC dosage compensation induces cell death and if the gene

dosage plays a role in cell sensitivity to this blockade. Because the minimal model indicates that MYC

dosage compensation is redundantly regulated by miR17, miR19a, and miR20a, we first explored in silico

the properties to identify the optimal strategies to achieve an inhibition of gene dosage compensation,

leading to MYC overexpression. For that purpose, we used the minimal model of MYC compensation to

perform a triple parameter scan on the miRNA synthesis parameters (ks) to systematically reduce the

amounts of the 3 miRNAs and identify steady states, leading toMYC overexpression. In addition, we aimed

to evaluate the effect of MYC dosage on MYC overexpression under the inhibition of gene dosage

compensation. Therefore, the scan was repeated under 3 conditions of different MYC copy numbers (2,

4, and 7 corresponding to MYC copy numbers of 3 colon cancer cell lines of the NCI60 panel, see below),

and the effect on MYC concentration was observed. Although there are some slight alterations under a

complete depletion of the 3 miRNAs for the diploid condition (CN = 2), the increase in MYC expression

is much higher with increasing copy numbers, and less miRNA depletion is required to trigger the increase

in MYC expression (Figure 7A). The results for this general model indicate that the interruption of MYC

dosage compensation requires the blockade of the 3 miRNAs, although less inhibition of miR17 is required

compared with miR19a and miR20a. Moreover, the MYC overexpression was easier to achieve with higher

MYC copy numbers. These in silico results indicate that the perturbation of the mechanism of dosage

compensation induces a gene-dosage-dependent increase in MYC expression and suggests that MYC-

amplified cells will be more sensitive to the blockade of MYC dosage compensation (Figure 7A).

A sudden increase in MYC expression in a therapeutic context may have the potential to induce cytotoxicity,

suggesting that the blockade ofMYC dosage compensation has a promising therapeutic range that increases

with the extent of dosage amplification. In order to confirm this hypothesis experimentally, we chose 3 colon

cancer cell lines of the NCI60 panel with the widest variation inMYC copy numbers, the HCT-15 (copy number

of 2), the HT-29 (copy number of 4), and the SW-620 (copy number of 7). We tested the effect of blockingMYC

dosage compensation by transfecting the 3 cell lines with increasing concentrations (from 10 to 30 pM) of a

mixture of anti-miR17, anti-miR19a, and anti-miR20a and the respective concentrations of a negative RNA con-

trol. The cells were incubated and monitored by live microscopy for 72 h in the presence of Hoechst to stain all

nuclei and propidium iodide to stain dead cells. After acquisition, imageswere analyzedusing an image analysis

pipeline programmed in CellProfiler to quantify the numbers of live and dead cells over time (Figure 7B). The

qualitative observation of the images indicated no difference in cell growth and cell death between the anti-

miRs and control transfected HCT-15 cells, whereas the difference between those two conditions increased

slightly for the HT-29 and much more for the SW-620 cells (Figure 7B).
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Figure 7. The inhibition of MYC dosage compensation induces dosage-dependent cytotoxicity

(A) In silico simulations for the dependence of MYC concentration on the decreasing amounts of the 3 compensating

miRNAs. The steady-state simulated MYC expression fold increase (compared with unperturbed model where MYC = 1)

in function of the percentage of the respective miRNAs (x,y,z) shows that the blockade of MYC dosage compensation in

cancer with MYC amplification is more sensitive to the inhibition of those miRNAs in silico.

(B) The experimental inhibition of those 3 miRNAs in colon cancer cells with 3 different copy numbers ofMYC suggests a

higher sensitivity to the inhibition of gene dosage compensation for colon cancer cell lines with MYC amplification

(fluorescence + brightfield microscopy including the result of the image analysis pipeline in CellProfiler using Hoechst

DNA staining [blue] to count nuclei and propidium iodide to stain dead cells [red]) (scale bar: 100 mm).

(C) The quantification of dead cells confirms a significant difference in cell death in cells treated with antimiRs

compared with cells treated with the negative control RNA for HT29 and SW-620 cells (n = 3, data are represented as

meanG SEM; the differences become significant after 36 h of incubation for HT29 cells and after 24 h for the SW-620 cells

with a p < 0.01).
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The quantification of cell death for several replicates showed that cell death increased specially in SW60

cells treated with 30 pM of the anti-miR mixture compared with the negative control (Figure 7C, lower

panel). These results indicate that cells with higher MYC copy numbers are more sensitive to the blockade

of gene dosage compensation by the perturbation of miR17, miR19a, and miR20a. They also suggest that

aneuploid cancer cell lines with increased copy numbers are more sensitive to blockade of gene dosage

compensation.
Breast cancer patients with MYC dosage compensation have lower survival than patients

with a noncompensated configuration

In order to further validate the relevance of gene dosage compensation in cancer and its potential as

therapeutic target, we set out to investigate the emergence of MYC and STAT3 dosage compensation

in the breast cancer dataset of the Tumor Cell Genome Atlas (TCGA). First, we tried to fit the minimal

model of MYC-STAT3 dosage compensation to all of the data using COPASI, but the objective function

was very high (not shown). We noticed a huge heterogeneity in the objective function values of the in-

dividual patient cases, suggesting indeed a heterogeneous configuration in this network, similar to

that observed for CCLE. Therefore, we used the model as a tool to characterize the patient cases by

fitting the model to the data of each individual experiment (case) by automatically constructing pa-

tient-tailored models to obtain a set of parameters for each of them. Next, we performed individual

parameter scans to further characterize the cases in function of their response to copy number increases

for each of the candidate genes for which a minimal compensation model was postulated (MYC, STAT3,

STAT5A, and STAT5B). We observed a large heterogeneity in MYC and STAT5A dosage compensation,

and no dosage compensation capability was observed for STAT3 with only few cases for STAT5B (Fig-

ure 8A), suggesting that the configuration of gene dosage compensation circuits may vary across

patients.

The response of the corresponding network configuration also sheds light on the importance of gene

dosage compensation in cancer. We first classified the patients according to their gene amplification

and compensation capability of their fitted models (see STARMethods: Material and methods: Calculation

of Compensation Index). The lower the compensation index, the higher the capability of the corresponding

network configuration to perform compensation. As for STAT3 in CCLE, there were very few cases of ampli-

fication for STAT5A and STAT5B to evaluate the effect of gene dosage compensation on patient survival

but MYC amplifications were very frequent. We could observe that the higher the extent of MYC amplifi-

cation, the higher the separation of cases in terms of MYC compensation index, leading to a clear separa-

tion of 2 groups within the amplified cases (Figure 8B). We therefore separated the cases in three groups:

‘‘No amplification’’ (CNV lower or equal to 1.5), for those with higher amplification a group with ‘‘low

compensation’’ (MYC compensation index higher than 0.7), and a group with ‘‘high compensation’’

(MYC compensation index lower than 0.7) (Figure 8B). We plotted their survival curves implementing a Ka-

plan-Meier plot in MATLAB (ecdf function, MathWorks) to compare the survival probabilities among the

groups (Figure 8C). The significance in their differences was assessed by a Cox proportional hazards regres-

sion (coxphfit, MATLAB). We observed no significant difference between the ‘‘No amplification’’ group and

the amplified cases with ‘‘low compensation’’ (p = 0.1). In contrast, we observed a significant decrease in

the survival probability of the patients with ‘‘high compensation’’ compared with those with ‘‘low compen-

sation’’ (p = 0.009) and compared with the cases of ‘‘No amplification’’ (p = 0.007). This result suggests that

MYC dosage compensation enables cancer progression toward malignancy, and it could indeed represent

an important therapeutic target to prevent this progression.

Finally, to further characterize the nature of MYC dosage compensation in these models of breast cancer

patients, we defined the new ranges of the 3 parameters previously identified to best partition the param-

eter landscape into the noncompensated and compensated spaces (Figure 5E). Using these ranges, we

performed the corresponding triple parameter scan and could identify again both regions of compensa-

tion behavior for the breast cancer cases (Figure 8D). Using the values of the fitted parameters for each pa-

tient, we used the N-D nearest point search algorithm (dsearchhn, MATLAB, Mathworks) to obtain the

compensation value for each patient for that particular miRNA-mediated feedback motif. We observed

that miR17 and miR20a mediate MYC dosage compensation only in a small fraction of cases, whereas

most cases of breast cancer patients are compensated by the feedback motif regulated by miR19. (Figure

8E). This suggests that miR19 inhibition would represent a potential therapeutic target to block MYC

dosage compensation in breast cancer.
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Figure 8. Breast cancer patients show heterogeneity in gene dosage compensation leading to differences in

patient survival

(A) Assessment of gene dosage compensation by individual parameter scans of the gene copy numbers ofMYC, STAT3,

STAT5A, and STAT5B for each patient-tailored model individually fitted, showing varying degrees of heterogeneity in

gene dosage compensation.

(B) Patient case separation by the amplifications (experimental CNV) and compensation behavior (compensation index in

silico) for MYC, STAT5A, and STAT5B.

(C) Survival probabilities for the patient cases divided according to the amplification and compensation behavior ofMYC.

No significant difference was observed between the ‘‘No amplification’’ group and the amplified cases with ‘‘low

compensation’’ (p = 0.1). A significant decrease was observed when ‘‘high compensation’’ was compared to ‘‘low

compensation’’ (p = 0.009) and ‘‘No amplification’’ (p = 0.007).

(D) The compensation landscape of model parameters for the models of the TCGA breast cancer patients calculated by a

triple-parameter scan on the respective ranges of ks (synthesis rate of the miRNA), ka (activation parameter of the TF), and

kr (repression parameter of the miRNA) under the two different copy numbers of MYC (1 and 3). The ratio between these

two scans represents the three-dimensional landscape of gene dosage compensation for the range of parameters

obtained by the individual fitting of the patient-tailoredmodels, where the blue region represents the space of parameter

values leading to compensation and the red region the one without dosage compensation.
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Figure 8. Continued

(E) The parameter sets of the individual miRNA-mediated regulatory motifs are interpolated within this landscape,

indicating that miR19a is responsible for gene dosage compensation for most models of MYC dosage compensation in

breast cancer patients.

ll
OPEN ACCESS

iScience
Article
DISCUSSION

We report in this work a systems biology approach that successfully allowed us to test and verify the hypoth-

esis we made that gene dosage compensation in cancer is mediated by the emerging properties of com-

plex miRNA-TF networks, which control the expression of key genes with altered copy number.

In endogenous transcription networks, interactions of miRNAs and transcription factors have been re-

ported to assemble complex motifs including negative feedback loops, positive feedback loops, coherent

feedforward loops, incoherent feedforward loops, miRNA clusters, and target hubs, leading to nonlinear,

systems-level properties such as bistability, ultrasensitivity, and oscillations (Lai et al., 2013; Vera et al.,

2013). Given this complexity, gene dosage compensation could arise as an emergent property of the sys-

tem, meaning that a differential expression analysis of gene targets or miRNAs would be insufficient to

identify the underlying mechanism of gene dosage compensation. Classical approaches in miRNA

research start with the identification of dysregulated miRNAs related to disease and require extensive mo-

lecular and cellular biology work to validate the gene targets related to the phenotype of interest. This is

inefficient because each miRNA can alter the expression of hundreds of genes by only 1.5- to 4-fold (Vera

et al., 2013), and it is the cooperative or synergistic effect of miRNA networks that makes them robust reg-

ulators (Herranz and Cohen, 2010; Matsuo et al., 2010). Thus, the identification of critical miRNAs involved

in gene dosage compensation networks requires the analysis of a dynamical model of those interactions by

means of sensitivity analysis combined with predictive simulations to identify processes that can become

potential therapeutic targets (Lai et al., 2013; Vera et al., 2013).

To achieve this, we developed a biocomputational platform to identify the critical miRNA-mediated gene regu-

lation and to perform simulations of the systems-level effects of perturbations in miRNA networks related to dis-

ease. This is accomplishedby first casting awidenet andgenerating a large networkout of a database of 450,000

experimentally validated regulatory interactions, which is translated to a dynamical model. The process then

greatly reduces this model, based on biology-inspired in silico experiments and sensitivity analysis, to arrive

at a small model that translates the critical regulatory mechanism for gene dosage compensation (only 11 inter-

actions). Due to the redundancy in gene dosage compensation, it would be unfeasible to identify such mecha-

nismsby single or even double inhibitions using a functional genomics approach alone. To our knowledge, this is

the first example of such a top-down approach inmiRNA research, which success relies on network simplification

based on sensitivity analysis and biology-inspired experiments in silico.

Our current approach, in spite of some limitations, facilitated the analysis of potential mechanisms of gene

dosage compensation in a variety of aneuploid cancer cells. Our data indicate that these cells, whatever

their cancer origin, regulate dosage compensation at the transcriptional level. To our knowledge, there

is still few evidence for regulation at that level, specifically in mammalian cells except for Down Syndrome

(Kahlem et al., 2004; Lyle et al., 2004) and the case of sex chromosomes inactivation. Three major mecha-

nisms have been studied for sex chromosomes: inactivation of one of the X chromosomes in female em-

bryos in mammals (Heard et al., 1997); doubling of transcription of genes on the single male X chromosome

in D. melanogaster (Lucchesi and Kuroda, 2015) and halving the expression of genes on the two X chromo-

somes in hermaphrodites of Caenorhabditis elegans (Meyer, 2005; Meyer et al., 2004). Although some of

these mechanisms have been related to epigenetic modifications and other nonconding RNAs (Park and

Kuroda, 2001), there was no evidence of a role of miRNAs in specific gene dosage compensation.

In this work, we report another mechanism mediated by the emerging properties of complex miRNA-TF

regulatory networks. Its structural analysis revealed that only those with TF function can be subjected to

gene dosage compensation. Once we enriched the network topology for sensor loops of experimentally

validated interactions to simplify the regulatory network, we were able to model this mechanism and vali-

dated the hypothesis for the genes MYC and STAT3. A deeper analysis of this network enabled us to un-

derstand the underlying mechanism of gene dosage compensation by the reduction of model complexity

into a minimal model that is still able to display the same behavior of dosage compensation for both genes.

Indeed, an important characteristic in this type of biological networks is its capability to adapt to fluctuating
20 iScience 24, 103407, December 17, 2021
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concentrations of its biomolecular components. The mechanism includes coherent and incoherent feed-

forward loops (FFL) and feedback loops (FBL) that help the network to adapt from such fluctuations (Car-

ignano et al., 2019; Osella et al., 2011). Moreover, it has been shown, using synthetic transcriptional and

posttranscriptional incoherent feedforward loops, that a gene product can adapt to changes in DNA tem-

plate abundance, supporting a previously hypothesized endogenous role in gene dosage compensation

for such motifs (Bleris et al., 2011; Shimoga et al., 2014).

The reduced model has a higher explanatory power than the original (large) network, which enabled us to

design a strategy for experimental validation using a genetic tug-of-war approach. Under the pressure of

the dosage compensation circuits, the exogenous MYC overexpression leads to the downregulation of

endogenous MYC, confirming thereby the ability of these circuits to perform gene dosage compensation

and a possible involvement of the 3miRNAs in those regulatory circuits. This method fills a technical gap for

future experimental validation of gene dosage compensation at the transcriptional level.

Upon this experimental validation, the question emerges of whether a dosage-altered gene is critical or whether

it requires compensation tomaintain cell viability. ThegeneMYC (MYCproto-oncogene, bHLH transcription fac-

tor), aka c-MYC, is a well-known and studied transcription factor involved in proliferation, cell growth, cell differ-

entiation, and apoptosis. It is estimated thatMYC regulates 15% of all genes. It is as well an oncogene, active in

70%of cancers, and overexpressed in various types of cancer (Dang, 1999).MYC, however, is also reported to act

as tumor suppressor in leukemia (Uribesalgo et al., 2012), whereasMYC dysregulationmay lead to cancer, and it

also triggers cell suicide (Nilsson andCleveland, 2003). Therefore, it is not surprising that (exo)MYC expression in

our experimental setup led to cell death, supporting the prediction of a study of gene dosage compensation in

aneuploid yeast, which suggested that the phenomenon of dosage compensation occurs at genes that aremost

toxic when overexpressed (Hose et al., 2015).

Those results also suggest that the inhibition of the three miRNAs compensating MYC could induce cell

death. The miR17, miR19a, and miR20a are actually all co-regulated within the miRNA cluster miR-17-92.

This is considered an oncogenic cluster and is actually called OncomiR-1 because it is overexpressed in

several types of cancer (for review see Fuziwara and Kimura [2015]). Several reports showed that these miR-

NAs form important network motifs with MYC in B-cell lymphoma (Mihailovich et al., 2015), with E2F/MYC

(Li et al., 2011), and with STAT3 in retinoblastoma (Jo et al., 2014). Interestingly, using our model, the in

silico inhibition of those 3 miRNAs led to a dosage-dependent increase in MYC expression, whereas the

in vitro inhibition of those miRNAs led to a dosage-dependent increase in cytotoxicity, suggesting that

dosage-altered cancers are more fragile to blockade of the dosage compensation mechanism.

Based on our observations and computational simulations, we suggest that cancer has a robust Achilles

heel due to an increased sensitivity to perturbations in these circuits, which is not necessarily reflected in

differences in individual miRNA expression levels but rather at more complex systems-level properties.

The identification of targets that may block dosage compensation could lead to a strategy where the over-

expression of these genes, and others under their influence could exploit this fragility of cancer cells. This

strategy is promising inasmuch the overexpression of these important transcription factors seem to be

more sensitive to blockade of gene dosage compensation when their copy numbers are more amplified.

Indeed, the identification of miRNAs controlling cancer robustness has a strong therapeutic potential

because miRNAs are becoming attractive targets for therapy, as shown for the first time by miRNA122

against hepatitis C infection and hepatic cancer (Lindow and Kauppinen, 2012) and for, at least, another

7 miRNA mimics/inhibitors being tested in clinical trials (Rupaimoole and Slack, 2017).

Nevertheless, the potential therapeutic application of a strategy targeting gene-dosage compensation in can-

cer cells requires a systematic evaluation of the extent of the copy number alterations and their compensation

across large datasets, such as CCLE and TCGA, for the identification of further candidate genes, the availability

of more data to obtain more accurate models, and the evaluation of the tumor heterogeneity in gene dosage

compensation. The further analysis of the current models of gene dosage compensation or even other genes

could reveal additional pan-cancer or cancer-type-specific targets. Our analysis of TCGA data for samples of

breast cancer patients revealed that these tumors have differential configurations in these compensation cir-

cuits, as we observed different degrees ofMYC dosage compensation and a negative impact on survival of pa-

tientswith a higher compensation index. These findings suggest thatMYCdosage compensation contributes to

a status of pro-tumoral stability, enabling cancer cells to evolve into more malignant phenotypes. It has been
iScience 24, 103407, December 17, 2021 21



Table 1. Candidate genes under dosage compensation

Gen ID Location Description

Transcription

factor

Forward

loops

Type of

regulation

RNA Protein

MYC 8q24.21 v-myc avian myelocytomatosis viral oncogene homolog Yes 461 Yes No data

ZNF217 20q13.2 Zinc finger protein 217 Yes 451 Yes Yes

MTSS1 8p22 Metastasis suppressor 1 No 102 Yes No data

SEMA3D 7q21.11 Sema domain, immunoglobulin domain (Ig),

short basic domain, secreted, (semaphorin) 3D

No 40 Yes Yes

TRIM37 17q23.2 tripartite motif containing 37 No 54 Yes No data

STAT3 17q21.31 Signal transducer and activator of

transcription 3 (acute-phase response factor)

Yes 577 Yes Yes

KCNH4 17q21.2 Potassium voltage-gated channel, subfamily

H (eag-related), member 4

No 9 Yes No data

RAB5C 17q21.2 RAB5C, member RAS oncogene family No 99 Yes Yes

FOXC1 6p25 Forkhead box C1 Yes 41 Yes No data

BIRC2 11q22 Baculoviral IAP repeat containing 2 No 2 Yes Yes

CUL5 11q22.3 Cullin 5 No 179 Yes Yes

ATM 11q22-q23 ATM serine/threonine kinase No 2 Yes Yes

NA 11q22-q23 Nuclear protein, ataxia-telangiectasia locus No 76 Yes Yes

MMP12 11q22.3 Matrix metallopeptidase 12 (macrophage elastase) No 2 Yes No data

DCUN1D5 11q22.3 DCN1, defective in cullin neddylation 1, domain containing 5 No 31 Yes Yes

PGR 11q22-q23 Progesterone receptor Yes 1 Yes Yes

PDCD10 3q26.1 Programmed cell death 10 No 139 Yes Yes

ATP1B2 17p13.1 ATPase, NA+/K+ transporting, beta 2 polypeptide No 17 Yes No data

ANKFY1 17p13.3 Ankyrin repeat and FYVE domain containing 1 No 147 Yes Yes
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proposed that between cell cycling and apoptosis there is a range of MYC (and/or E2F) activity associated to

carcinogenesis and referred to as the cancer zone (Aguda, 2013). The future determination of themolecular de-

terminants of compensation (e.g. mutations in interacting sequences of miRNA-targets) could lead to the iden-

tification of biomarkers to direct precision medicine strategies against gene dosage compensation to induce

apoptosis out of that MYC cancer zone.

In conclusion, the present work led to the construction of a mathematical model of gene dosage compen-

sation and formulated a model-driven hypothesis for the identification of targets against aneuploid cancer.

We developed a computational platform including bioinformatics and dynamical modeling tools for any

application in miRNA research (BioNetUCR, available here: bionet.prislab.org/download). In addition,

we presented a rationale to identify dosage compensation circuits and a genetic tug-of-war approach to

experimentally validate those regulatory motifs. Besides, we evaluated the therapeutic potential of MYC

dosage compensation to target aneuploid cancer. Future work is required to confirm the effect of gene

dosage compensation on patient survival and to identify other compensated genes to direct personalized

precision therapies against cancer. Altogether, the current results contribute to the identification of a sta-

bility core of essential genes, which manipulation of specific nodes has the potential to become a specific

approach to target aneuploid cancer cells.
Limitations of the study

- The current criterion to identify candidate genes under dosage compensation does not include

a direct metric of the number of amplifications of the gene of interest because it is only based on SDs.

- We could only describe gene dosage compensation circuits for a small fraction of the candidates,

suggesting that other mechanisms of compensation might be at work or there is an indirect effect

of the dosage compensation of one gene impacting others, which we did not study in this work.
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- The NCI60 dataset is limited to identify candidates, and the CCLE data are very heterogeneous to fit

large-scale models of miRNA-TF interactions. CCLE or TCGA tumor-type specific models may be a

better option for future studies.

- There is heterogeneity in the parameters of individual cell lines probably due to mutations in the TF-

miRNA-target interaction sequences or other epigenetic mechanisms that are not included in our

models. Therefore, it is not possible to determine a specific set of model parameters of the compen-

sation models but a parameter landscape of gene dosage compensation.

- The construction of the regulatory networks depends on the availability of experimentally reported

interactions. A methodology is required to prioritize which putative interactions should be included.

- Our genetic tug-of-war techniques imply extensive molecular and cellular biology work to validate the

dosage compensation for only one gene at the time.

- The preclinical validation of these findings requires the development of miRNA sponges for multiple

miRNAs because gene dosage compensation seems to be highly redundant in cancer.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Lipofectamine� RNAiMAX Transfection Protocol ThermoFisher Scientific 13778075

Deposited data

CCLE dataset fully intersected (CNV,

expression, miRNA)

https://depmap.org/portal/download/ Rodrigo (2021)

Experimental models:Cell lines

Human primary glioblastoma cell line NCH82 Department of Neurosurgery,

Heidelberg University Hospital

NCH82

Colon cancer cell line SW-620 NCI60, DTP https://dtp.cancer.gov/

discovery_development/nci-60/

SW-620

Colon cancer cell line HCT-15 NCI60, DTP https://dtp.cancer.gov/

discovery_development/nci-60/

HCT-15

Colon cancer cell line HT-29 NCI60, DTP https://dtp.cancer.gov/

discovery_development/nci-60/

HT-29

Oligonucleotides

mirVana� miRNA inhibitor, hsa-miR-17-5p

CAAAGUGCUUACAGUGCAGGUAG

ThermoFisher Scientific Cat. 4464084

assayID: MH12412

mirVana� miRNA inhibitor, hsa-miR-19a-3p

UGUGCAAAUCUAUGCAAAACUGA

ThermoFisher Scientific Cat. 4464084

assayID: MH10649

mirVana� miRNA inhibitor, hsa-miR-20a-5p

UAAAGUGCUUAUAGUGCAGGUAG

ThermoFisher Scientific Cat. 4464084

assayID: MH10057

mirVana� miRNA inhibitor, Negative

Control #1ThermoFisher Scientific

ThermoFisher Scientific Cat. AM17010

Recombinant DNA

pSBbi-moxGFP-P2A-T2A-Puro AddGene 176893

pSBbi-moxGFP-P2A-T2A-cMYC-Puro AddGene 176892

Software and algorithms

BioNetUCR: biocomputational platform for the

automatic construction of miRNA-Transcription factor

networks and mathematical models for COPASI.

bionet.prislab.org/download

COPASI http://copasi.org/

Cytoscape https://cytoscape.org/

CIRCOS table viewer http://mkweb.bcgsc.ca/tableviewer/

Matlab
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources, datasets and programing code should be directed to and

will be fulfilled by the lead contact, Rodrigo Mora-Rodrı́guez (rodrigo.morarodriguez@ucr.ac.cr).
Materials availability

The plasmids generated in this study for the experimental demonstration ofMYC dosage compensation by

a genetic tug-of-war pSBbi-moxGFP-P2A-T2A-Puro and pSBbi-moxGFP-P2A-T2A-cMYC-Puro will be avail-

able in Addgene (176892 and 176893).
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Data and code availability

The latest version of BioNetUCR, our platform for the automatic construction of large-scale networks of

mathematical models can be found here: bionet.prislab.org/download and is publicly available as of the

date of publication. It also includes the NCI60 data set. The CCLE data set can be found here:

Mendeley Data: https://doi.org/10.17632/t27jvj4vz2.1. The mathematical models of MYC/STAT3 dosage

compensation are included as supplementary files. MATLAB programming codes for data analysis, specific

tasks or plotting is available upon request. This paper analyzes existing, publicly available data. Any addi-

tional information required to reanalyze the data reported in this paper is available from the lead contact

upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human glioblastoma cell lines

The human primary glioblastoma cell line NCH82 was generated at the Department of Neurosurgery, Heidel-

berg University Hospital (Heidelberg, Germany) (Karcher et al., 2006). Cells were cultured in cDMEM [DMEM

(Sigma-Aldrich, St. Louis, MO, USA), 10% heat-inactivated FCS (Sigma-Aldrich), 2 mM L-Glutamine (Gibco Invi-

trogen, Carlsbad, California, USA), 50 mg/mL Gentamicin (Gibco Invitrogen)] at 37�C and 5% CO2.

Human colon cancer cell lines

The human colon cancer cell lines SW-620, HCT-15 and HT-29 were obtained as part of the NCI60 collection

(DTP, NIH). Cells were cultured in RPMI [GIBCO, Invitrogen, Carlsbad, California, USA), with 2 mM L-Glutamine

(Gibco Invitrogen, Carlsbad, California, USA), 50 mg/ml Gentamicin (Gibco Invitrogen)] at 37�C and 5% CO2.

METHOD DETAILS

Anti-miRNA transfections and cytotoxicity assays

Optimized densities of colon cancer cells lines were seeded in 96 well plates (Greiner Bio-One mclear) to

evaluate the cytotoxicity of the miRNA inhibitors for 72 h: 40,000 SW-620 cells, 20,000 HCT-15 and

40,000 HT-29 cells were plated per well in 100 mL of RPMI medium supplemented with 10% of fetal serum

(GIBCO), 24 h before the start of the experiment and incubated at 5% CO2 and 37�C. Next, cell nuclei were

labeled using Hoechst 33342 (Invitrogen� H3570, 1.25 mg/mL final concentration) for 10 minutes

before washing. Afterwards, the cells were transfected with the mixture of 3 antimiRs: i. mirVana� miRNA

inhibitor, hsa-miR-17-5p-assayID: MH12412 (ThermoFisher Scientific 4464084), ii. mirVana� miRNA

inhibitor, hsa-miR-19a-3p-assayID: MH10649 (ThermoFisher Scientific 4464084) and iii. mirVana� miRNA

inhibitor, hsa-miR-20a-5p – assay ID: MH10057, (ThermoFisher Scientific 4464084) or the negative control

(mirVana�miRNA inhibitor, Negative Control #1, ThermoFisher Scientific 4464076) using Lipofectamine�
RNAiMAX Transfection Reagent (ThermoFisher Scientific 13778075) and following the Lipofectamine�
RNAiMAX Transfection Protocol of the manufacturer at final concentrations of 10, 20 and 30 pmol/well.

Briefly, a 1:1 mixture of lipofectamine and miRNA mixture was prepared, incubated 5 min at room temper-

ature and 10 mL were added to each well. The cells were incubated for 6 h at 37�C with 5% CO2 before re-

placing the media. Propidium iodide (PI, Invitrogen� P3566, final concentration of 10 mg/mL) was used to

stain dead cells in a further 72 h incubation inside the imaging chamber of a Cytation 5 Imaging System

(Biotek) with an imaging frequency of every 12 h. Control wells of untransfected cells were included for

each cell line. Images in the red (PI, dead) and blue (Hoechst, nuclei of all cells) channels were taken.

With this information, live cell percentage was determined using the Cell Profiler image analysis software,

through an image analysis pipeline designed to count total and dead cells (see Supplemental Information

attached). The percentage of cytotoxicity was calculated by dividing PI positive cells by the total number of

cells in each well.

Molecular design and cloning

A construct encoding the moxGFP gene (Costantini et al., 2015) followed by 2A sequences from Porcine

Teschovirus-1 (P2A) and Thosea asigna virus (T2A) was commercially synthetized with human/mouse codon

optimization (GenScript, Piscataway, NJ) and inserted into the NcoI and XbaI sites of the transposon-based

plasmid pSBbi-Pur (a gift from Eric Kowarz, Addgene plasmid #60523) (Kowarz et al., 2015), to produce the

vector pSBbi-moxGFP-P2A-T2A-Puro. Next, nucleotides 409-1728 of the c-MYC cDNA (GenBank reference

sequence NM_002467.6) were commercially synthetized with human/mouse codon optimization (Gen-

Script) and inserted into the SmaI and XbaI sites of the plasmid pSBbi-moxGFP-P2A-T2A-Puro, to generate

the polycistronic vector pSBbi-moxGFP-P2A-T2A-cMYC-Puro.
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Plasmid transfection in human glioblastoma cell lines

One day prior transfection, 100,000 NCH82 cells/well were seeded in cDMEM in 24 well tissue culture ves-

sels (Greiner Bio-One, Frickenhausen, Germany) and incubated for 24 h (37�C, 5% CO2). At the day of trans-

fection, old medium was replaced by 500 ml fresh cDMEM; 1 mg plasmid and 3 ml Lipofectamine� 2000

Transfection Reagent (ThermoFisher Scientific, Waltham, MA, USA) were mixed in 100 ml Opti-MEM� I

Reduced Serum Medium (Gibco Invitrogen) and incubated for 5 min at RT. Afterwards transfection mix

was added to the wells and cells were incubated for 24 -72 h. Cell growth and GFP expression were docu-

mented using a Leica DM IL LED (Leica Microsystems GmbH, Wetzlar, Germany).

Flow cytometry and fluorescent activated cell sorting (FACS)

Prior to analysis, cells were detached using 0.25% Trypsin-EDTA (Life Technologies, Carlsbad, California,

USA), centrifuged (400xg, 5 min, 4�C) and washed with ice-cold PBS (Gibco) and stained for 15 min in

PBS containing 1mg/ml propidium iodide (PI; Carl Roth, Karlsruhe, Germany). Samples for flow cytometry

were analyzed using an Attune NxT Flow Cytometer (ThermoFisher Scientific). For FACS, samples of three

technical replicates were pooled and analyzed using a BD FACSAria III Cell Sorter (BD Biosciences, San

Jose, CA, USA) at the Flow Cytometry Core Facility of the Institute of Molecular Biology, Mainz. PI positive

cells were discarded whereas PI negative cells were divided in a GFP positive and a GFP negative popula-

tion. Cells were collected in QIAzol Lysis Reagent (Qiagen, Hilden, Germany) and stored at �80�C until to-

tal RNA extraction.

Total RNA isolation, cDNA transcription, MYC and microRNA expression analysis

After FACS, total RNA isolationwas performedon the sorted cells using themiRNeasyMini Kit (Qiagen) accord-

ing to manufacturer’s instructions. RNA concentration and quality were determined using a Nanodrop 2200

(ThermoFisher Scientific). For cDNA transcription ofmRNA, the FastGene Scriptase II - ReadyMix (NIPPONGe-

netics Europe, Düren,Germany)was used as described in themanufacturer’s protocol. FormiRNA transcription,

10X M-MuLV-buffer (New England Biolabs [NEB], Ipswich, MA, USA), 1 mM adenosine triphosphate (Life Tech-

nologies), 1 mM dNTP-Mix (NEB), 10 U/ml moloney murine leukemia virus reverse transcriptase (NEB), 0.1 U/ml

poly(A) polymerase (NEB), 0.05 pM cel-mir-39 as spike-in control and 0.5 mM of reverse transcriptase primers

(Table 2) were added to the extracted total RNA. The reverse transcription protocol consisted of 30 min at

37�C, followed by 60 min at 42�C and a final incubation for 5 min at 65�C.

Quantitative PCR (qPCR) analysis was performed using 96-well qPCR plates (Sarstedt, Nümbrecht, Germany)

and a StepOnePlus System (Applied Biosystems, Foster City, CA, USA). For gene expression analysis, 10 mL

of qPCRBIO ProbeMix (NIPPONGenetics Europe) were mixed with 5 ng cDNA, 1 mL of the appropriate primer

(Table 2) and 4 mL H2O. For miRNA analysis, 5 mL iTaq Universal SYBR Green Supermix (Bio-Rad, Feldkirchen,

Germany) were mixed with 0.56 ng cDNA and 0.5 mM of the appropriate primer (Table 2).

Relative quantification (RQ) of gene or miRNA expression was determined using the 2�DDCt method (Livak

and Schmittgen, 2001). GAPDH and SDHA were used as reference genes for mRNA analysis. SNORD110

was used to normalize miRNA results. Correctness of amplicons was verified using melt-curve analysis

(miRNA; data not shown) and agarose gel electrophoresis (Figure S4).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using GraphPad Prism software. T-tests were performed to analyze

means of samples with a significance defined by an a of 0.05. The resulting p values were corrected for mul-

tiple comparisons using the Holm-Sidak method. The figure legends contain the details for each of the cor-

responding statistical analysis.

Data sources for modeling

Data was gathered from several sources. The primary sources were from experiments on the NCI60 panel:

gene copy number (Bussey et al., 2006), the Gene Transcript (RNA) Average Intensities of 5 Platforms

(Gmeiner et al., 2010), RNA gene expression compared to proteomics (Shankavaram et al., 2007) and

the protein levels (Protein) of a global proteome analysis of the NCI60 cell line panel (Gholami et al.,

2013). miRNA expression data (Blower et al., 2007) and transcription factor expression data (Gmeiner

et al., 2010). MicroRNA-interactions data was downloaded from Mirtarbase (Hsu et al., 2014), MirDB

(Chen and Wang, 2020) and MiRBase (Kozomara et al., 2019; Kozomara and Griffiths-Jones, 2014). For
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Table 2. Primers and their respective sequences used for quantitative PCR.

Primer description Sequence (50-30) or assay ID

Reverse transcriptase primer CT CAGGTCCAGTTTTTTTTTTTTTTTCT

Reverse transcriptase primer CA CAGGTCCAGTTTTTTTTTTTTTTTCA

Reverse transcriptase primer GC CAGGTCCAGTTTTTTTTTTTTTTTGC

GAPDH Hs02758991_g1

SDHA Hs00188166_m1

Exogeneous MYC Fw: GGCCGTGACACCTTTCAGCC

Rv: TCGGACACCAGCTTTGCTGC

Probe: ACAGAGCTGCTGGGCGGCGA

Endogenous MYC Fw: CCTCCTCACAGCCCACTGGT

Rv: CGTCGTTTCCGCAACAAGTCC

Probe: CGCAGCGCCTCCCTCCACTCG

Cel-miR-39 Fw: CAGTCACCGGGTGTAAATC

Rv: GTCCAGTTTTTTTTTTTTTTTCAAGC

SNORD110 Fw: ACGCAATCACTGATGTCTC

Rv: AGTTTTTTTTTTTTTTTGCTCAGA

hsa-miR-17-5p Fw: GCAAAGTGCTTACAGTGC

Rv: TCCAGTTTTTTTTTTTTTTTCTACC

hsa-miR-19a-3p Fw: GCAGTGTGCAAATCTATGC

Rv: GGTCCAGTTTTTTTTTTTTTTTCAG

hsa-miR-20a-5p Fw: GCAGTAAAGTGCTTATAGTGC

Rv: GTCCAGTTTTTTTTTTTTTTTCTACC

In case that commercial primers were used, the assay ID (ThermoFisher scientific) is shown.
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background knowledge on gene regulation we relied on several sources: Transmir (Tong et al., 2019; Wang

et al., 2010), Pazar (Portales-Casamar et al., 2009), TRED (Transcriptional Regulatory Element Database)

(Jiang et al., 2007), CircuitsDB (Friard et al., 2010), HTRI (Bovolenta et al., 2012).

We classified the types of interactions in ‘‘experimentally validated’’ and ‘‘putative’’ according to database-

specific criteria. All 407,957 miRNA-target interactions obtained from Mirtarbase were considered exper-

imentally validated including supporting experiments such as qRT-PCR, PAR-CLIP, CLASH, HIT-CLIPS,

Luciferase reporter assays, sequencing, Western blot and microarrays. MiRDB (MirTarget version 4) in-

cludes 3,375,741 predicted (putative) regulations. TransmiR v2.0 contains 3,730 literature-curated TF-

miRNA regulations and 1,785,998 ChIP-seq regulations, and they were included together with Mirtarbase

and TarBase experimentally validated interactions. Pazar was included to include all the transcripts of tran-

scription factors. TRED includes 7250 curated, known and predicted regulations from transcription factor to

target genes, which are graded according to promoter quality to be classified as ‘‘known, curated’’ (2,286),

‘‘known’’ (3,612) and the remaining 1,352 as predicted. According to binding quality they are classified as

‘‘known’’ (5,121), ‘‘Likely’’ (593), ‘‘Maybe’’ (1,314) and ‘‘predicted’’ (222). We classified them as putative if

they have a predicted promoter quality or a predicted binding quality (6,637), or experimentally validated

otherwise (216). HTRI is an open access database for experimentally validated interactions for experimen-

tally verified human transcription factors to target genes resulting in 17,842 experimentally validated inter-

actions between 283 transcriptions factors and 11,866 target genes. Other source of putative or predicted

regulations was Harmonizome-ENCODE encompassing around 72 million functional associations between

genes and proteins and their attributes such as physical relationships with other molecules. We focused on

the Transcription Factor dataset harvesting 1,486,116 predicted regulations between transcription factors.

Finally, Circuits DB is a database of mixed miRNA/TF feedforward regulatory circuits in human and mouse

that were included as experimentally validated.
Gene classification using Gaussian Mixture Models

To classify genes according to their behavior, we developed a computer algorithm based on the Gaussian

MixtureModel functions in MATLAB. An increasing number of components (ki) of the GMMmodel is added
30 iScience 24, 103407, December 17, 2021



ll
OPEN ACCESS

iScience
Article
sequentially and the GMM training is performed for several iterations searching for the best fit to the exper-

imental data. The resulting GMM is used to classify the cells of the original dataset. A MANOVA test is

applied to the resulting clusters to evaluate the statistical significance of adding another component to

the GMM. This is done until the new component adds no further significance.

BioNetUCR: software architecture development

We determined that it is possible to communicate applications developed in C# with the popular and

powerful tool for network visualization called Cytoscape, using the REST style architecture. We used Visual

Studio for the development. For the data storage we analyzed Neo4J and ArangoDB, both oriented to

graph management. However, we ruled them out because they did not have a robust API for the integra-

tion with applications developed in C# or demanding a significant longer time for each API call in compar-

ison to code developed directly in C#. Additionally, the installation process for the final user is simpler if no

third-party database engines are required. Therefore, the database administration was developed within

the same platform creating the respective algorithms for data manipulation in RAM. Since each node has

usually few arcs in comparison with the total amount of nodes, we preferred to implement the graph stor-

age in disperse matrix. We used two vectors as the main structure. In one vector each element contains the

source and target node together with the type of regulation and the second vector contains the indexes to

the first vector to speed up the access. We created a class to represent the graph as designed by the user

including all the genes, microRNAs and transcription factors in HUGO format. To generate the COPASI

models, we used the API via DLLs. The API enabled us to create species, parameters, functions and incor-

porate experimental data. In addition, its usage offers greater compatibility with future COPASI versions. A

general introduction to the usage of BioNetUCR is included in the Video S1.

BioNetUCR (step 1): construction of regulatory network

We are interested in the regulatory network of microRNAs and transcription factors in the proximity of

directly affecting the genes selected by the GMM. This list of regulated genes is input to our platform

to construct a network including all the known upstream (ADD FORWARD command) and downstream

(ADD BACKWARD command) regulators of these genes, both TFs and miRNAs, and the regulators of

those regulators; this network was assembled from a set of regulatory interactions extracted from inter-

action databases (miRBase, Transmir, Pazar, Mirtarbase, TRED, CircuitsDB, HTRI) (Figure S3, step 1) to a

common database of interactions. A regulatory interaction in this database is an arc which starting point

is the regulator and the ending point is the target. We use a directed graph to represent this network. To

construct the network, we first identify the nodes of this graph which are composed by all the regulated

genes of interest as well as all the direct regulators and regulated nodes of these genes. To identify the

regulators, we search in the interaction database for arcs ending in one of the selected genes. The direct

regulators are all the starting nodes of each of the arcs found. Similarly, we search for arcs starting in one

of the selected genes and the end node of the arc is a directly regulated gene. Hence, we have success-

fully identified all the nodes of the graph. Each node is a selected gene, a miRNA or TF, all of them bio-

molecular species relevant in the gene dosage compensation phenomenon. We then build the list of arcs

of the graph. From the list of nodes or species identified, for each pair of species, if there is an arc in the

interaction database linking these two species, we add this arc in the list of arcs of the graph. The lists of

species and arcs identified becomes the graph representing the regulatory network affecting the

selected genes of interest and they are integrated into a network file (tab separated text file of interac-

tions). For many interactions, the database tells whether the regulation is an activation or repression.

When the database does not provide this information, if the regulator of the interaction is a TF we

assume that the regulation is an activation, and if the regulator is a miRNA we assume that it is a

repression. In the current version of BioNetUCR this network can be exported directly to Cytoscape

for visualization (Figure S3, step 1).

BioNetUCR (step 2): network simplifications and sensor loops

BioNetUCR includes several commands for network simplification that we have used to reduce the

complexity of our networks and enrich them for important interactions. The command ADD EDGE and

DELETE EDGE enable to include or exclude particular interactions. The command DELETE NODE enables

to delete specific nodes (e.g. species with poor fitting and no control on the genes of interest). Other com-

mands implemented for reducing complexity of our networks are: DELETE AUTOREGULATED EDGES that

removes arcs from one node to itself, DELETE SINK NODES removes nodes that are only sinks, DELETE

SOURCE NODES removes nodes that are only sources and no other node regulates them. In addition,
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we implemented an algorithm of network construction to enrich the network with ‘Sensor Loops’ to favor

the search of any kind of feedback or feedforward interactions with a potential role in the network back

regulation for the genes of interest such as those expected in the case of gene dosage compensation. A

‘Sensor Loop’ is a group of interactions starting from a gene of interest and returning to the same node

after a determined number of arcs. To enrich the network, we implemented the following algorithm (pseu-

docode shown) where the inputs are the list of regulated genes of interest (RegulatedGenes) and I, which is

the list of interactions (putative or experimentally validated) among species (I) and where every interaction

is seen as an edge in a network, with a source node and a target node. The OutputNetwork is the list of

edges of the output network, which is initially empty.

for every gene G in RegulatedGenes do

begin

for every edge (source, target) in I

if (target = G)

add edge in OutputNetwork

for every pair of nodes n1 and n2 in OutputNetwork

if edge (n1, n2) exists in I

add edge in OutputNetwork

Remove duplicated edges if any appear in OutputNetwork

end

for every gene G in RegulatedGenes do

begin

for every edge (source, target) in I

if (source = G)

add edge in OutputNetwork

for every pair of nodes n1 and n2 in OutputNetwork

if edge (n1, n2) exists in I

add edge (n1,n2) in OutputNetwork

Remove duplicated edges if any appear in OutputNetwork

end

For every edge (source, target) in OutputNetwork

if (source = target)

remove edge from OutputNetwork

For every node N in OutputNetwork that exists only as target but not as source,

remove all edges in OutputNetwork containing N
BioNetUCR (step 3): Conversion of network to ODE model

Since the gene dosage compensation phenomenon is gene expression related, we are interested in con-

structing a kinetic model from the graph. We now construct a system of ODEs from the graph representa-

tion of the regulation network. A script was written to automatically construct an SBML mathematical

model. The network file (tab separated file of interactions) is input to the platform for model construction.

Also, a script was written to create all the required reactions for all the species (i.e. nodes, either mRNA or

miRNA), and write out a COPASI file. For each species of the graph, we write an equation computing the

concentration or mRNA expression of this node. The list of all these equations defines a system of ODEs

modeling the metabolic behavior of the regulation network.
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Reactions were represented using simple kinetic functions. Most follow mass action kinetics, except for

transcription of genes that are induced or repressed by transcription factors, where linear activation or in-

hibition terms are added, as well as the degradation of RNA species that are affected by miRNAs, where

linear inhibition terms were included. Gene copy numbers are also included as part of the mass action

rate constant. The schematic representations of these rate laws are shown in (Figure 2B). The rate of the

transcription reactions includes all the effects of all positive and negative regulators according to a rate

law of the form:

vt;i = kt;i,ni,
1+

P
jka;j,Cj

1+
P

lkr;l,Cl
(Equation 1)

where kt,i is a basal transcription rate constant, ni is the copy number of gene i; the summations are over all

species j that are positive effectors (numerator), and all species l that are negative effectors (denominator),

each with a corresponding strength (ka,j or kr,l). Each species is also degraded with a basal first-order term,

in the form:

vd;i = kd;i,Ci (Equation 2)

The model then consists of one ODE for each species i:

dCi

dt
= kt;i,ni,

1+
P

jka;j,Cj

1+
P

lkr ;l,Cl
� kd;i,Ci (Equation 3)

Specific rate laws

We have six different types of rate laws, one for each type of species: candidate gene, TF and miRNA.

Synthesis gene=CNgene$KSgene$
1+KATFA1$½TFA1�+.

1+KRTFR1$½TFR1�+.

Degradation gene RNA=KDgeneRNA$ ½GeneRNA�$ð1+KRmiRNA1$½miRNA1�+.Þ

Synthesis TF =CNTF$KSTF$
1+KATFA1$½TFA1�+.

1+KRTFR1$½TFR1�+.+KRmiRNA1$½miRNA1�+.

Degradation TF =KDTF$½TF�

Synthesis miRNA=CNmiRNA$KSmiRNA$
1+KATFA1$½TFA1�+/

1+KRTFR1$½TFR1�+/

Degradation miRNA=KDmiRNA$½miRNA�

(Equation 4)

From the three types of equations defined, we detect three different types of elements: copy numbers

(CN), rates (K) and concentrations ([TFA1], [GeneRNA], [miRNA]). There is a copy number parameter for

each species of the graph. There are four different types of rates o parameters to be fitted against exper-

imental data: synthesis (KS), degradation (KD), activation (KA) and repression rates (KR).

In order to model the total regulatory effect, we define the following parameters to be estimated later

against experimental data. For a TF we define an activation rate (KATF) that represents the rate at which

the TF activates o intensifies the expression of the TF’s targets. Likewise, we define a repression rate

(KRTF) representing the rate at which the TF suppresses or silences its targets when the TF has a repressing

role. For a miRNA we also define a repression rate since miRNAs are assumed to only repress its targets

(KRmiRNA). The single regulatory effect of one TF or one miRNA over all of its targets is the product of

the concentration of the TF or miRNA multiplied by the corresponding rate. Given that the concentration

of a regulator, the activation rate and the repression rate are all zero or positive, the single effect of one

regulator is also zero or positive. Following this definition, we have only one repression rate for a miRNA,

therefore a given miRNA is assumed to exert the same repression rate over each of its targets.

The concentrations of the regulators that are part of the total regulation effect factor of the equation play

an important role in the modeling of the regulatory effects. For an activator TF, as its concentration in-

creases, so increases the activation effect and the concentration of the TF’s regulated gene. In the same

way, as the concentration of a miRNA increases, so increases the repression effect causing a decline in

the concentration of the miRNA’s regulated gene, either by slowing down its synthesis or by accelerating

its degradation. The concentrations also play an important role in the modeling of common network motifs

such as feedback loops, feedforward loops or other types of loops. In a loop like A->B->C->A, the
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concentration of A is part of the regulatory factor of B’s equation, the concentration of B is part of C’s equa-

tion, and C’s concentration is part of A’s equation. The interplay of these three equations models the dy-

namics of the loop in the graph.

For a candidate gene, the mRNA concentration equation has a synthesis part and a degradation part. The

synthesis equation of the candidate gene is the product of three factors: a) the gene copy number, b) the

synthesis rate of the gene, a parameter to be fitted by the Parameter Estimation task, and c) the total reg-

ulatory effect exercised by TFs on the candidate gene which in the graph is represented by all the incoming

arcs of the candidate gene where the arc’s regulator is a TF. The total regulatory effect factor is usually >1

since most TFs are activators but it could be <1 when the regulating TFs are mainly suppressors. The degra-

dation equation of a candidate gene is also the product of three factors: a) the mRNA concentration of the

gene, b) the degradation rate of the gene, another parameter to be estimated, and c) the total regulatory

effect of miRNAs on the gene. Because the degradation equation is a product and the total repression ef-

fect is one of the factors, the value of the repression effect is usually >1 since miRNAs are suppressors, thus

exercising an accelerating effect on the degradation.

The mRNA expression equations for a TF or miRNA are slightly different from the equation of a candidate

gene. These two equations also have a synthesis part and a degradation part but instead of having the re-

pressing effect exercising an accelerator effect in the degradation part, they have the repressing effect in

the synthesis part applying a decelerating effect in the synthesis part. The degradation equation for a TF or

miRNA is the product of only two factors: a) the mRNA concentration of the TF or miRNA, and b) the degra-

dation rate of TF or miRNA. The synthesis equation for a TF or miRNA is the product of three factors: a) the

copy number of the TF or miRNA, b) the synthesis rate of the TF or miRNA, and c) the total regulatory effect

exercised by others TFs and miRNAs on this TF or miRNA which in the graph is represented by all the

incoming arcs of this TF or miRNA where the arc’s regulator is a TF or miRNA.

We modeled the total repression effect of miRNAs in the degradation equation of a candidate gene as the

sum of 1 plus the single effect of each of the miRNAs repressing that gene. This value is always greater or

equal than 1. When there are no miRNAs repressing the gene, this factor would be 1. These values model

the expected function of the total repression effect in the degradation equation by accelerating gene

degradation.

We defined the total regulation effect of TFs in the synthesis equation of a candidate gene as a ratio be-

tween the total activation effect of the TFs divided by the total repression effect of the TFs. The total acti-

vation effect is the sum of 1 plus the single effect of each of the TFs activating the gene. Likewise, the total

repression effect is the sum of 1 plus the single effect of each TFs repressing the gene. When there are no

TFs regulating the gene, this ratio is 1. When there are TFs activating or repressing the gene, if the total

activation effect is greater than the total repression effect then the ratio is greater than 1, hence acceler-

ating the synthesis of the gene. If there are more repression effect than activation effect, the ratio is less

than 1 slowing down the synthesis. If both effects are equal, the ratio is 1 exercising no effect on the syn-

thesis. These ratio’s values model the expected behavior of the interplay between the activating and re-

pressing TFs in the synthesis equation of a gene in steady state.

While the total activation effect depends only on activating TFs, now the total repressing effect involves not

only repressing TFs but also repressing miRNAs. Whether there are more total activating effect or more

total repressing effect, the total regulatory effect would be >1 or <1, or exactly 1 if both effects are the

same.

Having defined the equations of the species and identified the different elements of these equations, trans-

lating the graph of the regulatory network into an SMBL model (Hucka et al., 2003) is straightforward. An

SBML model follows the XML standard (Hucka et al., 2003) (W3C/XML, 2008) and have several sections for

the different elements of the SBML model.
BioNetUCR (step 4): generation of experimental file

The SBML model is imported into COPASI, an application for analyzing biochemical networks like the

miRNA-TF regulatory network. The platform also contains a script to extract NCI60, CCLE or TCGA data

(breast cancer in the current version of BioNetUCR). For our NCI60 models the platform adds 59 sets of
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experimental data to this model, one set for each cell line of NCI60 coded as individual experiments to fit

steady-state simulations named Experiments.tab. The odd row numbers contain the headers including a

first set of columns for the copy number of each species and a second set of columns for the expression

data of each species. The pair row number include the data for each of the cell lines of the corresponding

dataset.
BioNetUCR (step 5): parameter estimation

The platform creates all the required reactions for all the species (i.e. nodes, either mRNA or miRNA), and

write out a COPASI file that includes the experimental data ready for estimating the parameters of the ODE

model. The platform then adds the experimental data file and the corresponding information in the CO-

PASI file for the parameter estimation task. All the dynamic parameters K described above are included

as the fitting parameters and the data file is parsed into individual steady-state experiments where the col-

umns corresponding to Copy Numbers are included as the corresponding independent parameters in the

model and the columns corresponding to Expression Data are included both as the corresponding inde-

pendent initial concentrations of the species and the dependent variables of transient concentrations of

the corresponding species at steady state.

Next the platform invokes COPASI to open the resulting file for us to carry out parameter estimation such

that the model reproduces the provided experimental data. The Hooke-Jeeves minimization algorithm

(Hooke and Jeeves, 1961) in COPASI produces good results, although the recently incorporated NL2SOL

algorithm works even faster. The estimation was actually carried out in parallel in a cluster using Condor-

COPASI (Kent et al., 2012) for the large networks and in normal PCs for the minimal models. We increased

the weight of the objective function of the expression of the target genes in order to favor the search of

model parameter values leading to dosage compensation. Model refinement was performed by interrupt-

ing the fitting process after several days without any significant decrease in the objective function. At these

periods of time, we calculated the goodness-of-fit for each species and performed sensitivity analysis using

the sensitivity analysis framework of COPASI.
BioNetUCR (steps 6–7): removal of non-fitted/weak regulators

To characterize the resulting model we designed a strategy combining Sensitivity Analysis and the evalu-

ation of goodness-of-fit. A general sensitivity analysis for all the parameters is included on the model vari-

ables (species concentrations) and we extract the total control of each species on the regulated genes of

interest (target genes) (step 6). In addition, we assess the goodness-of-fit of the RNA expression of the

model to the RNA expression of the experimental data. To do that, we extract the ‘parameter estimation

result’ report and imported in a functionality of BioNetUCR to parse the file, extract the experimental and

simulated data comparison and perform a t test for paired samples with a = 0.05 to compare the model’s

RNA expression of the 60 cell lines of a species with the corresponding experimental RNA expression. The

pairing is on the cell lines. By plotting the total control (sensitivity analysis) against the p values of the spe-

cies it is possible to identify the species with the worse fitting and the lowest control as possible candidates

to be removed from the model. We systematically removed one-by-one (step 7) the node with the lowest

control on the genes of interest and the lowest p value (first miR-106a and then miR145 for the NCI60

network) in BioNetUCR to generate a new network and COPASI model. A new Parameter Estimation

task is run for the modified model until the difference between the experimental and the simulated data

is not significant (T-student, p > 0.05). The presumption is that the experimental data do not explain the

discarded species and they therefore do not belong to the model.
Assessment of gene dosage compensation

Once a fitted model is obtained, using the COPASI model we can manipulate the copy numbers of our

target genes using the parameter scan function. To evaluate if a gene is compensated in the fitted model,

we run a Parameter Scan, varying the copy number of the gene from 1 to 5 and computing the respective

RNA expression. A non-compensated gene has a near linear fold increase in RNA expression level as its

corresponding copy number increases linearly. We consider a gene compensated if the increase in RNA

expression follows a sublinear increase as the copy number increases linearly. This experiment was

repeated under different conditions (see Results) to determine the most important species controlling

the genes of interest and obtain a minimal model of gene dosage compensation.
iScience 24, 103407, December 17, 2021 35



ll
OPEN ACCESS

iScience
Article
Model of MYC/STAT3 compensation in CCLE

The CCLE data was obtained from https://depmap.org/portal/download/. The CNV data included gene

level copy number data, log2 transformed with a pseudo count of 1 and HGNC and Entrez ID identifiers.

We obtained the RNAseq gene expression data for protein coding genes, also Log2 transformed with a

pseudocount of1 and the same identifiers (‘‘DepMap, Broad (2021): DepMap 21Q3 Public. figshare. Data-

set,’’ n.d.). The miRNA expression data was also obtained from Depmap (Cancer Cell Line Encyclopedia

Consortium, 2015; J et al., 2012). We also obtained the CCLE ABSOLUTE copy number analysis results

of 2019 (Ghandi et al., 2019) and mapped the CNV data of the corresponding miRNAs to the raw

segmented copy-number profiles in the.seg file format (hg19) of CCLE DNA Copy Number using the

GRCh38.87 version of the genome. A full interception of all datasets was performed to have a complete

dataset for 904 cell lines and 18,431 instances including 541 miRNAs. The modeling approach was very

similar to the one used with NCI60 but was performed at 3 different levels: pan-CCLE, tumor-type specific

and cell line specific by delimiting the corresponding datasets.
Calculation of Compensation Index

We implemented a script using the COPASI API (Application Programming Interface, http://copasi.org)

and its bindings for C# of.NET platform (https://dotnet.microsoft.com) to perform the fitting to individual

experiments as a tool to characterize the model heterogeneity. We used a COPASI model (.cps) as basis

and the experimental file (tab separated text file) with the rows containing the experimental data for

each cell line (CCLE) or patient (TCGA). The fitting is executed with the Parameter Estimation task on

each row corresponding to one experiment, choosing previously the NL2Sol optimization algorithm.

The fitted values for all species and each experiment are tabulated in an Output CSV (Comma-separated

values) file. This CSV file is input for the Parameter Scan task to perform individual parameter scans using

the Parameter Scan task of COPASI by increasing the gene copy number from 1 to 5 and obtain a second

output file for the simulated values. The respective ‘‘gene expressions’’ in silico were captured and normal-

ized for each case (TCGA) or cell line (CCLE) dividing each of them by the in silico expression at a copy num-

ber of 1. The compensation index was calculated by dividing by 5 the normalized expression of each model

at copy number of 5. A compensation index close to 1 indicates very weak compensation and a compen-

sation index close to 0 indicates a strong compensation in silico.
Minimal model of MYC/STAT3 for TCGA

For the TCGA data, we developed scripts in Python to access the Application Programming Interface (API)

of the Genomic Data Portal (GDC) to extract the data files "Copy Number Segment", ‘‘Gene Expression

Quantification’’, ‘‘miRNA Expression Quantification’’ and their corresponding metadata including the

UUID (Universally Unique Identifier) of each case (patient) and biospecimen information (sample, portion,

analyte, aliquot). Afterward we generated a script to process the Copy Number Segment mapping to the

GRCh38.87 to obtain the CNV data for each gene and miRNA. The gene expression data comes in Frag-

ments per Kilobase of transcript perMillionmapped reads (FPKM), which normalizes read count by dividing

it by the gene length and the total number of reads mapped to protein-coding genes. The miRNA expres-

sion data comes in counts normalized to reads per million mapped reads (RPM). Finally, we extracted the

data for the species of the minimal models of MYC, STAT3, STAT5A and STAT5B dosage compensation

and created the COPASI data files integrating the data of cases and biospecimens (using their UUIDs)

for copy number and expression for each gene and miRNA. We performed the single-experiment param-

eter-estimation (see above) to obtain a mathematical model for each experiment and performed individual

parameter scans increasingMYC copy numbers from 1 to 5 to calculate the respective Compensation Index

as stated above.
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