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The hypomethylation of the whole cancer genome and the hypermethylation of the

promoter of specific tumor suppressor genes are the important reasons for the rapid

proliferation of cancer cells. Therefore, obtaining the distribution of 5-methylcytosine

(5mC) in promoters is a key step to further understand the relationship between promoter

methylation and mRNA gene expression regulation. Large-scale detection of DNA 5mC

through wet experiments is still time-consuming and laborious. Therefore, it is urgent to

design a method for identifying the 5mC site of genome-wide DNA promoters. Based

on promoter methylation data of the small cell lung cancer (SCLC) from the database

named cancer cell line Encyclopedia (CCLE), we built a fusion decision predictor called

iPromoter-5mC for identifying methylation modification sites in promoters using deep

neural network (DNN). One-Hot Encoding (One-hot) was used to encode the promoter

samples for the classification. The method achieves average AUC of 0.957 on the

independent testing dataset, indicating that our predictor is robust and reliable. A

user-friendly web-server called iPromoter-5mC could be freely accessible at http://www.

jci-bioinfo.cn/iPromoter-5mC, which will provide simple and effective means for users to

study promoter 5mC modification. The source code of the proposed methods is freely

available for academic research at https://github.com/zlwuxi/iPromoter-5mC.

Keywords: promoter, 5-methylcytosine, fusion decision, predictor, web-server, deep neural network

INTRODUCTION

DNA methylation dominates any cell processes, and plays a particularly important role in
regulating expression of gene (Bird, 2007; Deichmann, 2016; Nicoglou and Merlin, 2017).
DNA methylation at promoters and enhancers has been associated with cell differentiation,
developmental processes, cancer development, and regulation of the immune system (Muller et al.,
2019). At present, N6-methyladenine (6mA), N4-methylcytosine (4mC) and 5-methylcytosine
(5mC) are the three most well-studied types of DNA methylation (Wei et al., 2019). 5mC is a
covalent addition between the methyl group and the 5-carbon of the cytosine ring. In somatic cells,
5mC occurs almost exclusively in the context of paired symmetrical methylation of a CpG site.

Recent study (Michalak et al., 2019) suggests that aberrant levels of 5mC at CpG islands in
promoter regions is associated with inactivation of various tumor suppressor genes (TSGs). In
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young normal cells, 5mC is low in the promoter regions but high
in the genic and intergenic regions. However, in aging and in
cancer, a limited number of genomic loci acquire 5mC, especially
at the CpG islands in promoter regions of tumor suppressor and
Polycomb-repressed gene, resulting in gene silencing and loss of
function. In normal tissue, heterochromatin contains repeating
elements and is highly methylated. The aberrant promoter
methylation can lead to cancer initiation and progression, which
has been confirmed in CpG islandmethylator phenotype (CIMP)
cancers (Gessler, 1999; Kang et al., 2002; Mansour, 2014). Thus,
promoter methylation can be used as a potential biomarker
for cancer diagnosis and for helping determine prognosis,
indicating that identification of 5mC modification in promoter
regions by analyzing CpG islands in cell systems of a specific
cancer could provide a reference for cancer early diagnosis and
precise treatment.

Among cancers worldwide, both the incidence and death
rate of lung cancer are in the first place. Small cell lung cancer
(SCLC) poses approximately 15% of newly increasing clinical
cases with lung cancer each year (Siegel et al., 2018). Its pattern
is significantly different from other lung cancer, and is closely
related to the high expression of E2F target and EZH2 gene
of histone methyltransferase. Furthermore, SCLC is famous for
its dense cluster of high-level methylation in CpG islands of
discrete promoter. Therefore, in this study, we are concentrating
on improving the ability to access the methylation status of
promoters for a large number of genes or the entire genome
in SCLC.

One of the most usual methods for identifying DNA
methylation is distinguishing the cytosine-5 methylation within
the CpG dinucleotides (Bianchi and Zangi, 2015; Muller et al.,
2019). The popular sequencing technology for identifying 5mC
sites includesMethylated DNA immunoprecipitation sequencing
(MeDIP-seq), Methyl-Binding Domain sequencing (MBD-seq)
and DNA methylome profiling at single-base resolution through
bisulfite sequencing (MB-seq) (Down et al., 2008). However,
these wet-lab methods are expensive and time-consuming.
Therefore, it is urgent to develop a number of methods or tools
for the accurate detection of DNA 5mC modification sites.

Over the past decade, computational methods have been
proposed to identify 5mC modification sites. Bhasin et al.
(2005) developed a SVM-based model called “Methylator,” for
the prediction of 5mC modification sites using the methylated
and non-methylated CpG dinucleotide sequences from various
sources ranging from plants to humans in MethDB database
(Amoreira, 2003). Fang et al. (2006) developed a SVM-based
classifier called “MethCGI” using nucleotide sequence contents
and transcription factor binding sites as features. Compared
with the previous two, the predictor “iDNA-Methyl” (Liu et al.,
2015) constructed by using the trinucleotide composition and
pseudo amino acid components achieved higher success rates.
Recently, a novel computational tool called NanoMod (Liu et al.,
2018) was designed to improve the performance of detecting
candidate positions with DNA modifications. Based on deep
neural networks, a computational approach called DeepCpG
(Angermueller et al., 2017) was developed to predict methylation
states in single cells.

Though the research about the recognition of DNA 5mC
modification sites have had a significant advance in recent years,
but still exist shortness. Compared to increasing massive high-
throughput data, previous studies are of small sample size.
Furthermore, among above-mentioned methods, there are three
webservers developed by the researchers: Methylator, MethCGI,
and iDNA-Methyl, however, only the latter is available but slow,
causingmuch inconvenience to scholars. Most importantly, there
is still no computation tool to identify DNA 5mC modification
sites in promoters to detect the biomarkers of a specific cancer.
Therefore, in the current study, we are devoted to solve these
problems and to develop a tool or software for quickly and
precisely identifying DNA 5mC modification sites in promoters.

MATERIALS AND METHODS

Benchmark Datasets
The construction of the high-quality data sets is an essential
step in the process of establishing the classification model.
In the current study, all the sequence samples were collected
from the database named cancer cell line Encyclopedia (CCLE)
(Barretina et al., 2012; Li et al., 2019), which provided the
location information of gene promoter regions and 5mC
modification sites experimented by reduced representation
bisulfite sequencing (RRBS) (Ghandi et al., 2019) in cell lines of
various cancers. Due to the high incidence rate and mortality
rate of lung cancer, here we focused on the small cell lung
cancer (SCLC) to reveal the distribution of 5mC modification
in promoters.

In accordance with the forward/reverse (±) chain and
5mC modification sites’ positions in promoters, we collected
the sequence samples from the most recent human assembly
GRCh37/hg19 on UCSC Genome Browser. It is noteworthy that
the sample sequence containing 5mCmodification site described
as the base G (guanine) in the reverse chain should convert to the
reverse complementary sequence, compatible with the principle
that the DNA 5mC methylation tends to occur at cytosine (C).
Generally, we considered the base C with the methylation level
greater than zero as the true 5mC modification site, otherwise, as
the false 5mC modification site.

In order to more succinctly describe the promoter sequence
fragment potentially containing 5mC modification site, the
sample sequence can be expressed as

Eδ (C) = E−δE−(δ−1) · · · E−2E−1CE+1E+2 · · · E+(δ−1)E+δ (1)

where the double letter C represents the cytosine; the subscript δ
is an integer, indicating the location of the base in the sequence;
E−δ is the δ -th base upstream from the center and E+δ is the δ

-th base downstream from the center.
The sample sequence thus obtained can be divided into

two categories:

Eδ (C) ∈

{

E−δ (C)

E+δ (C)
(2)

where E−δ (C) represents a false 5mC modification segment with
C at its center, E+δ (C) denotes a true 5mCmodification segment
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TABLE 1 | Distribution of experimental data sets.

Attribute Total Training data Testing data

Positive 69,750 55,800 13,950

Negative 823,576 658,861 164,715

with C at its center, and the symbol ∈ denotes “a member of” in
the set theory.

Therefore, the benchmark dataset can be formulated by

Sδ = S−δ ∪ S+δ (3)

where S−δ denotes the negative subset containing the false 5mC
modification site samples; S+δ , the positive subset containing the
true 5mC modification site samples; and symbol ∪ represents
union in the set theory.

Unbalanced data between the true 5mC modification site
samples and the false 5mC modification site samples could
more objectively reflect the distribution of 5mC modification in
promoters. Therefore, the proportion of positive samples and
negative samples was set to about 1:11 in this study. In order to
reduce the adverse effects of redundancy and homologous bias,
sequences with more than 80% sequence similarity were removed
using CD-HIT software.

Finally, we obtained the benchmark dataset Sδ composed of
893,326 methylation sample sequences in promoter regions, of
which 69,750 sample sequences belong to the positive sample
dataset S+δ and 823,576 sample sequences belong to the negative
sample dataset S−δ . To investigate the stability and robustness of
the prediction model, we randomly selected 80% data in S+δ and
S−δ , respectively, as training set S1 for constructing and training
the prediction model, and remained 20% as independent testing
dataset S2 to test the constructed model (Table 1). These datasets
can be downloaded from the website http://www.jci-bioinfo.cn/
iPromoter-5mC/download.

Extract Features From DNA Sequences
Feature extraction, fusion and selection are the important steps in
machine learning process. Many feature extraction methods for
protein, RNA and DNA sequences, including PseAAC, PseKNC,
PCPs, PCM, PS(k-mer)NP (Zou et al., 2016), have been proposed
to overcome the prediction problem of modification sites. In
the current study, we employed two effective feature extraction
methods (one-hot and DPF) to extract feature directly formDNA
sample sequences.

One-Hot Encoding Method (One-Hot)
One-hot is a simple but effective feature extraction method,
especially for deep learningmodel. The nucleotides A, C, G and T
are denoted as one of the four one-hot vectors [1,0,0,0], [0,1,0,0],
[0,0,1,0], and [0,0,0,1] (Figure 1).

The Deoxynucleotide Property and Frequency (DPF)
Deoxynucleotides are the basic structural and functional units
of DNA, and the sequence generated by deoxynucleotides
determines biological diversity. Therefore, their chemical

FIGURE 1 | An illustration showing the one-hot encoding method.

properties can influence the inherited characteristics of the
DNA sequence to a certain extent. Similar to the encoding
method of RNA sequences used in identifying 4mC sites, the
deoxynucleotide property and frequency (DPF) (Xia et al., 2019;
Xu et al., 2019) is an effective sequence encoding scheme for
computationally identifying 5mC modification sites.

Each of the four deoxynucleotides has a different chemical
property. Given the sample sequence Q represented by Equation
(1), the k-th deoxynucleotide in Equation (1) can be converted
into a three-dimensional vector, as shown in the Equation (4).
Considering that purines have two rings between them and
pyrimidines have only one ring, we added the feature of ring
structure to feature extraction. Since there is an amino group
between A and C, but A keto group between G and T, we
added functional group features to feature extraction. In terms
of the strength of the hydrogen bond between the base pair, the
hydrogen bond between C and G is stronger than the hydrogen
bond between A and T, because A is always paired with T by
two hydrogen bonds, but C is bound to G by three hydrogen
bonds. So we added hydrogen bond features to Q, as shown in
the following expression.

Qk =
(

xk, yk, zk
)

(4)

where xk represents the “ring structure”; yk, the “functional
group”; zk, the “hydrogen bond.”

xk, yk and zk can be formulated by Equation (5):

xk =

{

1 if Qk ∈ {A , G}

0 if Qk ∈ {C , T}

yk =

{

1 if Qk ∈ {A , C}

0 if Qk ∈ {G , T}
(5)

zk =

{

1 if Qk ∈ {A , T}

0 if Qk ∈ {C , G}

In order to extract the sequence position information as much
as possible (Chen et al., 2017), the cumulative frequency
characteristics of deoxynucleotides were adopted:

λk =

∑k
j=1 F

(

Mj

)

k

(

1 ≤ k ≤ 2δ + 1
)

(6)

where k is the length of the sample sequence, λk is the density of
the deoxynucleotideQk along the subsequence from position 1 to
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position k in the sample sequence, and F
(

Mj

)

can be expressed
as below.

F
(

Mj

)

=

{

1 if Mj = Qk

0 otherwise
(7)

Then we obtained a feature vector Eν to represent the k-
th deoxynucleotide in the sample sequence, as shown in the
following formula,

Eν =
(

xk, yk, zk, λk
)

(8)

The chemical properties of deoxynucleotides reveal the intrinsic
relationship between the four different deoxy nucleotides in the
sequence and represent the sequence information as discrete
vectors by means of 0–1 coding. Therefore, by this method, we
represented the sequence with 4 × L-D (dimensional) feature
vector W to represent the sample sequence formulated by
Equation (1),

W =
[

x1y1z1λ1 · · · x2δ+1 y2δ+1 z2δ+1 λ2δ+1

]T
(9)

where the symbol T is the transpose operator.

Feature Fusion
Feature fusion usually joins several kinds of different feature
vectors into an integrated one, which could express the local and
global sequence order information of the given sample sequence.
Therefore, in this study, we not only employed one-hot and

DPF methods, but also took into account their combination.
According with this method, we represented the sequence with
2× 4× L-D (dimensional) feature vector.

Framework of the Integrated Predictor
For imbalance problems existing in positive samples and negative
samples, the down-sampling method was adopted in the current
study. We randomly divided the negative samples from the
training dataset S1 into 11 groups of equal size, one of which
can form the balance training subset by combining with the
positive samples in the same amount. And then, we could obtain
11 sub-models. After converting into a numeric vector by one-
hot, DPF or their combination, a query sequence with the base
C in its center, can be input into 11 sub-models for prediction.
The 11 prediction results thus obtained can be used to generate
the final decision whether the base C is methylated or not
by some judging methods, just like a simple majority vote or
weighted voting method (Figure 2). The integrated predictor
obtained by above-mentioned method was named as iPromoter-
5mC, which can be used to identify the 5mCmodification sites in
promoter sequences.

In this study, a simple deep neural network (DNN) framework
(Islam et al., 2018) was employed to consturcted the prediction
model. The generated feature matrix was fed into the fully
connected neural network for training. The fully connected layer
of DNN contained 64, 128, 256, 128, 64 neurons in turn, and the
activation function was ReLU (Zhuang et al., 2019). For binary
problem, the last layer contained two neurons, and sigmoid

FIGURE 2 | Framework of the integrated predictor.
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was selected as the activation function. To prevent overfitting
and improve model generalization, a dropout layer was added
before the last full connection layer, with a value of 0.3. Five-
fold cross validation was conducted to validate the reliability of
each sub-model.

Evaluation Metrics
K-fold cross-validation method could effectively utilize limited
data, and the evaluation results are as close as possible to the
model’s performance on the test set. Therefore, we used this
method to evaluate the model’s performance (Wei et al., 2018;
Chen et al., 2019a,b; Dao et al., 2019). For single label system,
there are several common evaluation indexes to measure the
predictive performance of the predictor, including Sensitivity
(Sn), Accuracy (Acc), Specificity (Sp) and Matthew’s correlation
coefficient (MCC), which can be defined as following,











































Sn = 1−
N+
−

N+
, 0 ≤ Sn ≤ 1

Sp = 1−
N+
N , 0 ≤ Sp ≤ 1

Acc = 1−
N+
−+N+

N++N
, 0 ≤ Acc ≤ 1

MCC =
1−

(

N+
−+N+
N++N

)

√

(

1+
N+N+

N+

)(

1+
N+
−N+
N

)

, 0 ≤ MCC ≤ 1

(10)

where N+ is the total number of 5mC sites actually containing
in the sample sequences, i.e., the sum of the quantities of true
positive; while N− denotes the total number of non-5mC site
sequences, i.e., the sum of the quantities of true negative; N+

−

represents the number of true 5mC sites predicted incorrectly
as non-5mC sites; N−

+ represents the number of non-5mC sites
predicted incorrectly as true 5mC sites.

In addition, we used the Receiver Operating characteristic
curve (ROC curve) to exam the performance of the entire
integrated predictor model. The true positive rate (Sn) and false
positive rate (1-Sp) were set to x-axis and y-axis to plot the ROC
curve, respectively. The area under the ROC curve, also known
as AUC, was used to quantify the performance of the model.

RESULTS AND CONCLUSIONS

Window Size Analysis
Considering the position specific deoxynucleotide bias, it is
necessary to determine the optimal window size δ of sample
sequences for identifying 5mC modification sites. Generally, if
δ is too small, the residues around the 5mC modification sites
cannot carry enough information, leading to poor prediction
effect (Xu et al., 2019). Thus, we analyzed the trend of the
precision rate of the constructed model with different window
size δ. As shown in Figure 3, the search step size for δ here was
1nt, with a range of 10–20.

According to the intuitive observation in sub-graphs (A), (B),
and (D), when δ = 20, the prediction results generated by the
three different methods were the best. In order to distinguish
the optimal model obtained by using one-hot, DPF and onehot-
DPF, we compared the most important metrics Acc and MCC
values, and found that the feature method with the best effect
was one-hot, as illustrated in sub-graphs (A) and (D). Therefore,

FIGURE 3 | Windows size analysis. Sub-graphs from (A–D) represent the ACC, Sp, Sn, MCC values generated by three different feature coding methods under

different sliding window sizes, respectively.
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the following analysis and calculation were based on δ with
20, indicating the length of the sample sequence formulated by
Equation (1) was 41nt.

FIGURE 4 | The ROC curve of the S1 dataset on our model.

TABLE 2 | The results obtained by 5-fold cross validation on the training dataset

S1.

Method Sn (%) Sp (%) Acc (%) MCC

iPromoter-5mC 87.46 90.39 90.16 0.5743

Performance of DNN Models
According to the description in section “Framework of the
integrated predictor,” we can construct the 11 sub-models based
on the training dataset S1 using one-hot feature extraction
method. A simple majority vote strategy was used to integrate
all the decisions originated from the 11 sub-models into a final
classification result. In the current study, we adopted the strict
discriminating standard for identifying 5mC modification sites.
If only all the sub-models consider that the potential 5mC sites is
a true 5mC modification site, the iPromoter-5mC model could
infer the center of this query sequence is a 5mC modification
site. After 30 repeated experiments with 5-fold cross validation,
we obtained the average values of each metric as the final results
of the iPromoter-5mC model, as shown in Table 2. The results
of the iPromoter-5mC model indicated that the performance
of our models was promising, supported by the metric values,
such as Sn, 87.46%; Sp, 90.39%; Acc, 90.16%; MCC, 0.5743.
To more directly illustrate the performance of the predictor,
a ROC curve was plotted using the training dataset S1, and
its corresponding AUC value was calculated. The high AUC
value (0.9566) indicates that our predictor iPromoter-5mC has
excellent performance and stable performance in predicting the
5mC site (Figure 4).

In order to validate the stability of the DNN algorithm
model, we compared the performance of the DNN models
constructed by one-hot, DPF, and their combination.
All the results were displayed as a histogram directly on
Figure 5. Small discrepancies of every metric value obtained
by the three different methods indicated the superior
stability of the DNN algorithm model to identify the 5mC
modification sites.

FIGURE 5 | Performance of different feature extraction methods for prediction of 5mC sites.
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TABLE 3 | The performance of iPromoter-5mC based on the independent

dataset.

Model number Sn (%) Sp (%) Acc (%) MCC AUC

1 94.48 86.53 87.15 0.5455 0.9543

2 98.32 83.19 84.37 0.5183 0.9542

3 95.88 85.77 86.56 0.5417 0.9545

4 96.97 84.71 85.66 0.5319 0.9533

5 95.49 85.97 86.72 0.5425 0.9539

6 95.59 85.88 86.64 0.5417 0.9542

7 97.84 83.84 84.93 0.5244 0.9531

8 97.94 83.75 84.86 0.5238 0.9535

9 94.24 86.71 87.29 0.5469 0.9539

10 95.98 85.69 86.49 0.5409 0.9542

11 97.53 84.04 85.09 0.5256 0.9545

iPromoter-5mC 87.77 90.42 90.22 0.5771 0.9570

The Robustness and Reliability Analysis
Independent test is an effective approach to check the
performance of the constructed classification model. Compared
with the cross-validation method, it can better verify the
robustness and reliability of the prediction models. In the section
“Benchmark datasets” in this study, we established the training
dataset S1 and independent testing dataset S2. Here, we used the
independent testing dataset S2 to further test the performance of
the predictor iPromoter-5mC. The results were listed in Table 3.

The predictive results of the 11 sub-models using the 5-fold
cross-validation method on the independent test dataset S2 were
very stable at about 95, 83, 85%, 0.52 and 0.95 in Sn, Sp, Acc,
MCC, and AUC, respectively, indicating that the constructed
sub-models are very robust for identifying 5mC modification
sites on new data. After integrating all the decisions originated
from these sub-models, the independent test performance of
this final model were 87.77, 90.42, 90.22%, 0.5771 and 0.9570
in Sn, Sp, Acc, MCC and AUC, respectively. The performance
of the predictor iPromoter-5mC was improved, mainly seen
in the metrics Acc and MCC. This implied that our designed
framework for 5mC modification site prediction is reasonable
and efficient, indicating that this method can be extended
to realize synthetic problems on accurate prediction of other
DNA/RNA modification sites.

To further validate the robustness and reliability of the
prediction framework, we implemented 5-fold cross validation
on the benchmark dataset Sδ including the training dataset S1
and the independent test dataset S2. The results of the ROC curve
shown in Figure 6 showed that the performance generated by the
same prediction framework was still reliable and stable after the
expansion of the training data, which have laid a solid foundation
for establishment of online predictor.

We are also concerned with whether ourmodels are applicable
to the data from other cell line or tissues. To do so, we firstly
constructed the benchmark dataset according to the 5mC site
information in promoter regions of human hepatocarcinoma cell
lines (HUH7_LIVER) from database CCLE. This dataset also
was divided into the training dataset and the independent test

FIGURE 6 | The performance generated by the same prediction framework

was still reliable and stable after the expansion of the training data.

TABLE 4 | The 5-fold cross validation results on the training set and the

independent test set of human hepatocarcinoma cell lines.

Method Sn (%) Sp (%) Acc (%) MCC AUC

iPromoter-5mC

(training)

80.53 95.79 93.73 0.7408 0.9736

iPromoter-5mC

(independent test)

81.22 95.79 93.81 0.7459 0.9735

dataset, which were also released on the GitHub and on our
online server. And then, we constructed the DNN model using
the same method proposed in this study. The results listed in
Table 4 were also promising, indicating that the method using
in this study can also be applied to the prediction of 5mC sites in
other cancer cell lines.

Comparison With Existing Predictor
Compared with the two early predictors Methylator and
MethCGI, the predictor iDNA-Methyl has better prediction
performance, which has been demonstrated in the study
(Liu et al., 2015). And iDNA-Methyl has own webserver
for identifying DNA 5mC sites. Therefore, we compared the
performance of iPromoter-5mC with those of iDNA-Methyl.
For convenience of comparison, the scores of the four indexes
defined in Equation 10 obtained by these two predictors based
on the independent test dataset S2 were listed in Table 5. It
can be observed from the table that the overall accuracy (Acc)
score obtained by the current iPromoter-5mC is significantly
higher than that of the existing predictors, as are the other
three indicators.

We analyzed its causes and presently summarized as follows:
(1) There is the biggest difference between iDNA-Methl
and iPromoter-5mC. From the view of the function, iDNA-
Methl detected the genome-wide methylation while iPromoter-
5mC identified the methylation sites in promoters. (2) Most
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TABLE 5 | Comparison of predictors’ performance on the independent testing dataset S2 and sample data from iDNA-Methyl by 5-fold cross validation, respectively.

Success rates Dataset S2 Sample data from iDNA-Methyl

iPromoter-5mC iDNA-Methyl iPromoter-5mC iDNA-Methyl

Sn (%) 87.77 30.62 83.48 61.25

Sp (%) 90.42 90.30 88.04 90.33

Acc (%) 90.22 85.90 86.56 77.49

MCC 0.5771 0.1730 0.7013 0.5471

FIGURE 7 | Screen shots of the homepage of the iPromoter-5mC web server.

importantly, the sizes of their benchmark dataset are significantly
different. The sample size of iPromoter-5mC is far greater
than iDNA-Methl’s, which enables our model to obtain better
correlation between sequences, causing the phenomenon that
the server iPromoter-5mC can identify the 5mC sites of the
benchmark dataset from iDNA-Methl effectively while iDNA-
Methl cannot. (3) The other reason is that the non-equilibrium
degree of the benchmark datasets from these two predictors is
significantly different. The unbalance ratio of the positive samples

and negative samples from iDNA-Methyl is about 1:2, however,
that of the iPromoter-5mC approximately up to 1:11.

In order to further analyze the performance of these
two predictors, we implemented experiments to obtain
the result by iPromoter-5mC using the sample data from
iDNA-Methyl. And we found that the performance of
iPromoter-5mC was better than that of iDNA-Methyl (Table 5),
which also benefits from a large amount of data during
our training.
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In conclusion, these results indicated that deep learning
was better suited for identify 5mC sites on a large dataset,
compared to SVM. In fact, parameter optimization of SVM
is extremely time-consuming, especially in the case of large
amount of data. The predictor iPromoter-5mC can be an
outstanding supplemental tool for identifying 5mC sites since the
predictor iDNA-Methyl.

Web-Server
A user-friendly web server could provide ease of use for broad
scholars to get their desired predictive results without following
the complex mathematical calculations. To achieve this, we had
developed an online predictor called iPromoter-5mC to identify
the 5mC modification sites in promoters, following the principle
described below.

For a given promoter sequence, a 41 bp scan window was
used to segment the sequence into equal-size sequences. If a DNA
query sequence containing potential 5mCmodifications sites is in
a forward strand, the base C in this DNA sequence will be selected
and considered as the fixed length sequence with 41, otherwise,
the base Gwill be found to construct the input sequence, and then
be converted to the reverse complementary sequence. After that,
users can follow the detailed guide to try out online experience of
our web server iPromoter-5mC.

Step 1. Click the link http://www.jci-bioinfo.cn/iPromoter-
5mC and then the top page of iPromoter-5mC will be shown in
Figure 7.

Step 2. Select the strand where the sequence is located from
the drop-down list box (the default value is the forward strand).

Step 3. Users can submit the file containing multiple
sequences in FASTA format by clicking the submit button.

Step 4. Enter the project name and your e-mail address.
The running results will be sent to you by email after finishing
the work.

CONCLUSIONS

In this study, we designed a fast and effective DNN model,
named iPromoter-5mC, to identify 5mC modification sites in
DNA promoter region in cell lines of the small cell lung cancer.
The robustness and good performance of the model were verified
by feature analysis and various experiments. More importantly,
Due to build an easy to use web server can provide users with
more convenient, we set up an online web server to identify 5mC
modification sites, which can bring great convenience to scholars’

research work. The model mentioned in this paper only targets
cell lines of lung small cell carcinoma, but the basic method and
analysis flow can also be applied to the prediction of 5mC sites of
other cancer cell lines.

Although the model in this study achieved higher predictive
performance, the future is going to be one that presents
many challenges. We are going to continue to study the
predictive problem about DNA 5mC methylation. Firstly, with
the development of single cell sequencing technology, we will
try to accurately predict single-cell DNA 5mC methylation
states using deep learning based on single-cell methylation data.
Secondly, we plan to design a scheme to achieve accurate
classification of DNA 5mC methylation level. Finally, we will
construct machine learning models based on other data in
cell lines of other cancers to better detect the biomarkers of
those cancers.
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