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Abstract

Gene expression is a combinatorial function of genetic/epigenetic factors such as copy number variation (CNV), DNA
methylation (DM), transcription factors (TF) occupancy, and microRNA (miRNA) post-transcriptional regulation. At the
maturity of microarray/sequencing technologies, large amounts of data measuring the genome-wide signals of those
factors became available from Encyclopedia of DNA Elements (ENCODE) and The Cancer Genome Atlas (TCGA). However,
there is a lack of an integrative model to take full advantage of these rich yet heterogeneous data. To this end, we
developed RACER (Regression Analysis of Combined Expression Regulation), which fits the mRNA expression as response
using as explanatory variables, the TF data from ENCODE, and CNV, DM, miRNA expression signals from TCGA. Briefly, RACER
first infers the sample-specific regulatory activities by TFs and miRNAs, which are then used as inputs to infer specific TF/
miRNA-gene interactions. Such a two-stage regression framework circumvents a common difficulty in integrating ENCODE
data measured in generic cell-line with the sample-specific TCGA measurements. As a case study, we integrated Acute
Myeloid Leukemia (AML) data from TCGA and the related TF binding data measured in K562 from ENCODE. As a proof-of-
concept, we first verified our model formalism by 10-fold cross-validation on predicting gene expression. We next evaluated
RACER on recovering known regulatory interactions, and demonstrated its superior statistical power over existing methods
in detecting known miRNA/TF targets. Additionally, we developed a feature selection procedure, which identified 18
regulators, whose activities clustered consistently with cytogenetic risk groups. One of the selected regulators is miR-548p,
whose inferred targets were significantly enriched for leukemia-related pathway, implicating its novel role in AML
pathogenesis. Moreover, survival analysis using the inferred activities identified C-Fos as a potential AML prognostic marker.
Together, we provided a novel framework that successfully integrated the TCGA and ENCODE data in revealing AML-specific
regulatory program at global level.
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Introduction

One of the most intriguing questions in molecular biology is to

decipher condition-specific transcription programs in complex

organisms such as human [1]. The major transcriptional regulator

proteins are transcription factors (TFs), which bind to cis-

regulatory elements in the promoter regions of genes and control

the downstream transcription activity [2]. MicroRNA (miRNA), a

small *22 nucleotide noncoding RNA species, have been shown

to play a predominant role in post-transcriptional and/or

translational regulation [3]. While TFs can serve either as a

transcriptional activator or repressor, miRNAs are primarily

known to confer mRNA degradation and/or translational

repression [4]. The coordinated transcriptional regulatory network

comprising of miRNAs and/or TFs together maintains normal

cellular state in a tissue-specific manner. Although abnormal

miRNA and mRNA expression can be taken as strong indicator of

carcinoma in clinical samples [5,6], it is often unclear what causes

the aberrant expression pattern and in particular how the

transcriptional regulatory network differs between tumor and

normal samples.

At the maturity of several high-throughput technologies, large-

scale expression profiling of long and small RNAs by microarray

or RNA-sequencing (RNA-seq) across hundreds of human samples

as well as genome-wide interrogation of TF occupancy by

chromatin immunoprecipitation sequencing (ChIP-seq) have

become increasingly permissive. In particular, two major consortia

namely Encyclopedia of DNA Elements (ENCODE) [7] and The

Cancer Genome Atlas (TCGA) [8,9] have made significant

progress in generating and organizing the raw genomic data on

public domains over the past few years. The primary goal of

ENCODE is to decipher TF transcriptional regulatory network.

To this end, the ENCODE team has generated high quality ChIP-

seq data for over a hundred TFs in various human cell lines [7].

On the other hand, the TCGA consortium aims at identifying

molecular signatures specific to each cancer type by profiling
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mRNA and miRNA expression as well as DNA methylation (DM),

copy number variation (CNV) over hundreds of patient samples

across many different cancer types.

With the availability of these huge amount of the data, there is

an urgent need of developing computational models to effectively

integrate heterogeneous data from multiple platforms and provide

insightful directions for further focused research. Using ENCODE

ChIP-seq data, [10] explored the topology of TF-miRNA

coregulatory network by re-arranging the network into three

layers based on TF-TF regulatory relationship, and then

superimposed miRNA regulatory network derived from se-

quence-based predictions on top of the TF network. In a more

recent work, [11] employed existing supervised machine-learning

methods to examine how well the TF-binding signals can be used

as predictors to explain the mRNA expression levels. These

approaches achieved promising results: about 50% of the

expression variances can be explained by TF binding data alone.

However, the model prediction may be further improved by taking

into account not only TF but also miRNA regulations.

Recently, [12] developed a regularized linear regression model

in a glioblastoma (GBM) study using data from TCGA. The model

was fit on mRNA expression changes in GBM tumor samples as

the response variable using a linear combination of the input

variables including the CNV, DM, miRNA sequence-based

predictions (or miRNA expression), and binary TF-binding sites

from TRANSFAC filtered by DNA hypersensitive regions from

the ENCODE data. Despite the additive regulatory assumption,

the model successfully identified various GBM-related regulators,

whose estimated activities were predictive to GBM subtypes and

patient survival rate. Their work demonstrated a parsimonious

way to extract the most prominent TF/miRNA expression

regulators by systematically dissecting different contributors,

taking into account the confounding effects from CNV and/or

DM. On the other hand, the model did not incorporate the

valuable non-binary TF binding data from ENCODE. More

recently, [13] proposed a similar regression framework to

successfully predict 143 recurrent miRNA-mRNA interactions

across 11 cancer types using the TCGA data. Their model,

however, did not include TF regulations. Since TF are presumably

the predominant expression regulators and miRNAs are known to

primarily fine-tune transcriptional products [3], a model without

considering TF regulations may be prone to overestimating the

influences of the miRNAs.

In this study, we propose a novel two-stage regression

framework that integrates data from both TCGA and ENCODE.

The novelty of our model, named RACER (Regression Analysis of

Combined Expression Regulation), lies in its ability to infer

sample-specific TF activities using ENCODE TF binding data

derived from a generic cell-line and then using the estimated

regulatory activities to infer miRNA/TF-gene regulatory relation-

ships across samples. As a case study, we choose Acute Myeloid

Leukemia (AML) for the following reasons. Various high quality

genome-wide measurements (CNV, DM, mRNA/miRNA expres-

sion measured by long/small RNA-seq) of a large cohort of 173

AML patients have very recently become available from TCGA

(2013), providing a unique opportunity to study one of the most

prevalent cancers [9]. Despite decades of efforts, the molecular

pathogenesis of AML remains unclear. In particular, recent studies

showed that, in contrast to many other cancers, the genomes of

AML patients have fewer mutations or structural variation with an

average of only 13 genetic mutations per patient, and that most of

the recently predicted AML-related driver genes do not carry any

mutations in the AML patients [9]. This motivates a novel way to

interrogate AML cancer biology at the transcriptional and

epigenetic level. Moreover, the AML samples are perhaps the

best match to ENCODE Tier 1 K562 erythroleukemia cells

(derived from a 53 year-old Chronic Myelogenous Leukemia

patient), which by far has the highest number of 97 TFs measured

by ChIP-seq experiments [14] and thus justifies our use of the TF

occupancy in K562 as surrogates for the AML samples. By cross-

validation, we show that our full regression model using various

expression regulators indeed performs significantly better in

predicting the held-out gene expression than the alternative

models, where only a subset of the regulators are used as the input

variables. Moreover, the proposed model demonstrates promising

statistical power in detecting known or confidence TF/miRNA-

gene interactions. Based on a feature selection procedure, we

identified 18 prominent (post-)transcriptional regulators including

16 TFs and 2 miRNAs, whose inferred activities consistently

cluster based on cytogenetic risk groups. Among the 18 selected

regulators, we propose a novel role of a recently identified miRNA

hsa-miR-548p in AML pathogenesis because of its significant

target gene enrichments for leukemia-related pathway and its

inferred interaction with another prominent feature regulator

YY1, whose perturbed expression has been implicated in AML

development through interference with the myeloid differentiation

program in leukemic progenitor cells [15]. Moreover, we identified

a potential prognostic marker using the inferred TF activities of C-

Fos, which has been previously shown to have oncogenic activity

and is frequently overexpressed in tumour cells [16].

Results

RACER: Regression analysis of combined expression
regulation

Changes in global gene expression profile may be the result of

perturbation on distinct regulators, which may be specific even

between subtypes of a broadly defined disease category. The

objective of our work is to infer the predominant regulators of

Author Summary

Recent studies from The Cancer Genome Atlas (TCGA)
showed that most Acute Myeloid Leukemia (AML) patients
lack DNA mutations, which can potentially explain the
tumorigenesis, and motivated a systematic approach to
elucidate aberrant molecular signatures at the transcrip-
tional and epigenetic levels. Using recently available data
from two large consortia namely Encyclopedia of DNA
Elements and TCGA, we developed a novel computational
model to infer the regulatory activities of the expression
regulators and their target genes in AML samples. Our
analysis revealed 18 regulators whose dysregulation
contributed significantly to explaining the global mRNA
expression changes. Encouragingly, the inferred activities
of these regulatory features followed a consistent pattern
with cytogenetic phenotypes of the AML patients. Among
these regulators, we identified microRNA hsa-miR-548p,
whose regulatory relationships with leukemia-related
genes including YY1 suggest its novel role in AML
pathogenesis. Additionally, we discovered that the inferred
activities of transcription factor C-Fos can be used as a
prognostic marker to characterize survival rate of the AML
patients. Together, we demonstrated an effective model
that can integrate useful information from a large amount
of heterogeneous data to dissect regulatory effects.
Furthermore, the novel biological findings from this study
may be constructive to future experimental research in
AML.

Regression Analysis of Combined Gene Expression Regulation in AML
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genes expression attributable to acute myeloid leukemia (AML)

and their cognate mRNA targets. To this end, we took a reverse

engineering approach in attempt to explain the gene expression by

integrating transcriptional regulators, whose genome-wide mea-

surements have recently become available from TCGA [9] or

ENCODE [14]. In particular, we assumed that the changes of

mRNA abundance are due to (1) copy number variation of the

genomic DNA; (2) alteration of DNA methylation; (3) occupancy

of transcription factors; (4) miRNA-mRNA interaction at the post-

transcriptional level (Figure 1A). By dissecting the influence of

these input variables in a regularized linear regression model

(Figure 1B), we aimed to elucidate the hidden activities of the

predominant TF and miRNA regulators and their target genes in

AML. The idea of inferring TF/miRNA activities using linear

models and subsequently inferring regulator-target connectivity

are previously established in the literature [17–20], but (to the best

of our knowledge) has not been applied to our problem formalism.

Specifically, we propose RACER (Regression Analysis of

Combined Expression Regulation) that is specifically designed to

integrate the above-mentioned explanatory variables to tackle this

problem. Suppose there are N genes (g), M miRNAs (miR), and K

TFs. For each sample t[f1, . . . ,Tg, we observe expression levels of

gene yg,t and miRNA zmiR,t as well as CNV ng,t and DM signals

mg,t (together provided by TCGA [9]). The TF-binding signals,

however, were not available for each sample but rather measured

by ChIP-seq in a related cell line K562 (erythroleukemia cells;

provided by ENCODE [14]). To integrate the sample-specific

data from TCGA with the cell-line-derived TF-binding data from

ENCODE, we devised a two-stage regression analysis. In the first

stage, we estimate sample-specific TF and miRNA activities (aTF ,t,

amiR,t) in sample t with a0 being the intercept, and aCNV ,t and

aDM,t being the respective offsets for CNV and DM:

yg,t&a0zaCNV ,tng,tzaDM,tmg,tz
X

TF[f1,...,Kg
bg,TF aTF ,t

z
X

miR[f1,...,Mg
amiR,tcg,miRzmiR,t

ð1Þ

where bg,TF is the binding score of TF on gene g, cg,miR is the

number of conserved target sites on the 30UTR of the target gene

g for miR, which is obtained as sequence-based information from

TargetScan [21]. In the second stage, using the estimated aTF ,t

and amiR,t in (1), we infer for each gene g its association with the

candidate TF (wg,TF ) and miR regulators (wg,miR) across all of the
T samples:

yg,t&w0zwg,CNV ng,tzwg,DMmg,tz
X

TF[f1,...,K�g
wg,TF aTF ,t

z
X

miR[f1,...,M�g
wg,miRamiR,t

ð2Þ

where M� and K� are the respective number of selected TFs and

miRNAs with nonzero binding signals bg,TFw0 and conserved

target sites cg,miRw0 for gene g. Notably, amiR,t carries more

dynamic information due to its association with the sample-specific

miRNA expression levels zmiR,t in (1). To obtain a robust estimate,

we further weighted the wg,miR by the averaged activities of the

miRNA: w�g,miR~wg,miRamiR, where amiR~ 1
T

P
t amiR,t. At each

stage of RACER, we obtained a sparse LASSO solution [22], which

minimizes the sum of squared errors with L1{norm penalty on the

linear coefficients (Materials and Methods). As reference, the

following matrices were preserved for further analyses:

Figure 1. RACER schematics. A. The mRNA expression of gene g (yg) is modelled as a function of the following input variables (left to right): TF-
binding signals (bg,TF ), DNA methylation (mg), copy number variation (ng), miRNA-mRNA interactions implicated in the sequence-based seed match
(cg,miR) 30UTR regions of the mRNA and miRNA expression (zmiR). B. Two-stage regression analysis. At stage 1, RACER estimates the sample-specific TF
and miRNA activities (aTF ,t , amiR,t) for each sample t. At stage 2, RACER uses the inferred regulatory activities of TFs and miRNAs to estimate the
interaction scores wg,TF and wg,miR between gene g and TF and between gene g and miRNA miR across all of the T samples, respectively.
doi:10.1371/journal.pcbi.1003908.g001

Regression Analysis of Combined Gene Expression Regulation in AML
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N ½aTF ,t�K|T , ½amiR,t�M|T : Activities of K TFs and M miRNAs

across T samples;

N ½wg,TF �N|K , ½wg,miR�N|M : Predicted scores of regulatory

relationships between N genes and K TFs or M miRNAs.

In the AML data, N~16653, M~470, K~97, and T~173
(Despite 200 samples reported in [9], we found 173 samples each

having all of the above-mentioned data available).

Comparison of the full and reduced/alternative RACER
models

To justify our model formalism, we compared the full RACER

model with the models excluding one of the variables in terms of

their abilities to explain expression changes in AML. Specifically,

we performed a 10-fold cross-validation (CV) by training the full

or reduced models on 90% of the genes and tested their

predictions on the held-out 10%. The CV was carried out per

sample-basis. After each CV run, we obtained the Spearman rank

correlation [12] and coefficient of determination

(R2~1{

P
i
(yi{ŷyi)

2

P
i
(yi{�yy)2 ) [11] between the predicted and observed

gene expression. Figure 2 (Figure S1) illustrates the CV results as a

distribution of the correlation calculated across all samples for

each model, which were ordered based on their median Spearman

correlation (coefficient of determination). Encouragingly, the full

RACER model performed the best and significantly better

(pv[1E-55, 0.2]; Wilcoxon signed rank test) than all of the other

alternatives, achieving median Spearman correlation above 60%

(Table 1). Because overfitting due to higher model complexity will

result in poor CV performance, we attributed the superior

performance of the full RACER model to its ability to extract

unique biologically meaningful information from each type of

input variable. Comparing the full with the partial RACER

models (where one regulatory factor was excluded), it is

remarkable to observe that the highest reduction of 20% is

attributable to TF regulation followed by a 5% reduction when

DNA methylation was omitted. In contrast, miRNA and CNV

contributed modestly to the regression performance. The results

are consistent with the underlying biology: TFs and DNA

methylation are the master regulators or upstream controls of

the transcriptional program whereas miRNAs serve as a post-

transcriptional fine-tuning rheostat [3]. Comparing with the

findings in glioblastoma, however, where CNV played a major

role in explaining gene expression [12], we suggest that the

moderate effect of CNV observed here may be AML-specific, i.e.,

it is unlikely that CNV will have the same effect in other diseases.

Indeed, recent studies have shown that many of the AML genomes

lack structural abnormalities, implying that the disease complexity

may likely reside at the transcriptional and epigenetic level [9].

The above correlation is based on the results after stage 1

regression (Eq 1). We also performed a similar model comparison

using the predicted gene expression after stage 2 regression (Eq 2)

and obtained consistent results (Figure S2; Table S1). Notably,

however, the model performances at the two regression stages are

not directly comparable due to the following subtleties. At stage 1,

we trained a separate linear model a:,t and performed 10-fold CV

on genes within each sample t. The model performance was

then averaged over the 10 folds for each sample. As a result, each

model had 173 Spearman correlations as data points, which were

then plotted as boxplot in Figure S2A. In contrast, at stage 2 we

trained a common set of linear coefficients wg,: as the estimated

regulatory relationships and performed 10-fold CV on samples
for each gene g. The model performance was then averaged

over the 10 folds for each gene. As a result, each model had 16653

Spearman correlations (representing the 16653 genes) as data

points (Figure S2B). Due to the much larger number of genes than

the number of samples and the inherent sample-specific differ-

ences, the stage 2 regression is perhaps more challenging than the

stage 1 regression task. As a result, we observed more performance

fluctuation or increased variance at the stage 2 CV as shown in

Figure S2B comparing with stage 1 performance (Figure S2A).

Nonetheless, we would like to emphasize that the actual message

we were trying to convey in Figure S2 is the relative performance
gained by the full model comparing with the reduced models,

which is remarkably consistent at both regression stages.

Finally, we further compared four alternative models each using

copy number and DNA methylation data but different in using the

remaining input data as follows:

(1) TRANSFAC + TargetScan

(2) TRANSFAC + TargetScan * miRNA.exprs

(3) ENCODE + TargetScan

(4) ENCODE + TargetScan * miRNA.exprs (the full RACER

model)

Here, ‘‘TRANSFAC’’ represents the integer counts of the

putative TF binding sites from TRANSFAC database (version 7.4)

[23] corresponding to 282 TFs at the promoters of the 16653

target genes, ‘‘TargetScan’’ represents the putative miRNA

binding sites from TargetScan database [21] at 30UTR of the

target gene, and ‘‘TargetScan * miRNA.exprs’’ represents the

target site counts weighted by the corresponding miRNA

expression. Notably, model 1 is essentially the same as the model

described by [12]. We then compared the four models in terms of

the Spearman correlation between the predicted and observed

Figure 2. Model comparison. Boxplot of Spearman rank correlation
between the predicted and the actual held-out genes in 10-fold cross-
validation (CV). The full RACER model (red, left most) using all of the
input variables was compared with the reduced model using all except
for one type of the input variables ‘‘RACER, all excluding X’’, where 6 is
one of the following factors: CNV (copy number variation), miRNA
(miRNA expression | number of conserved target sites), DM (DNA
methylation), TF (TF binding scores from ENCODE). RANDOM represents
predictions from the complete RACER model on the same data but with
gene labels randomly shuffled. The 10-fold CV was performed for each
sample, and the average was taken over the 10 correlations. Each
boxplot displays the distribution of the averaged correlation across the
173 AML samples. The higher the reduction relative to the full RACER
model, the more power provided by the excluded variables in terms of
explaining the underlying mRNA expression level.
doi:10.1371/journal.pcbi.1003908.g002

Regression Analysis of Combined Gene Expression Regulation in AML
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mRNA target expression signals via 10-fold CV. Remarkably, we

found that models (3) and (4) performed significantly better than

models (1) and (2) (p v 2.92E-53, Wilcoxon signed-rank test;

Figure S3). In other words, the ENCODE TF binding data

conferred significantly higher explanatory power than the

TRANSFAC TF binding data for the mRNA expression level in

the AML samples. One possible explanation would be that the in
vivo ChIP-seq measurements in K562 are perhaps more consistent

with the actual TF occupancies in the AML patient samples than

the TF binding signals from the motif database. Although we

observed no significant improvement by weighting the target site

counts with the miRNA expression, we decided to still use the full

RACER model (with miRNA expression) to more realistically

recapitulate the regulatory relationships. Presumably, miRNAs

with low or no expression (regardless of its potential cognate

mRNA targets) should assume lower or no regulatory power than

the highly expressed ones and vice versa.

Power analysis of miRNA and TF target predictions
We examined how well our model can be used to predict

miRNA-mRNA and TF-gene regulatory relationships using wg,miR

and wg,TF derived from Eq 2. For miRNA target predictions, we

applied three other methods as comparison to predict miRNA

targets using the same AML data, namely GenMiR++ (GENMIR;

[24]), LASSO with only miRNA expression coupled with binary

seed-match matrix as predictors [25], and Pearson correlation

coefficient (PCC; [26]) (Materials and Methods). The evalu-

ation of each method was based on the number of validated

interactions it identified from MirTarBase [27] among the top

1000-5000 (with 200-interval) ranked prediction list, and the

precision-recall in recovering the confidence targets derived from

an independent miR-34a perturbation study [28]. For the latter,

we constructed a panel of 338 putative positive target genes of

miR-34a by intersecting the mRNA pull-down from biotinylated

(Bi-)miR-34a and the down-regulated mRNAs upon miR-34a

transfection in K562. Comparing with the other methods,

RACER performed the best in identifying significantly more

validated interactions among its top ranked predictions (pv[1E-

09, 1E-3], Wilcoxon signed rank test) (Figure 3A) and achieved the

best precision-recall in miR-34a target prediction (Figure 3B). For

TF-gene predictions, a similar test was conducted. Specifically, we

compared the RACER predictions with peak scores bg,TF

calculated by the ENCODE team [7]. We used as orthogonal

data the motif-based interactions from TRANSFAC [23] and

significantly down-regulated targets from a GATA2 knockdown

study in K562 cell line [29]. Comparing with using peak scores

alone, the top rank list of TF-gene pairs from RACER are

significantly more enriched for the motif-based interactions

(Figure 4A), and the association scores wg,TF for GATA2-gene

pairs exhibit higher precision-recall (Figure 4B). Together, RAC-

ER delivered competitive accuracy in predicting miRNA/TF-gene

regulatory relationships. RACER’s favourable performance is

likely attributed to the linear decomposition of the various

expression co-regulators, which may be over/underestimated in

reduced or alternative model formalisms.

Feature selection of predominant expression regulators
in AML

To determine the most predominant TF/miRNA regulators in

regulating gene expression in AML, we developed a feature

selection procedure. Specifically, we performed the same regression

analysis as described above but leaving out one of the TF/miRNA

regulators, regulatorX, from the regression formula. We then

compared the residual sum of squared (RSS) errors produced by the

reduced RACER model denoted as RSSRACER, all excluding regulatorX

with the error from the full RACER model (RSSRACER) using F -

test, where the F -statistics is defined as:

F (1,N{M{Kz1)~

(RSSRACER, all excluding regulatorX{RSSRACER)

RSSRACER=(N{M{Kz1)

ð3Þ

where N, M, K are the respective number of genes, miRNAs, and

TFs; F(1,N{M{Kz1) is the F distribution with degree of

freedoms (df ): df1~1,df2~N{M{Kz1. The p-value was then

calculated by P½XwF (1,N{M{Kz1)� and adjusted for multi-

ple testing over the MzK TF/miRNA regulators using Benjamini-

Hocherberg method [30]. With false discover rate (FDR) v 0.1, we

identified 18 predominant transcriptional regulators consisting of 16

TFs and 2 miRNAs (Table S2). To examine the biological functions

of these selected regulators, we performed a functional enrichment

analysis using their associated targets having nonzero coefficients

(wg,TF ,wg,miR) determined by RACER. Based on enrichments for

biological processes from gene ontology (GO) database [31] and

canonical pathways from MSigDB [32], we discovered several

interesting functions related to the selected regulators (enrichment

FDRv0.1; Table 2, S3). For instance, PHF8, Max, YY1 and C/

EBPb are engaged in regulating DNA repair whereas Maz and

ELF1 are involved in tumor necrosis factor pathway.

To further examine the functional implication of the top

regulators in AML, we performed an in-depth literature survey on

Table 1. Model comparison.

Spearman (%) R2 (%) RACER vs X: p.value v

RACER 60.0 31.0 Not applicable

RACER, all excluding CNV 59.7 30.7 1.73E-01 4.59E-02

RACER, all excluding miRNA 59.6 30.5 7.41E-02 6.17E-03

RACER, all excluding DM 56.5 26.3 1.07E-44 4.29E-56

RACER, all excluding TF 43.0 17.8 3.42E-54 1.11E-53

RANDOM 0.18 0.00 1.17E-58 1.62E-58

RACER: full model; RACER, all excluding X: full model without using variable 6 [ {CNV: copy number variation, miRNA: miRNA expression and seed match, DM: DNA
methylation, TF: transcription factor binding signals}; RANDOM: full RACER on expression data with randomly shuffled gene symbols. ‘‘RACER vs X: p.value v’’: p-values

indicate how significantly higher the Spearman and R2 coefficients of the full RACER model, comparing with each reduced model based on Wilcoxon signed rank test.

Spearman: Median Spearman correlation coefficients; R2 : Median coefficient of determination.
doi:10.1371/journal.pcbi.1003908.t001

Regression Analysis of Combined Gene Expression Regulation in AML

PLOS Computational Biology | www.ploscompbiol.org 5 October 2014 | Volume 10 | Issue 10 | e1003908



AML. Remarkably, we found that many TF regulators among our

top predictions have a role in leukemogenesis. To name a few (by

the order of their statistical significance), the most significant

regulator we found is PHF8, which is a histone demethylase that is

specifically recruited by PML-RARa fusions. PHF8 enzymatic

function is critical to the mechanism of all-trans retinoic acid

treatment in acute promyelocytic leukemia [33]. The second most

significant regulator Max interacts with c-Myc to form c-Myc/

Max heterodimers, which regulate key genes involved in the

proliferation and differentiation of hematopoietic cells. Disruption

of the formation has been demonstrated to inhibit leukemic

proliferation and induce apoptosis and differentiation [34,35].

Furthermore, Max has been demonstrated as an important co-

activator of C/EBPa during granulocytic differentiation [36]. Maz

(the 3rd significant regulator) is a proto-oncogene which regulates

the expression of c-Myc; a study on 34 AML patients demon-

strated prominent Maz expression level in 44% of primary patient

samples versus only 8% of healthy donor samples [37,38]. The

Figure 3. Power analysis of miRNA target predictions. We applied GenMIR++, LASSO, PCC, and RACER to score miRNA-mRNA interactions
using the AML data. A. For each comparison method, miRNA-mRNA interactions were ranked based on their scores. The number of validated miRNA-
mRNA pairs from MirTarBase [27] were then plotted as a function of the top rankings from 1000 to 5000 pairs with 200-interval. P-values indicate
Wilcoxon signed rank test by comparing RACER with each of the three other methods. B. Precision-recall in detecting confidence targets of miR-34a
in K562 obtained from a miR-34a transfection study coupled with mRNA pull-down or expression profiling [28]. Values in the parentheses besides
each method indicate the corresponding areas under of the curve.
doi:10.1371/journal.pcbi.1003908.g003

Figure 4. Power analysis of TF target predictions. A. Number of motif-based TF-gene interactions from TRANSFAC [23] as a function of top
rankings from 1000 to 5000 interactions pairs with 200-interval. P-value indicates one-sided Wilcoxon rank-sum test by comparing RACER with
PeakScore (i.e., ENCODE TF binding scores). B. Precision-recall of confidence targets of Gata2 in K562 obtained from a GATA2 knockdown study [29].
Areas under of the curve are indicated in the parentheses.
doi:10.1371/journal.pcbi.1003908.g004
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fourth regulator ZBTB7A (LRF) is involved in several stages of

hematopoiesis in both myeloid and lymphoid lineages and is

highly expressed in both normal and malignant myeloid cells [39].

Moreover, PU1 was ranked at the fifth among the 18 regulators

with FDR v 2.4E-06 and has been shown by Friedman (2007) to

be one of the key regulators of early myeloid development in

mouse model. In particular, mutant mice with reduced PU1

activities established via knockout experiments exhibited dimin-

ished monocytes and neutrophils [40]. The sixth regulator

CCNT2 is a member of the p-TEFb complex that has been

shown to inhibit differentiation of HL-60 and THP-1 cells. Down-

regulation of CCNT2 by miR-29a and miR-142-3p resulted in

induction of monocytic differentiation [41]. Further down our top

regulator list, CHD1 (the tenth regulator) is a chromatin

remodeling protein that is recruited to the proximal nucleosomes

of actively transcribed genes, where it is responsible for

nucleosome turnover and Pol II promoter escape [42]. In

transformed mouse myeloid cells, CHD1 has been shown to be

recruited to the promoter of Hoxa9, a Hox-containing transcrip-

tion factor that is required for normal hematopoiesis and strongly

stimulates myeloid cell proliferation [43]. The 11th regulator

EGR-1 is a tumor suppressor gene located on q arm of the human

chromosome 5. Deletion of the EGR-1 locus is a recurrent

genotype in patients with myelodysplastic syndrome and AML

[44]. Additionally, haploinsufficiency of EGR-1 in combination

with reduced TP53 activity has been shown to induce AML in

mice [45].

Furthermore, C/EBPa is another known myeloid developmen-

tal regulator [40]. Although we currently do not have ChIP-seq

data for C/EBPa, some literature suggested that C/EBPa co-

immunoprecipitates with endogenous C-Fos [46], which is the

14th regulator and the only prognostic marker revealed by our

survival analysis below. Furthermore, C/EBPb (the 15th regulator)

has been shown to drive the differentiation of immature myeloid

cells into granulocytes and is important for the retinoic acid-

induced differentiation of acute promyelocytic leukemia cells [47].

Also, C-Myc is one of the known AML regulators listed by [48].

Based on our results, C-Myc is ranked at the 24th place among the

regulators and has modestly significant statistics: F -statistic w

7.58; p-value v 0.0059; FDR v 0.15. Despite previous

suggestions by [46], we did not found p300 a significant regulator

(F -statistic w 0.018; p-value v 0.90; FDR v 1), perhaps

implying that p300 may have non-linear relationship with other

TF/miRNA regulators, in which case it is not readily detectable

via the L1-constrained linear regression approach. However, we

did identify one of its interaction partners YY1, which is the 12th

regulator in our list with FDR v 0.0005 (described in details

below) [49].

For miRNA regulators, we first examined the statistics of those

previously identified leukemia-related miRNAs, and found that

they exhibited modestly significant statistics based on our analysis.

For instance, previous studies showed that silencing of miR-145 in

mouse hematopoietic stem/progenitor cells induced transition into

a myeloid-like leukemia [50,51]. In our analysis, miR-145 has p-

value v 0.02 but did not pass multiple testing correction (FDR v

0.4). Additionally, miR-155 is another proposed AML-related

miRNA [50], which was detected by our individual feature

selection procedure but again did not survive the multiple testing

correction (pv0.04; FDRv0.5). Presumably, the differences were

due to experimental conditions and sample heterogeneity.

Moreover, most of these miRNAs were primarily identified based

on their individual effects in tumors rather than how well they

Table 2. Selected regulators and the functional enrichments of the predicted targets by RACER.

Regulator F-statistic FDR Enriched pathways or biological processes Hits Gene set Enrichment FDR

PHF8 1565.63 0 misfolded or incompletely synthesized
protein catabolic process (GO:0015693)

8 8 0

DNA repair (GO:0006903) 77 168 1.18E-02

REACTOME SIGNALING BY WNT 42 65 4.79E-06

DNA repair (GO:0006903) 61 168 1.73E-04

Max 112.82 8.20E-24 REACTOME DNA REPAIR 44 112 6.91E-04

KEGG BASE EXCISION REPAIR 17 35 6.06E-02

MAZ 64.14 2.34E-13 ST TUMOR NECROSIS FACTOR PATHWAY 15 29 4.82E-02

ZBTB7A 50.29 1.96E-10 REACTOME P38MAPK EVENTS 7 13 7.27E-02

PU1 31.50 2.30E-06 SA PTEN PATHWAY 6 17 3.11E-02

CCNT2 29.32 5.89E-06 REACTOME CDK MEDIATED
PHOSPHORYLATION AND REMOVAL OF CDC6

22 48 4.96E-02

REACTOME SIGNALING BY WNT 28 65 2.39E-02

hsa-miR-506 28.73 6.84E-06 REACTOME SYNTHESIS OF PC 4 18 2.03E-02

YY1 19.60 4.54E-04 DNA repair (GO:0006903) 50 168 1.92E-02

REACTOME SIGNALING BY WNT 29 65 7.60E-05

CEBPB 14.11 6.53E-03 DNA repair (GO:0006903) 19 168 1.36E-02

REACTOME P53 INDEPENDENT G1 S DNA 9 51 4.76E-02

DAMAGE CHECKPOINT

hsa-miR-548p 13.33 9.29E-03 ST ERK1 ERK2 MAPK PATHWAY 8 32 4.91E-03

KEGG CHRONIC MYELOID LEUKEMIA 11 73 4.15E-02

ELF1 10.30 4.45E-02 ST TUMOR NECROSIS FACTOR PATHWAY 16 29 3.56E-02

doi:10.1371/journal.pcbi.1003908.t002
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perform to explain the underlying mRNA expression in a

composite setting as demonstrated here.

To examine whether the miRNAs regulatory powers were

overshadowed by the TF influence, we performed the same feature

selection procedure without TF binding scores and compared the

distributions of the F -statistics for miRNAs in the full RACER

(red) and the reduced RACER model (cyan) (Figure S4A). We

found that excluding TFs in fact incurred an overall loss of

explanatory power for the miRNAs, comparing with the full model

(pv1.8E-4, Wilcoxon signed rank test). This is mainly attributable

to a gain of explanatory power for the CNV and DNA

methylation (DM) in the reduced model, in terms of both the

magnitude of the linear coefficients (Figure S4B) and the F -

statistics (Figure S4C). Despite a general loss of explanatory power,

however, miRNA miR-506 gained higher weights in the reduced

model (cyan), comparing with the same miRNA in the full model

(red) (Figure S4D). Additionally, we observed a more significant

weight for miR-145 (F -statistic w10.6, FDRv0.13) in the

reduced model comparing with the same miRNA in the full

model (F -statistic w4.8, FDRv0.42). On the other hand, the

weight of miR-155 has reduced from 4.2 to only 1.2.

Intriguingly, however, we identified hsa-miR-548p, a recently

identified and poorly characterized miRNA (chr5:100,152,186-

100,152,269 [-]; miRBase accession number: MI0006420; [52]).

Notably, miR-548p is significant in both the full and reduced

RACER model without TFs (FDRv0.1; Figure S4D), indicating

its robust explanatory power of AML mRNA expression.

Importantly, the predicted target genes of miR-548p are enriched

for Chronic Myeloid Leukemia (CML) (FDRv4.15E-02). Despite

the distinct phenotypes between AML and CML in terms of the

respective accumulation of immature and partially mature white

blood cells, the underlying tumorigenic drivers are unclear.

Remarkably, we discovered a direct interaction link inferred by

RACER between miR-548p and Yin Yang 1 (YY1), which is itself

one of the 18 selected regulators and a putative myeloid

transforming gene [15] (discussed further in the network analysis

below). Furthermore, [53] found that the MIR548p gene locus is

located approximately in the middle of a copy number loss region

(chr5:100,425,442-180,857,866) detected by aCGH (array com-

parative genomic hybridization) in a 39-year old male diagnosed

with acute T-cell lymphoblastic leukemia, and no other known

gene is located within 1 Mb vicinity outside of this genomic region.

Accordingly, we propose an experimental investigation of the role

of miR-548p in AML.

Phenotypic implication of the 18 selected regulator
activities in AML patients

We next examined the phenotypic implication of the above-

identified 18 transcriptional regulators based on their inferred

regulatory activities in the AML patient cohort. In particular, we

examined how well the 18-regulator activity panel can cluster

patients at different cytogenetic risks [9]. Remarkably, the

clustering pattern of the regulatory activities is largely consistent

with the risk groups (Figure 5A). Specifically, the cytogenetically

poor group (red bar on the top of the heatmap) mostly cluster to

the left major branch of the dendrogram and exhibit consistently

lower activities (blue colour in the heatmap) for the top 14

regulators in comparison with cytogenetically favourable or

normal group (blue or green bars). Quantitatively, clustering by

the regulatory activities revealed higher consistency with cytoge-

netic risks than clustering by expression based on Rand index

(Figure 5B; Materials and Methods).

Furthermore, we performed Kaplan-Meier survival analysis or

log-rank test (Materials and Methods) using the 18-regulator

activities in comparison with the same analysis using the

corresponding mRNA expression profiles of the features. Based

on the clinical data from TCGA, we characterized the level of

associations of patient survival time from the date of diagnosis to

death with whether their feature activities or mRNA expression

are higher or lower than the sample average. After multiple testing

correction, we obtained C-Fos as the only statistically significant

prognostic marker among the 18 candidate markers. Importantly,

while the mRNA expression level of C-Fos produced only modest

separation between the two groups (pv0.047; FDRv0.425;

Figure 6A), the activity of C-Fos conferred a much more

significant prognostic power (pv0.003; FDRv0.061; Figure 6B).

Interestingly, while patients with high C-Fos mRNA expression

exhibited poor survival outcome, the opposite was observed for

patients with high C-Fos activities. Thus, the feature activities from

our analysis may likely reveal cancer biology that is not readily

observed by expression analysis alone.

Topology of AML regulatory network involving the
selected regulators

To visualize in network context the regulatory relationships

between the 18 selected regulators and their predicted leukemia-

related target genes, we imported into Cytoscape [54] the TF-gene

and miRNA-mRNA pairs involving nonzero connectivity between

the 18 regulators and the leukemia genes filtered by leukemia-

related pathways from MSigDB [32] and leukemia-related genes

from COSMIC [55]. In Figure 7, the selected regulators and

target genes are displayed in blue diamond and red circle,

respectively. Connections between miRNA-mRNA (TF-gene) are

coloured in blue (grey). The resulting regulatory network is densely

connected, implying that the regulators we identified shared many

common leukemia-related target genes. The select subnetwork

assumes a hierarchal structure (Figure 7B) reminiscent of the 3-

layer network architecture suggested by [10]. Specifically, hsa-

miR-548p, C-Fos, and PHF8 form the top layer (master

regulators), YY1 the middle layer (regulators that is regulated by

the master regulators above it and regulate other TFs below it),

and CCNT2 and BCLAF1 the bottom layer (regulators that are

regulated by the middle layer and only regulate non-TF targets).

Remarkably, the fact that miR-548p regulates YY1 and a large

cohort of AML-related genes either directly via base-pairing or

indirectly via YY1 provides a further support of its important role

as a master regulator in AML. Indeed, the role of YY1 in

hematologic malignancies has been implicated in various cancers

including AML [56], in which ectopic YY1 expression can

contribute to AML malignancy by interfering with the normal

myeloid differentiation program [15]. Moreover, YY1 has been

reported to indirectly engage in histone modification by recruiting

histone deacetylases HDAC1-3 and histone acetyltransferases such

as p300 to diverse number of promoters in order to respectively

activate or repress the promoters [49]. Therefore, an immediately

appealing follow-up study from our current analysis would be to

experimentally validate the interaction between the two key

expression regulators hsa-miR-548p and YY1 in AML patient

samples or cancer cell-lines such as K562.

Discussion

In this study, we demonstrated via a simple two-stage regression

framework that mRNA expression level in AML can be best

explained by integrating various genome-wide measurements

including CNV, DNA methylation, miRNA expression from

TCGA [9] coupled with sequence-based miRNA-mRNA interac-

tions from TargeScan [21], and TF binding data from ENCODE

Regression Analysis of Combined Gene Expression Regulation in AML
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[7]. The proposed corresponding regression model namely

RACER enabled us to infer the activities and associated target

genes of the AML-specific expression regulators. Remarkably, the

identified regulator activity patterns were highly consistent with

the cytogenetic profiles and exhibited promising prognostic power,

comparing with using expression profiles alone.

Besides the model refinement upon the previous related works

[12,13], the success of our model may also be attributed to the lack

of DNA mutations in the AML patients [9], which if were

prevalent might have confounded our model to some extent. In

particular, although CNV was incorporated into RACER, we did

not scrutinize the TF/miRNA regulation changes due to single

nucleotide polymorphisms (SNPs) or indel mutations. Additionally,

we used the TF binding profiles measured in the generic cell-line

namely K562 from ENCODE as surrogates for each AML

sample. While we observed a good expression correlation between

the averaged AML samples and K562 expression processed by

ENCODE (Figure S5), the results may differ if the variance of the

actual TF occupancy across AML samples is high. Also, the

aberrant miRNA activities may induce changes in the mRNA

translation in AML, which can be detected by fitting our model on

protein output (which is currently unavailable) as response

variable. Lastly, we assumed a linear combination of the regulator

effects on mRNA level. A different model formalism is of interest

in future work to account for potential synergistic or non-linear

regulatory relationships that has been suggested in previous studies

[57].

Also, the ChIP-seq data from ENCODE were available for only

a subset of the TFs in a restricted number of cell-lines. For

instance, the genome-wide occupancy data of some of the AML-

related TF regulators such as C/EBPa, STAT1-3, WT-1, c-Myb

as listed by [48] are not yet available in the (untreated) K562 from

the ENCODE Phase II project. Perhaps a reasonable alternative

would be using the TRANSFAC data, which has been demon-

strated by [12], [58], and others. Notably, however, the main

novelty of RACER lies its ability to successfully integrate the

ENCODE and TCGA data, and we observed that ENCODE TF

binding data conferred a significantly higher explanatory power

Figure 5. Selected regulator activities cluster cytogenetic risk groups. A. Heatmap of the inferred activities of the 18 selected regulators
consisting of 16 TFs and 2 miRNAs. The bars under the dendrogram indicate four different cytogenetic risk groups [9] with colour legend indicated on
the top right corner. B. Rand index of the clustering assignments using regulatory activities or expression profiles of either the selected regulators or
all of the miRNAs/mRNAs. The higher the Rand index the more consistent the clustering pattern is to the cytogenetic group assignments.
doi:10.1371/journal.pcbi.1003908.g005

Regression Analysis of Combined Gene Expression Regulation in AML

PLOS Computational Biology | www.ploscompbiol.org 9 October 2014 | Volume 10 | Issue 10 | e1003908



than the TRANSFAC data in explaining the mRNA expression of

the AML patient samples (Figure S3). Nonetheless, one could

easily switch the TF binding matrix from ChIP-seq signals to other

pre-calculated TF binding sites as demonstrated in the model

comparison above.

During the preparation of this manuscript, [58] published a

similar model called ISMARA (Integrated System for Motif

Activity Response Analysis), which uses Bayesian regression with

Gaussian prior distribution to infer the motif activities. The model

takes as input the motif counts at the promoters or 30UTRs and

predicts the promoter expression (i.e., without using CNV, DNA

methylation, ChIP-seq signals, and miRNA expression as in

RACER). In terms of target predictions, ISMARA was designed to

accurately predict regulatory relationships between motifs and

promoters rather than the exact TF/miRNA-target interactions.

On top of that, ISMARA provides a very nice web interface

(https://ismara.unibas.ch/fcgi/mara) highly accessible to non-

computational researchers. While the LASSO approach minimiz-

es the squared error + L1-norm to obtain point estimates of the

regulatory activities, the Bayesian model in ISMARA infers the

posterior distribution of the regulator activities by combining the

Gaussian likelihood with the Gaussian priors for the activities.

Since we do not have a gold-standard for the true regulatory

activities in AML, it is difficult to directly compare the

performance between ISMARA and RACER. As mentioned by

Balwierz et. al. (2014), however, the LASSO approaches can be

interpreted as a Bayesian model using Laplacian priors instead of

Gaussian priors in the regression framework and remain as a

popular alternative since they induce a sparse solution (i.e.,

irrelevant parameters will be set strictly to zero after the fitting) in

the high dimensional feature space [58].

Importantly, our regression analysis coupled with feature

selection provided two novel biological findings involving a

recently discovered miRNA hsa-miR-548p and a TF regulator

C-Fos. Specifically, we observed that miR-548p not only conferred

significant explanatory power to mRNA expression changes in

AML but also targets a large number of leukemia-related genes.

Moreover, our network analysis identified miR-548p as a master

regulator that regulates another selected regulator and also a

prominent AML-related TF YY1 [15], which is known to have a

broad regulatory spectrum due to its association with histone

modifiers such as HDACs and p300 [49]. In addition, our analysis

suggested C-Fos as a novel prognostic marker, whose inferred

regulatory activities across the AML samples are more coherent

with patient survival rate than its corresponding mRNA expres-

sion.

While C-Fos exhibited ectopic expression in various clinical

tumour tissues, the predictive power of C-Fos mRNA expression

as prognostic marker is often inconsistent among different studies

[16]. Although a validation dataset that can be used to directly

address our question is currently unavailable, we conducted an in-

depth literature survey and found several lines of evidence

pertinent to the proposed prognostic value of C-Fos in AML. C-

Fos is traditionally viewed as an oncogene that is highly expressed

in many solid tissue cancers and serves as an excellent marker for

cancer progression and negative prognosis (reviewed in [59]). The

role of C-Fos as a prognostic marker in AML has only been

investigated in relatively small cohorts and remains largely

unclear. Previous work on the expression profiling of untreated

and relapse AML in 18 patients showed a significant increase of C-

Fos mRNA at relapse [60]. Subsequent studies aimed at defining

prognostic markers of AML, however, did not identify a significant

association between C-Fos expression and survival [61,62]. In

contrast, a study on the effects of a histone deacetylase inhibitor,

Vorinostat, in cell lines and AML patient-derived cells demon-

strated an increase in C-Fos mRNA expression following

treatment in conjunction with an increase in apoptosis and

differentiation [63]. Furthermore, several recent studies have

raised the idea that C-Fos may have tumor-suppressor activity

[64–67]. For instance, [66] and [67] showed that the loss of C-Fos

expression is associated with tumour progression in ovarian and

gastric carcinoma, respectively. Indeed, our results show that

Figure 6. Kaplan-Meier survival analysis. AML patients with higher and lower than averaged C-Fos (A) mRNA expression or (B) inferred activities
were divided into ‘‘High’’ (red dash) and ‘‘Low’’ (blue dot) groups, respectively. Survival fractions as a function of time (days) between initial diagnosis
and death were then plotted for the two groups and the significant separation of the two curves were assessed by log-rank test followed by multiple
testing correction over all of the 18 features to convert the resulting p-value to FDR.
doi:10.1371/journal.pcbi.1003908.g006
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patients with higher C-Fos activities correspond to poor prognosis

(Figure 6). While the exact mechanism by which C-Fos contributes

to tumor suppression is unclear, it is possible that C-Fos mediates

apoptosis through the p38 MAP kinase pathway [68] or via

induction of Fas ligand as observed in a human T-cell leukaemia

cell line [69]. With more data becoming available, we look forward

to further validating our novel finding of C-Fos in terms of its

prognostic value in AML.

Although our analyses identified several AML-related TFs such

as PU1, C-Fos, YY1, some of the other AML-related TF

regulators such as p300 and C-Myc [48] exhibit either no or

rather modest significance (e.g., F -statistic w7.58; p-value

v0.0059; FDRv0.15 for C-Myc) based on our analysis, which

may indicate an over-stringent cutoff (FDRv0.1) used in the

feature selection procedure or the intrinsic difference between the

mRNA expression and the cognate TF activities. The differences

may be also due to various experimental conditions and sample

heterogeneity. Also, some of those AML-related regulators were

primarily identified based on their individual effects (e.g., via

individual perturbation experiments in mice [40]) rather than how

well they perform to explain the underlying mRNA expression in a

composite setting as manifested here in the form of multivariate

linear regression model. Presumably, TF activities is a function of

its DNA binding efficacy, its interactions with Pol II, interplays

with other trans-acting factors such as miRNAs or chromatin

modifiers, and its catalytic abilities for promoting transcription,

which may intrinsically vary due to (for instance) post-translational

modification despite its low expression variance across AML

patients. Notably, we can infer the regulatory activities of the

proposed regulators in a single sample without borrowing

information across multiple samples, which is cost-effective for

future screening of unknown cases in a prognostic setting. In

conclusion, our proposed approach provides a novel strategy and,

to the best of our knowledge, the first framework that successfully

integrates TCGA and ENCODE data to study AML at a

comprehensive system level.

Figure 7. AML regulatory network. A. The network drawn by Cytoscape 3 [54] comprises 18 selected regulators (blue diamond) having nonzero
putative interactions with leukemia-related genes (red circle) obtained from COSMIC or MSigDB. The blue and grey edges indicate miRNA-mRNA and
TF-gene regulatory relationships, respectively. B. A subnetwork containing the selected regulators and their targets. The selected regulators form a 3-
layer hierarchical structure with 3 master regulators hsa-miR-548p, C-Fos, PHF8 on the top layer, one intermediate regulator YY1 in the middle layer,
and two downstream regulators CCNT2 and BCLAF1 arranged at the bottom layer.
doi:10.1371/journal.pcbi.1003908.g007
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Materials and Methods

Collection and preprocessing of the AML data from TCGA
Genome-wide measurements including mRNA/miRNA ex-

pression profiles, DNA methylation (DM), and copy number

variation (CNV) and clinical information for Acute Myeloid

Leukemia (AML) were downloaded from TCGA Data Portal [9].

The AML data contain 173 samples with measurements available

across all four platforms. For all of the data, we used the Level 3

processed data. For expression data, processed RNA-seq and

miRNA-seq data were used, which record the RPKM (read per

kilobase of exon per million mapped reads) values for mRNA and

RPM (reads per million miRNA mapped) for miRNA. The data

were further log2-transformed and mean-centred. For CNV, we

used the genome-wide SNP array data and the ‘‘Segment_Mean’’

scores. We first intersected the genomic coordinates (hg19) of the

probes with the exon coordinates of the RefSeq genes. For genes

having multiple scores, we took the average of the scores. For DM

data, we used the Human Methylation 450 array data and

‘‘Beta_value’’ as the methylation scores. Multiple scores for the

same gene were averaged.

Preprocessing transcription factor binding data from
ENCODE

The TF-binding data were retrieved from the ENCODE data

portal [14]. All available TFs for K562 cell lines flagged as

‘‘treatment = None’’ were retrieved in narrowPeak format. In the

case of duplicate items, tracks were chosen based on their labs, and

priority was given to those done by labs contributing more

samples. Tracks were named according to the antibodies used to

immunoprecipitate the TF. In total, we obtained TF binding

profiles for 97 TFs. Similar to the definition by [11], we defined

the promoter region for each gene as their transcription start site

(TSS) +/250 bp based on Gencode V7 annotation [70]. We then

intersected the list of promoters regions with the ChIP-seq

coordinates for each TF and averaged the TF binding scores for

multiple peaks to represent a single binding site per TF-gene pair.

As a result, we obtained an N|K TF binding profile matrix

between N~16653 and K~97 distinct genes (that have

expression measurements in TCGA) and TFs, respectively.

miRNA target site information
For each mRNA-miRNA pair that has measured expression in

the TCGA data, we obtained their conserved target sites from

TargetScanHuman 6.2 database [21]. For multiple target

transcripts of the same gene, we used the transcript with the

longest 30UTR [71]. This resulted in an N|M target site count

matrix C between N~16653 and M~470 distinct genes and

miRNAs.

Power analysis of miRNA/TF-gene interactions
For miRNA target predictions, experimentally validated

miRNA-mRNA pairs were downloaded from MirTarBase [27].

To compare the performance of RACER in predicting validated

miRNA-mRNA interactions, we chose three existing methods

namely Pearson correlation coefficient (PCC) [26], GenMiR++
[24], LASSO [25]. Specifically, PCC between each pair of m/

miRNA across T samples was computed using R built-in function

cor. GenMiR++ was ran in Matlab with default setting using as

input the binary target site matrix and the expression profiles. We

implemented LASSO using glmnet with a~1 except that the best

l was chosen using cross-validation function cv.glmnet [72].

Specifically, we used expression of the miRNAs that have nonzero

target sites to model the corresponding mRNA expression:

yg~bgz
P

miR wg,miRzmiR. Due to the lack of validated targets,

conventional power analysis such as ROC (Receiver Operating

Characteristic) cannot distinguish the method performances.

Instead, we assessed each method by the number of validated

targets in their top ranked 1000 to 5000 targets with 200-interval.

In addition, we constructed a confidence positive target list for

miR-34a using the published data from [28]. Specifically, we

defined the positive hits as the intersect between the mRNA pull-

down from biotinylated (Bi-)miR-34a and down-regulated mRNA

upon miR-34a transfection in K562. For each method, we

assessed its precision and recall (PR) using their prediction scores

and summarized the performances by the area under the PR curve

(AUC). For a given score cutoff, the precision and recall are

estimated as the respective ratios of TP/(TP+FP) and TP/P,

where TP and FP are the numbers of true and false positives, and

P are the total number of positive miR-34a targets in the test data.

The statistics were obtained using ROCR package [73].

For TF target predictions, we used the motif-based TF-target

relationships from TRANSFAC (version 7.4) [23]. Similar to the

above miRNA analysis, we assessed the detection power of

RACER and peak scores from ENCODE in identifying the

TRANSFAC interactions among the 1000:200:5000 ranks.

Moreover, we constructed a confidence target gene list from

genes with significant expression fold-change due to GATA2
knockdown in K562 using the published data from [29] (i.e.,

processed table from Gene Expression Omnibus (GEO) with

accession GSM798059). The same PR analysis was performed as

described above.

GO terms and pathways used in the functional
enrichment analysis

We examined whether the predicted miRNA/TF targets of the

selected regulators are biologically meaningful via functional

enrichment analysis. Specifically, we downloaded the Gene

Ontology (GO) terms in Biological Processes (BP) (GO-BP) using

getBM function from R package biomaRt [74]. We filtered out

GO terms with fewer than 5 genes or with evidence codes equal to

Electronic Annotation (IEA), Non-traceable Author Statement

(NAS) or No biological Data available (ND), which yielded 2007

GO-BP terms and 10315 unique genes [75]. Additionally, we

downloaded canonical pathways from MSigDB (i.e.,

c2.cp.v4.0.symbols.gmt [32]). For each target list, we assessed

their enrichment for each GO-BP term or pathway by hypergeo-

metric test using R built-in function phyper [75]. The resulting p-

values were adjusted for multiple testings with the BH-method

over all of the GO terms or pathways by R function p.adjust to

produce false discovery rates (FDR).

AML phenotypic analysis
Clinical data for each of the 173 patients were obtained from

TCGA data portal. We first performed a hierarchical clustering

(hclust in R) using the feature activities or mi/mRNA expression

profiles. In all cases, the distance and clustering method were set to

1 - Pearson correlation and average-linkage, respectively. We then

examined how well each molecular signature can cluster the four

cytogenetic risk groups. Specifically, we cut the dendrogram of

each clustering assignments into 4 groups using cutree function

from R and compared the resulting groups with cytogenetic

assignments quantitatively using Rand index (RRand in R

package ClassDiscovery). Additionally, we performed Kaplan-

Meier survival analysis using R package survival to examine the

prognostic power of the identified feature using either their

inferred activities or mi/mRNA expression level. The resulting
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p-values from log-rank test were then adjusted for multiple testings

with BH-method [30].

RACER implementation and availability
RACER was implemented in R. Each of the two regression

steps (Eq 1,2) was performed using glmnet with a~1 except that

the best l was chosen using cross-validation function cv.glmnet

[72]. The source code together with the data used in this study are

available at www.cs.utoronto.ca/,yueli/racer.html.

Supporting Information

Figure S1 Model comparison. Boxplot of coefficients of

determination between the predicted and the actual held-out genes

in 10-fold cross-validation (CV). Please refer to Figure 2 legend in

the main text for more details.

(EPS)

Figure S2 Model comparison in regression step 1 and 2.
A. In regression step 1, correlation was calculated between

predicted and observed gene expression within each sample by

training on 90% of the genes and testing on 10% of the remaining

genes in a 10-fold cross-validation (CV). B. In step 2 regression, we

applied a similar 10-fold CV for each gene by training on 90% of

the samples and testing on the remaining 10%. For each gene, we

averaged Spearman correlation over the 10 runs, and compared

the distributions of the correlation among the full, reduced, and

random models. Please refer to Figure 2 legend for more details.

(EPS)

Figure S3 Comparison of four alternative models. Each

model used copy number and DNA methylation data but different

in using the remaining input data as indicated in the figure legend

above. We compared the four models in terms of the Spearman

correlation between the predicted and observed mRNA target

expression signals via 10-fold cross-validation. The indicated p-

value was derived from the comparison between the ENCODE-

based models and the TRANSFAC-based models using Wilcoxon

signed rank test.

(EPS)

Figure S4 Comparison of miRNA explanatory powers in
the full (red) and reduced RACER model excluding TF

effects (cyan). A. Comparison of F-statistic distributions of the

miRNAs derived from the feature selection procedure applied to

the full data (red) and the data excluding TF binding scores. B &

C. Comparison of the activities and F-statistic of CNV and DNA

methylation (DM), respectively. D. F-statistics of selected miRNAs

for the full (red) and reduced RACER model with TF effects

excluded from the linear equation (cyan). False discover rates

(FDR) corresponding to the adjusted p-value of the F-statistic were

indicated on the top of each bar.

(EPS)

Figure S5 Expression correlation between AML aver-
aged sample and K562 from ENCODE. To compare the

expression between AML samples and K562 (cell line derived

from a CML patient), we obtained the mRNA expression (in

RPKM based on Gencode V7) in K562 from the ENCODE Data

Portal. Only expression in cytosol were used. Expression in

replicates were averaged and logarithmically transformed with

0.05 as pseudo-count to stabilize variance (i.e., log 2(xz0:05)).
For the AML mRNA expression data, we averaged the mRNA

expression across the 173 samples. The expression profiles

between AML and K562 are significantly correlated (Pearson

correlation 0.77; pv2.2E-16, correlation test via R function

cor.test).

(EPS)

Table S1 Summary statistics in regression step 1 and 2.

(PDF)

Table S2 Feature selection results for the TF/miRNA
regulators.

(XLSX)

Table S3 Functional enrichments of predicted targets
from the 18 selected regulators.

(XLSX)
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