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Abstract: Phospholipase Dα1 (PLDα1) belongs to phospholipases, a large phospholipid hydrolyzing
protein family. PLDα1 has a substrate preference for phosphatidylcholine leading to enzymatic
production of phosphatidic acid, a lipid second messenger with multiple cellular functions.
PLDα1 itself is implicated in biotic and abiotic stress responses. Here, we present a shot-gun
differential proteomic analysis on roots of two Arabidopsis pldα1 mutants compared to the wild
type. Interestingly, PLDα1 deficiency leads to altered abundances of proteins involved in diverse
processes related to membrane transport including endocytosis and endoplasmic reticulum-Golgi
transport. PLDα1 may be involved in the stability of attachment sites of endoplasmic reticulum to the
plasma membrane as suggested by increased abundance of synaptotagmin 1, which was validated
by immunoblotting and whole-mount immunolabelling analyses. Moreover, we noticed a robust
abundance alterations of proteins involved in mitochondrial import and electron transport chain.
Notably, the abundances of numerous proteins implicated in glucosinolate biosynthesis were also
affected in pldα1 mutants. Our results suggest a broader biological involvement of PLDα1 than
anticipated thus far, especially in the processes such as endomembrane transport, mitochondrial
protein import and protein quality control, as well as glucosinolate biosynthesis.

Keywords: phospholipase D alpha1; Arabidopsis; proteomics; mitochondrial protein import; quality
control; vesicular transport; cytoskeleton

1. Introduction

Phospholipases are phospholipid hydrolyzing enzymes with multiple roles in biotic and abiotic
stress responses of plants as well as in plant growth and development [1]. Phospholipase D (PLD)
alpha 1 (PLDα1) is a member of D subfamily of phospholipases and it shows the highest expression
levels among all twelve PLD members in Arabidopsis [2]. Total PLD activity is substantially
decreased in Arabidopsis pldα1 mutants [3]. PLDs utilize preferentially phosphatidylcholine as a
substrate, which they hydrolyze in Ca2+ dependent manner [2]. This hydrolysis is accompanied
with the production of phosphatidic acid (PA), a second messenger bearing important signaling
functions [4]. The absence of PLDα1 leads to the reduction of cellular PA pool and membrane lipid
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remodeling [5,6]. This remodeling affects physical and mechanical properties of membranes leading to
endomembrane reorganizations and changes in membrane transport [7,8]. PLDα1 is also involved
in the regulation of cytoskeletal dynamics and organization, which is either mediated by PA or by
direct binding/association of PLDα1 with the cytoskeleton [3,9–12]. PLDα1 promotes stomata closure
and inhibits their opening [13]. At a molecular level, stomatal movements are governed by PLDα1
through interaction of PA with protein phosphatase 2C (ABI1) [5], NADPH oxidase [14], sphingosine
kinase [15] and microtubule associated protein 65-1 [3]. In addition, PLDα1 binds and modulates
components of G protein complex during stomatal movements [16,17]. These functions render PLDα1
an important regulator of the plant stress response, growth and development. PLDα1 was shown
to be involved in plant response to drought [18], cold [19] and salt stress [12]. This protein has
promising biotechnological applications, since its genetic manipulation modulates plant response
to abiotic stresses [20]. Nevertheless, PLDs usually act cooperatively (including the production of
cellular PA pool), as it was previously exemplified in abscisic acid (ABA)-induced stomatal closure [21].
Arabidopsis mutants of PLDα1 exhibit conditional phenotypes, whereas under control conditions they
show phenotypes similar to the wild-type plants [3,22]. Recent detailed fluorescent in vivo imaging of
PLDα1 fused to YFP and expressed in Arabidopsis PLDα1 t-DNA insertion mutants under its own
promoter showed that PLDα1-YFP localized to the cytoplasm in the close vicinity of plasma membrane
(PM) and exerted developmentally-dependent and tissue-specific expression [12]. Interestingly, most
of PLDα1 functions are assigned to processes occurring in leaves. On the other hand, PLDα1 functions
in roots are obscure. Shot gun proteomic analysis on genetically modified plants proved to be very
useful tool for elucidation of protein functions. Here, we performed a comparative shot gun proteomic
analysis on roots of two t-DNA insertion mutants (pldα1-1 and pldα1-2) as compared to the Col-0 wild
type. Our results indicated that PLDα1 is involved in mitochondrial protein import and quality control,
glucosinolate biosynthesis and that it controls very specific processes of subcellular vesicular transport.

2. Results

2.1. Overview of Differential Root Proteomes in Two pldα1 Mutants

We carried out a comparative shot-gun proteomic analysis of roots of two pldα1 mutants compared
to the Col-0 as a wild type. First, we compared the number of identified proteins (Figure S1A) and
peptides (Figure S1B) in Col-0, pldα1-1 and pldα1-2 mutants showing high reproducibility of our
analysis (Figure S1A). Considering proteins identified at least in 2 biological replicates, 92%, 82% and
75% of the total proteomes of Col-0, pldα1-1 and pldα1-2 roots were found commonly in all three lines
(Figure S1C). In pldα1-1, 92 proteins with changed abundances were found, while 113 were identified
in pldα1-2 mutant (Figure 1A). In both mutants, 32 proteins were commonly changed (Figure 1B,
Table 1). PLDα1 was identified uniquely in the wild type, while we did not detect this protein in
two studied mutants, confirming the reliability of our approach. Similarly, we were unable to detect
PLDrp1 (PLD regulated protein 1; At5g39570), a phosphoprotein interacting with PLDα1 [23], in pldα1
mutants. A complete list of all differentially abundant proteins (DAPs) of both mutants is available in
Table S1. A detailed outputs of protein identification in all samples is presented in the Supplementary
Materials, and deposited in PRoteomics IDEntifications (PRIDE) database (see below).

Table 1. List of differentially abundant proteins found commonly in roots of both pldα1-1 and pldα1-2
mutants as compared to the wild type (WT). n.a. = not applicable.

TAIR
Accession
Number

UNIPROT
Accession
Number

Sequence Name
pldα1-1/

Col-0
Ratio

pldα1-2/
Col-0
Ratio

pldα1-1/
Col-0

p Value

pldα1-2/
Col-0

p Value

Translation

Q8LD46 At2g39460 60S ribosomal protein L23a-1 20.82 7.62 0.01 0.012

Q9LHG9 At3g12390 Nascent polypeptide-associated complex subunit
alpha-like protein 1 1.82 1.91 0.052 0.029
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Table 1. Cont.

TAIR
Accession
Number

UNIPROT
Accession
Number

Sequence Name
pldα1-1/

Col-0
Ratio

pldα1-2/
Col-0
Ratio

pldα1-1/
Col-0

p Value

pldα1-2/
Col-0

p Value

Q9FJH6 At5g60790 ABC transporter F family member 1 Unique
in WT 0.38 n.a. 0.03

Stress response

P50700 At4g11650 Osmotin-like protein OSM34 0.42 0.26 0.048 0.039

Q9LYW9 At5g03160 DnaJ protein P58IPK homolog 4.03 4.11 0.004 0.026

P24102 At2g38380 Peroxidase 22 1.79 1.99 0.031 0.005

Q9LSY7 At3g21770 Peroxidase 30
Unique

in
mutant

Unique
in

mutant
n.a. n.a.

P42760 At1g02930 Glutathione S-transferase F6 0.29 0.26 0.049 0.029

Q9SRY5 At1g02920 Glutathione S-transferase F7 0.31 0.25 0.053 0.036

Q38882 At3g15730 Phospholipase D alpha 1 Unique
in WT

Unique
in WT n.a. n.a.

Q9FKA5 At5g39570 Uncharacterized protein At5g39570 (PLD
regulated protein1, PLDRP1)

Unique
in WT

Unique
in WT n.a. n.a.

P32961 At3g44310 Nitrilase 1 1.79 1.79 0.018 0.023

Membrane transport

Q9SRI1 At3g01340 Protein transport protein SEC13 homolog A 2.55 2.97 0.001 0.011

Q8S9J8 At4g32285 Probable clathrin assembly protein At4g32285 Unique
in WT

Unique
in WT n.a. n.a.

Mitochondrial respiratory chain

Q9FT52 At3g52300 ATP synthase subunit d, mitochondrial 1.69 1.57 0.047 0.046

O81845 At3g54110 Mitochondrial uncoupling protein 1 1.67 2.14 0.02 0.01

P93306 AtMg00510 NADH dehydrogenase [ubiquinone] iron-sulfur
protein 2 0.50 0.56 0.028 0.054

Q9S7L9 At1g22450 Cytochrome c oxidase subunit 6b-1
Unique

in
mutant

Unique
in

mutant
n.a. n.a.

Glucosinolate biosynthesis

O49340 At2g30750 Cytochrome P450 71A12 Unique
in WT

Unique
in WT n.a. n.a.

Q9FG67 At5g23010 Methylthioalkylmalate synthase 1, chloroplastic 1.13 1.74 0.01 0.036

Other functions

Q9LSB4 At3g15950 TSA1-like protein 1.33 1.71 0.049 0.003

Q9SP02 At5g58710 Peptidyl-prolyl cis-trans isomerase CYP20-1 1.13 1.56 0.004 0.013

Q8VYV7 At5g66120 3-dehydroquinate synthase, chloroplastic 0.39 0.44 0.046 0.01

Q9AV97 At1g79500 2-dehydro-3-deoxyphosphooctonate aldolase 1
Unique

in
mutant

Unique
in

mutant
n.a. n.a.

Q9FHR8 At5g43280 Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase,
peroxisomal 0.44 0.30 0.011 0.003

Q9FIK7 At5g47720 Probable acetyl-CoA acetyltransferase, cytosolic 2 0.59 1.71 0.042 0.055

Q9FLQ4 At5g55070
Dihydrolipoyllysine-residue succinyltransferase

component of 2-oxoglutarate dehydrogenase
complex 1, mitochondrial

8.28 5.54 0.008 0.029

Q9FMT1 At5g14200 3-isopropylmalate dehydrogenase 3, chloroplastic 1.49 1.61 0.002 0.01

Q9LQ04 At1g63000
Bifunctional dTDP-4-dehydrorhamnose

3,5-epimerase/dTDP-4-dehydrorhamnose
reductase

1.38 1.60 0.038 0.029

Q9SA14 At1g31180 3-isopropylmalate dehydrogenase 1, chloroplastic 1.52 1.55 0.019 0.02

Q9SIU0 At2g13560 NAD-dependent malic enzyme 1, mitochondrial 4.99 2.10 0.011 0.009
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Figure 1. Overview of differential root proteomes of pldα1 mutants. (A) Numbers of proteins with
increased and decreased abundances in pldα1-1 and pldα1-2 mutant. (B) Venn diagram showing
difference between differential proteomes the pldα1-1 and pldα1-2.

2.2. Classification of Root Differential Proteomes in pldα1 Mutants

A Kyoto encyclopedia of genes and genomes (KEGG) pathways analysis is a reasonable tool for
the evaluation of proteins involved in metabolism. The highest number of DAPs was classified into the
purine metabolism pathway and biosynthesis of antibiotics. Several proteins affected in both mutants
are involved in pyruvate metabolism, amino acid biosynthesis and metabolism and phenylpropanoid
biosynthesis (Figure 2).
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Figure 2. Functional classification of differentially abundant proteins found collectively in
roots of pldα1-1 and pldα1-2 mutants using Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways analysis.

Additionally, we screened differential proteomes of both mutants for the abundance of protein
families, as evaluated by the Blast2Go software using InterPro application (Figure 3, Table S2).
We identified nine proteins belonging to the NAD(P) binding protein superfamily, while seven proteins
belonged to the Winged helix DNA-binding domain superfamily. Later ones include proteins with
different functions (Table S2) and possessed specific DNA binding mechanisms different from sequence
specific binding. They display an exposed patch of hydrophobic residues implicated in protein-protein
interactions [24]. The peroxidases and aldolase-type TIM (triose phosphate isomerase) barrel protein
family represented abundant protein classes found in both pldα1 mutants (Figure 3, Table S2). These
proteins might show higher sensitivity to PLDα1 and PA deregulation in Arabidopsis.
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Figure 3. Distribution of protein families, in differentially abundant proteins found collectively in
roots of pldα1-1 and pldα1-2 mutants, as evaluated by InterPro application of Blast2Go software.
HAD = haloacid dehydrogenase; ADF = actin depolymerization factor; TIM = mitochondrial import
inner membrane translocase; NAC = nascent polypeptide-associated complex; SGNH = serin, glycin,
asparagine, histidin.

Furthermore, we classified differential proteomes of pldα1 mutants (combined) using a gene
ontology (GO) annotation analysis. The highest number of the DAPs was assigned to metabolic
processes and nitrogen compound metabolic processes. A significant number of DAPs were involved
in response to stress as well as establishment of localization (Figure S2A). Higher levels of GO revealed
that proteins annotated as involved in stress response belong to GO class called response to osmotic
stress (Table S3). Concerning cellular compartment, the GO ontology analysis showed that the highest
number of DAPs was assigned to cytosol, followed by plastid, mitochondria, protein complex and the
nucleus (Figure S2B).

Since GO ontology analysis does not consider all relevant information about protein functions,
we decided to classify the combined differential proteome based on published data (Figure 4, Table 1
and Table S1).

Apart from the high number of DAPs with diverse metabolic functions, proteins related to
the stress response were the second most abundant category (Figure 4, Table S1). Notably, PLDα1
deficiency in both mutants negatively affected the abundance of protein C2-domain ABA-related 10
(CAR10), a component of the pyrabactin resistance1/pyrabactin resistance1-like/car (PYR/PYL/CAR)
receptors for ABA [25]. Additionally, we noticed the significant disturbance of antioxidant defense and
redox homeostasis. This is represented by the increased abundance of ironic superoxide dismutase 1
(FeSOD1), ascorbate peroxidase and peptide methionine sulfoxide reductase B6. Secretory peroxidases
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exhibited varying changes in protein abundance, while catalase and glutathione S-transferase F7 had
a lower abundance in the mutants compared to the wild type. To prove the increased abundance of
FeSOD1, we performed an immunoblotting analysis on pldα1 mutants using anti-FeSOD1 polyclonal
primary antibody (Figure 5A,B). The Arabidopsis thaliana genome contains three isoforms of FeSOD,
out of which FeSOD2 and FeSOD3 are not expressed in the roots. Therefore, anti-FeSOD antibody
recognizes FeSOD1 in the Arabidopsis roots. These analyses showed significant upregulation of
FeSOD1 abundance in both pldα1 mutants.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  6 of 17 
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Figure 4. Functional classification of differentially abundant proteins found collectively in roots of
pldα1-1 and pldα1-2 mutants based on published information, as presented in Table S1.

Interestingly, PLDα1 deficiency also leads to deregulation of proteins involved in cell wall
remodeling (Figure 4, Table S1), which represents one of the primary plant defense responses to
pathogens. This is consistent with the known role of PLDα1 in plant biotic stress [26]. Furthermore,
we have found several defense related proteins differentially abundant in the pldα1 mutants, including
secretory peroxidases, nitrile specifier protein 1 and defensin-like protein 1 (Table S1). The majority of
these proteins show increased abundance in the mutants. Notably, proteins involved in glucosinolate
biosynthesis (discussed below) are highly represented, showing mostly increased abundances in the
mutants (Figure 4).

Additionally, we have found numerous proteins involved in membrane fusion and transport.
They are described in detail in the Discussion section. Among others, a PLDα1 deficiency resulted in
accumulation of synaptotagmin 1 in the mutants. These proteomic data were successfully validated
using immunoblotting analyses (Figure 5C,D) and immunolocalization of the syntaptotagmin 1 (SYT1)
protein in intact roots showing an increased accumulation in both pldα1 mutants (Figure 6).

Proteins involved in ribosome biogenesis and translation, mitochondrial respiration,
mitochondrial protein import and quality control represented a significant functional classes altered
by PLDa1 deficiency (Figure 4, Table 1 and Table S1). These findings might indicate defects of cytosolic
translation and mitochondrial protein import resulting in changed abundances of mitochondrial
proteins. Therefore we searched for proteins carrying mitochondrial targeting signal among DAPs. We
have found 19 proteins with varying changes in their abundance, suggesting an altered homeostasis
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in the import of mitochondrial proteins (Table S4). One of such proteins, mitochondrial uncoupling
protein 1 (UPC1) has increased abundance in the mutants, being in agreement with the immunoblotting
analysis (Figure 5E,F) and immunolocalization of uncoupling protein 1 (UCP1) protein (Figure 7).
In addition, we observed also decreased levels of MORF8 (multiple site organellar RNA editing factor,
designated also as RIP1; Table S1), a protein important for mitochondrial mRNA editing. Finally,
absence of PLDα1 in both mutants affects also a cluster of components of the mitochondrial respiratory
chain. Thus, PLDα1 is likely required for multiple mitochondrial functions in Arabidopsis (Table S1,
Figure 4).
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using immunoblotting analyses (Figure 5C,D) and immunolocalization of the syntaptotagmin 1 

(SYT1) protein in intact roots showing an increased accumulation in both pldα1 mutants (Figure 6). 

Figure 5. Immunoblotting analysis of ironic superoxide dismutase 1 (FeSOD1), syntaptotagmin 1
(SYT1) and mitochondrial uncoupling protein 1 (UCP1) in the roots of the Arabidopsis wild type
and pldα1 mutants. (A,C,E) Immunoblots probed with anti-FeSOD (A), anti-SYT1 (B) and anti-UCP1
(C) antibodies and visualization of proteins transferred on nitrocellulose membranes using Ponceau
S. (B,D,F) Optical density quantification of the respective bands in (A,C,E). Stars indicate significant
differences between mutants and wild type at p ≤ 0.05 according to the Student t-test. Error bars
represent standard deviations.

PLDα1 and PA are important regulators of actin and microtubule cytoskeletons in plants [11,27].
As expected, PLDα1 deficiency in both mutants resulted in differential abundances of actin and
microtubule associated proteins, including actin1 and actin depolymerizing factors (ADFs) 1, 8 and 10
(showing decreased abundances in pldα1 mutants) (Table 1 and Table S1). Such results indicate possible
disturbances in actin monomer turnover and actin polymerization in pldα1 mutants. Additionally,
we identified two protein candidates potentially important for microtubule regulation by PLDα1.
Both proteins were detected uniquely in pldα1 mutants and are involved in tubulin monomer folding.
Tubulin-folding cofactor B is a member of the Arabidopsis pilZ domain proteins [28,29]. It interacts
with alpha-tubulin and its overexpression results in reduced number of microtubules [30]. Chaperone
prefoldin 6 is required for tubulin monomer abundance, microtubule dynamics and organization [31].
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distributions in wild type (B), pldα1-1 (D) and pldα1-2 (F). Arrows indicate positions of measured
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Figure 7. Immunolocalization of mitochondrial uncoupling protein 1 (UCP1) in root epidermal cells
of wild type (A), pldα1-1 (C) and pldα1-2 (E). (B,D,F) Fluorescence intensity profiles of immunolabeled
synaptotagmin distributions in wild type (B), pldα1-1 (D) and pldα1-2 (F). Arrows indicate positions
of measured cells for fluorescence intensity profiles. Asterisks indicate peaks of highest fluorescence
intensities in measured cells. Note that fluorescence intensities in pldα1 mutants are much higher in
comparison to the wild type, indicating an overabundance of UCP1 in these mutants. Scale bar = 10 µm.
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3. Discussion

This differential proteomic analysis on roots of pldα1 mutants revealed that PLDα1 is required
for homeostasis of proteins involved in diverse processes. In this study, we focused especially on
potential new functions of PLDα1 such as mitochondrial protein import and quality control, vesicular
trafficking and glucosinolate biosynthesis. Considering the regulatory and catalytic roles of PLDα1,
we assume that besides its lipid hydrolyzing activity, the changes in the proteomes of pldα1 mutants
occurred as a consequence of compromised PA, G protein complex and ABA signalling.

3.1. New Insights into ABA Signalling

PLDα1 derived PA is a crucial regulator of stomatal movements, because it targets/binds
multiple proteins essential for this process, including ABI1 [5], NADPH oxidase [14], G protein
complexes [13] and MAP65-1 [3]. Assuming from our results, there seems to be a broader impact on
other components of ABA signalling because PLDα1 deficiency negatively affected the abundance of
protein C2-DOMAIN ABA-RELATED 10 (CAR10). CAR10 interacts with PYR/PYL ABA receptors
and recruits them transiently into phospholipid vesicles, thus positively regulating ABA signaling [25].
The PYR/PYL/CAR receptors also bind to ABI1 [32]. These data indicate a possible feedback regulation
of CAR10 abundance in the absence of PLDα1 and decreased levels of PA. In addition, aquaporins
PM intrinsic protein 1-2 (PIP1-2) and PIP2-1 are ABA-inducible proteins, which promote water uptake
and transport [33], and they bind PA [34], PLDδ and PLDγ [35]. Our proteomic analysis showed that
abundances of these proteins substantially increased in pldα1 mutants.

3.2. Mitochondrial Protein Import and Quality Control

According to our results, PLDα1 deficiency in mutants caused a deregulation of proteins involved
in protein import to mitochondria, including mitochondrial import inner membrane translocase
subunits TIM23-2 and TIM13, which are downregulated. While TIM23-2 is a translocase responsible
for the transport of mitochondrial precursor proteins carrying a cleavable N-terminal pre-sequence [36],
TIM13 is a member of small TIM complex delivering client precursors that pass through the
TOM (mitochondrial import outer membrane translocase) channel to Tim22 in the mitochondrial
intermembrane space [37]. Therefore, the import of nucleus-encoded mitochondrial proteins is altered
in pldα1 mutants. Along with altered protein import to mitochondria, PLDα1 deficiency may affect also
N-terminal presequence cleavage (inferred by increased abundance of presequence protease 1 in pldα1
mutants) occurring after protein precursor import into mitochondria [38]. Furthermore, we provided
experimental evidence on deregulation of prohibitin 6 involved in mitochondrial protein folding [39].
Prohibitins (PHBs) are considered to be structural proteins that form a scaffold-like structure for
interacting with a set of proteins involved in various mitochondrial processes [39]. These proteins
participate in the assembly of multi-subunit complexes such as mitochondrial respiratory complex [40].
Accordingly, several proteins of the mitochondrial electron transport chain show significant changes
in their abundance in both mutants as compared to the wild type. Mitochondrial protein import
machinery was also reported to be in close interaction with the organization of respiratory complexes.
Tim23-2 is localized also in respiratory complex 1 and its genetic modification leads to altered
transcription of mitochondrial proteins and defective mitochondria biogenesis [36]. A similar role
in mitochondria biogenesis was found for prohibitins [41]. Thus far, PLDα1 was not linked to these
mitochondrial functions, although the ATP synthase subunit gamma and ADP/ATP carrier protein
were targeted by PA in Arabidopsis [34].

3.3. Vesicular Transport

PLD-derived PA can regulate membrane transport by direct modification of membrane curvature
or by recruiting important regulatory proteins [42]. These proteins positively affect protein
internalization [43,44], vesicle fusion and aggregation [45]. In Drosophila, PLD activity couples
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endocytosis with retromer dependent recycling [46]. Our findings indicate that PLDα1 alters multiple
sites of endomembrane system. For example, in both mutants we detected decreased abundances of
vacuolar H+ ATPases (subunits D and d2), which control multiple events in endomembrane transport
by acidification of endomembrane compartments [47].

In accordance with the known involvement of PLDs in vesicle fusions, we observed an
increased abundance of alpha-soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein
2 (Alpha-SNAP2) in the pldα1-1 mutant. Alpha-SNAP proteins bind the soluble NSF attachment
protein receptor (SNARE) complex [48] and are required for the vesicle pre-docking, an initial step of
the membrane fusion reaction [49,50]. The precise function of alpha-SNAP2 is unknown, though it
might require PLDα1. Remarkably, alpha-SNAP2 interacting syntaxin 32 (SYP32), a Golgi localized
Qa SNARE [51] was found as upregulated in pldα1 mutants. Thus, PLDα1 might be necessary for
SNARE-SNAP protein complexes stability.

We identified several proteins involved in the endocytic pathway as differentially regulated in
both pldα1 mutants. These include mainly the probable clathrin assembly protein At4g32285 (not
detected in pldα1 mutants), which is involved in clathrin-mediated endocytosis [52]. Clathrin assembly
proteins interact directly with proteins of the clathrin coat and are able to bind phospholipids [53].
Two such proteins were identified as PA-binding proteins [34]. Furthermore, PLDα1 localized in the
vicinity of clathrin heavy chain and microtubules of Arabidopsis root cells [12] and it may directly bind
clathrin in a complex containing adaptor protein-2 (AP-2) [54]. Vacuolar protein sorting 29 (VPS29),
a protein found uniquely in the pldα1-1 mutant, is a component of retromer complex. This is a coat
complex localized to the cytosolic face of endosomes and involved in intracellular sorting of some
transmembrane proteins [55]. VPS29 is important for normal morphology of prevacuolar compartment
(PVC) and plays crucial role in recycling vacuolar sorting receptors from the PVC to the trans Golgi
network (TGN) during trafficking of soluble proteins to the lytic vacuole [56,57]. These data uncovers
new endocytic proteins affected in pldα1 mutants.

PLDα1 deficiency in both mutants altered also abundances of proteins involved in the regulation
of endoplasmic reticulum (ER) to Golgi transport. Protein transport protein SEC13 homolog A is
upregulated nearly threefold in both pldα1 mutants. Sec13 makes a lattice structure together with
Sec31 to form COPII vesicles [58], which are responsible for ER to Golgi transport. According to
our results, PLDα1 may have also an impact on the morphology of Golgi apparatus, inferred by the
upregulation of Golgin candidate 5 (also known as the TATA element modulatory factor) in the pldα1-2
mutant [59,60]. Another protein important for ER to Golgi trafficking is vesicle-associated protein 1-2
(PVA12, also known as VAP27-3), which is upregulated in the pldα1-1 mutant. This is an ER-localized
protein belonging to a VAP27 family [61]. It binds to oxysterol-binding protein-related protein 3B [62],
which is also upregulated in the mutants and is proposed to cycle between the ER and the Golgi [62].
Recently, PVA12 was shown to colocalize and interact with Networked 3C (NET3C) at ER–PM contact
sites [61]. Considering PLDα1 localization in the PM vicinity, we suggest an involvement of this
protein in ER-PM attachment. This is emphasized by an increased abundance of synaptotagmin 1
(SYT1) in pldα1 mutants, representing a protein mediating the ER-PM contacts in Arabidopsis [63].

PLDα1 depletion leads to changed abundance of proteins regulating the membrane transport.
Changes in protein level might be a result of deregulation of protein synthesis and proteolysis or
transcriptional control. Previously, it was shown that changes in membrane transport might result
in changed abundance of proteins. This was exemplified for example in Arabidopsis roots exposed
to brefeldin A (BFA), which blocks secretion/exocytosis by aggregation of TGN and PM-derived
vesicles surrounded by Golgi stacks into so called BFA-compartments [64]. Altered endocytosis and
vacuolar trafficking by wortmannin lead to altered abundances of vacuolar proteases potentially
leading to defected protein degradation [65]. Similar downregulation of such protease, subtilisin-like
protease SBT1.7 is encountered also in roots of pldα1 mutants. Based on our proteomic data we
suggest that this dynamics of membrane transport regulatory processes might result from defected
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protein degradation and as a feedback mechanism of PLDα1 depletion-induced changes in membrane
architecture, membrane transport and PA accumulation.

3.4. Glucosinolate Biosynthesis

PLDs have been shown to crosstalk with hormonal signaling in plants. In addition to their
well-known role in ABA signaling, they also participate in salicylic acid signaling by controlling
relocation of NPR1, an essential regulator of SA induced gene transcription, into the nucleus [66].
In addition, PLDs might be activated by cytokinins [67] and ethylene [68]. Constitutive triple response 1
(CTR1), a negative regulator of ethylene response is a potential target of PA [69]. PLDs are also
involved in auxin distribution. Thus, PLDζ-derived PA is required for protein phosphatase 2Ac
(PP2Ac) recruitment to the membrane resulting in altered auxin efflux carrier component 1 (PIN1)
phosphorylation and polar distribution [7]. Auxins share an initial steps of biosynthetic pathway
with glucosinolates [70,71]. Arabidopsis mutants with reduced glucosinolate contents show severe
auxin phenotypes [72]. Generally, glucosinolates are secondary messengers produced in Brassicaceae
with important defense and developmental functions [70,73]. PLDα1 deficiency in mutants causes
increased abundances of enzymes involved in glucosinolate biosynthesis, including four subunits
of 3-isopropylmalate dehydrogenase and methylthioalkylmalate synthase, all involved in the chain
elongation machinery. Enzymes involved in the biosynthesis of the core glucosinolate structure,
namely cytochrome P450 83B1, glutathione S-transferase F9, indole glucosinolate O-methyltransferase
1 and adenylyl-sulfate kinase 1, showed similar trends in their abundances (Table S1). PLDα1 induced
an imbalance of indole glucosinolate o-methyltransferase 1 abundance, which is a glucosinolate
modifying enzyme [71]. Glutathione synthase 1 showed an increased abundance in mutants, most
likely contributing to the glutathione pool, which serves as a sulfur donor within the second stage of
GLS biosynthesis [71]. Such differential regulation of enzymes involved in one metabolic pathway in
untargeted proteomic approach is very unusual, suggesting that PLDα1 might be a master regulator
of glucosinolate biosynthesis. It is likely that this regulation is mediated via PA, since cytochrome P450
83B1 is a PA-binding protein, as identified in a proteomic screen [34].

4. Materials and Methods

4.1. Plant Material

Seeds of Arabidopsis thaliana wild type (ecotype Col-0) as well as pldα1-1 (SALK_067533) and
pldα1-2 (SALK_053785) t-DNA insertion mutants were used in this study. Following ethanol
surface-sterilization, they were cultivated vertically on solid half-strength Murashige-Skoog (MS)
media at 21 ◦C under 16/8 light/dark illumination conditions for 14 days. Roots were quickly
dissected and harvested for protein extraction. Proteomic analyses were performed in four biological
replicates. Roots of 30 seedlings were pooled in one biological replicate.

4.2. Protein Extraction and Trypsin Digestion

Samples were ground in liquid nitrogen and subjected to phenol protein extraction followed by
ammonium acetate/methanol precipitation as described by Takáč et al. [74]. Cleaned precipitates
were dissolved in 6 M urea in 100 mM Tris (pH 7,8). Prior to trypsin digestion, extracts containing
50 µg of proteins (in volume of 50 µl) were diluted with 100 mM Tris-HCl (pH7,8) to adjust the urea
concentration bellow 1 mM. Proteins were digested with trypsin (Promega;1 µg of trypsin to 50 µg of
proteins) at 37 ◦C overnight. Reaction was stopped by addition of 4 µL of acetic acid. Peptide mixtures
were cleaned using C18 gravity flow cartridges (Bond Elut C18; Agilent Technologies, Santa Clara, CA,
USA) according to manufacturer’s instructions. Peptides eluted by 95% acetonitrile were dried using
vacuum concentrator and stored under −80 ◦C until analysis.
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4.3. Liquid Chromatography, Mass Spectrometry, Protein Identification and Relative Quantitative Analysis

Liquid chromatography-MSMS and protein identification was performed as published
previously [74] with minor modifications. As target database and decoy databases, the UNIPROT
(www.uniprot.org) Arabidopsis genus taxonomy reviewed protein database (17,586 entries as of 31st
September 2017), and its reversed copy (created automatically by the software) were used, respectively.
The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via
the PRIDE partner repository with the dataset identifier PXD011196.

The quantitative analysis was done using the ProteoIQ 2.1 (NuSep Inc., Athens, GA, USA)
software as published previously [75]. The ANOVA p ≤ 0.05 was used to filter statistically significant
results. Proteins with fold changes higher than 1.5 were considered as differentially abundant. Proteins
present at least in two biological replicates and identified by at least two peptide spectral matches
were quantified.

4.4. Bioinformatic Analysis

Gene ontology (GO) annotation analysis of DAPs was performed using Blast2Go software [76].
BLAST searching was performed against the Arabidopsis thaliana NCBI database allowing 1 BLAST Hit.
The annotation was carried out by using these parameters: E Value Hit filter: 1.0 × 10−6; Annotation
cut off: 55; GO weight: 5. The prediction of presence of mitochondrial targeting pre-sequence in
differential proteomes of both mutants was performed using MitoFates [77].

4.5. Immunoblotting Analysis

Immunoblotting analysis was performed on protein extracts derived from roots of 14 day-old
plants of wild type, as well as pldα1-1 and pldα1-2 mutants following published procedure [74].
Anti-synaptotagmin (PhytoAb; dilution 1:1000), anti-FeSOD (Agrisera; dilution 1:3000) and anti-UCP1
(Agrisera; dilution 1:1000) primary antibodies were used. Immunoblot analyses were carried out in
three biological replicates. Differences in signal intensity between wild type and the mutants were
statistically evaluated using Student’s t-test (p < 0.05).

4.6. Whole Mount Immunofluorescence Labelling

Immunolocalization of SYT1 and UCP1 proteins in root wholemounts was carried out as published
previously [78]. As primary antibodies, we have used the rabbit anti-synaptotagmin 1 antibody
(PhytoAb; 1:200) and anti-UCP1 antibody (Agrisera; 1:200), while Alexa-Fluor 647 goat anti-rabbit IgG
was exploited as secondary antibody. Microscopic observations were performed using the Zeiss 710
Confocal Laser Scanning Microscope platform (Carl Zeiss, Jena, Germany), using excitation lines at
405 and 561 nm from argon, HeNe, diode and diode pumped solid-state lasers. ZEN 2010 software
(Carl Zeiss) was used for post-processing, default deconvolution and quantification of fluorescence
intensity. Additionally, Photoshop 6.0/CS, and Microsoft PowerPoint softwares were used to process
the obtained images.

5. Conclusions

Based on this proteomic analysis, PLDα1 is a protein which in addition to its well-known functions
in ABA signalling and cytoskeleton organization, important for the homeostasis of proteins involved
in mitochondrial protein import, vesicular trafficking and glucosinolate biosynthesis.
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