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ABSTRACT: Ghrelin is an octanoylated peptide acting by the
activation of the growth hormone secretagogue receptor, namely,
GHS-R1a. The involvement of ghrelin in several physiological
processes, including stimulation of food intake, gastric emptying,
body energy balance, glucose homeostasis, reduction of insulin
secretion, and lipogenesis validates the considerable interest in
GHS-R1a as a promising target for the treatment of numerous
disorders. Over the years, several GHS-R1a ligands have been
identified and some of them have been extensively studied in clinical
trials. The recently resolved structures of GHS-R1a bound to ghrelin
or potent ligands have provided useful information for the design of
new GHS-R1a drugs. This perspective is focused on the develop-
ment of recent nonpeptide small molecules acting as GHS-R1a
agonists, antagonists, and inverse agonists, bearing classical or new molecular scaffolds, as well as on radiolabeled GHS-R1a ligands
developed for imaging. Moreover, the pharmacological effects of the most studied ligands have been discussed.

1. INTRODUCTION

Ghrelin, originally discovered in 1999, is a member of the
group of growth hormone secretagogues (GHSs), well-known
as hunger-stimulating hormone in humans. In plasma and in
tissues, it is present in two main forms: the inactive 28 amino
acid peptide desacyl-ghrelin (DAG) and the active acyl-ghrelin
(AG, Figure 1), obtained through octanoylation at the Ser3
amino acid of DAG catalyzed by the enzyme ghrelin O-
acyltransferase (GOAT).1,2 Ghrelin is mainly produced by the
oxyntic glands in the stomach and is delivered in the
bloodstream to reach the anterior pituitary gland, where it
dose-dependently induces the release of the growth hormone
(GH).3,4

Although a minority of circulating ghrelin undergoes
octanoylation,5 only the octanoylated AG is able to activate
the growth hormone secretagogue receptor, a G protein-
coupled receptor (GPCR) known as GHS-R1a consisting of
366 amino acid residues.6 This receptor couples to a Gαq/11
protein, promoting Ca2+ mobilization from intracellular stores,
through activation of the phospholipase C. It also signals
through other G protein isoforms, including Gαi/o and Gα13
as well as β-arrestin scaffold proteins.7−9 Additional complexity
in GHS-R1a signaling derives from the fact that this receptor
shows one of the highest constitutive signaling activities in the
GPCR family, evoking signals at around 50% of the maximal
ghrelin response.10,11 Moreover, GHS-R1a can form homo-

dimers and heterodimers with a variety of GPCRs, including
GHS-R1b, an inactive splicing variant of GHS-R1a, serotonin
5-HT2c receptor, dopamine D1 and D2 receptors, somatos-
tatin SST5 receptor, orexin OX1 receptor, melanocortin MC3
receptor, and cannabinoid CB2 receptor.10,12−14

Very recent studies have provided useful information about
the structure of GHS-R1a bound to ghrelin,15−18 synthetic
agonists,16,18 a neutral antagonist,19 or an inverse agonist,20

which will help the design of new GHS-R1a selective drugs.
This receptor is highly expressed in the central nervous

system (CNS), mainly in the hypothalamus and pituitary
gland, but also in the rafe nuclei, hippocampus, ventral
tegmental area, and substantia nigra pars compacta.12,21−23 It is
also localized in periphery and in particular in the spleen,
pancreas, adrenal glands, and kidney.12,24 Moreover, GHS-R1a
expression has been found in the cardiovascular system.25

The inactive splicing variant GHS-R1b is a five trans-
membrane domain protein composed of 289 amino acids that

Received: December 22, 2021
Published: February 14, 2022

Perspectivepubs.acs.org/jmc

© 2022 The Authors. Published by
American Chemical Society

3098
https://doi.org/10.1021/acs.jmedchem.1c02191

J. Med. Chem. 2022, 65, 3098−3118

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gianfabio+Giorgioni"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fabio+Del+Bello"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wilma+Quaglia"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Luca+Botticelli"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Carlo+Cifani"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="E.+Micioni+Di+Bonaventura"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="E.+Micioni+Di+Bonaventura"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="M.+V.+Micioni+Di+Bonaventura"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alessandro+Piergentili"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jmedchem.1c02191&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.1c02191?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.1c02191?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.1c02191?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.1c02191?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jmcmar/65/4?ref=pdf
https://pubs.acs.org/toc/jmcmar/65/4?ref=pdf
https://pubs.acs.org/toc/jmcmar/65/4?ref=pdf
https://pubs.acs.org/toc/jmcmar/65/4?ref=pdf
pubs.acs.org/jmc?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jmedchem.1c02191?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jmc?ref=pdf
https://pubs.acs.org/jmc?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


is not activated by ghrelin and lacks the ability to mobilize
Ca2+.26,27

Since ghrelin activates only GHS-R1a, such a receptor
represents an important target mediating several physiological
functions. Indeed, AG fulfills roles, such as regulation of
appetite level, stimulation of food intake, gastric emptying,
body energy balance, glucose homeostasis, reduction of insulin
secretion, and lipogenesis.28,29 On the contrary, DAG induces
opposite effects interacting with an uncertain receptor.30

Together with the hypothalamic activities, the role of ghrelin
system and the enzyme GOAT in food intake regulation is also
related to the interaction with other neurotransmitter systems
implicated in feeding management as well as to the expression
of ghrelin receptors in extrahypothalamic sites.31 Ghrelin has
also been reported to play a role in some neurological
functions such as memory, fear, anxiety, depression, addiction,
and alcohol intake.32−36 Moreover, AG stimulates GHS-R1a in
the brain and induces anticonvulsant and neuroprotective
effects, suggesting that it is a potential target for the treatment
of neurodegenerative disorders, such as Parkinson’s and
Alzheimer’s diseases.26,37,38 Ghrelin has also been discovered
in heart cells, supporting the hypothesis of its cardiovascular
effects and cardioprotective activity.39 It has recently been
demonstrated that ghrelin can act directly on hepatocytes to
stimulate lipogenesis and may serve as a marker and
therapeutic target for nonalcoholic steatohepatitis.40

Interestingly, recent studies report that different physio-
logical responses of AG are evoked by distinct signaling
pathways of GHS-R1a.7,8,41,42 Therefore, biased ligands
endowed with functional selectivity might represent a
promising therapeutic strategy for the treatment of diseases
dependent on the modulation of a specific signaling pathway,
avoiding potential side effects associated with the modulation
of other pathways. For instance, functionally selective ligands
able to activate β-arrestin pathway might be potentially useful
as antiepileptic agents, while the selective activation of Gi/o
and G13 might be beneficial for gastric empying (Figure 2).
The melanocortin receptor accessory protein 2 (MRAP2)

has been identified as an important modulator of the ghrelin-
GHS-R1a system, able to potentiate AG-stimulated signaling
both in vitro and in vivo. In particular, MRAP2 evoked biased
signaling downstream of AG-mediated GHS-R1a activation by
potentiating Gαq/11-dependent signaling and inhibiting β-
arrestin recruitment. Moreover, MRAP2 suppressed the high
ligand-independent activity of GHS-R1a.43,44

Liver-expressed antimicrobial peptide 2 (LEAP2), a 40-
residue cationic peptide predominantly localized in the small
intestine and liver, has recently been described as an
endogenous GHS-R1a antagonist.45 Both LEAP2 and its N-
terminal portion behave as GHS-R1a inverse agonists and
competitively antagonize ghrelin-induced Ca2+ mobilization
and inositol-1-phosphate (IP) production. They have also been
demonstrated to inhibit AG-induced food intake in mice.46

The considerable attention of researchers on the ghrelin
system is demonstrated by the large number of paper
published in the past decade and a half. Running a search in
Scopus (www.scopus.com) for the term “ghrelin” in article
titles and limiting the results to the articles published only in
2020 and 2021, 478 document results have been found,
including 43 review articles.
The broad spectrum of processes involving ghrelin-depend-

ent pathways opens the opportunity to evaluate new
potentially therapeutic approaches for the treatment of several
disorders.10,31,38,47−49 Thus, agonists, antagonists, and inverse
agonists of the GHS-R1a have been developed over the
years.50−53 Moreover, ghrelin signaling can be inhibited by
blocking GOAT activity. Even if this way has not been fully
explored yet, it seems to be another promising drug target, as
exhaustively described in very recent review articles.54,55

Regarding the receptor ligands, nonpeptide compounds are
particularly interesting, due to the very low stability of peptide-
based structures, including the endogenous ligand ghrelin, that
are subjected to high gastrointestinal degradation.56 Therefore,
though several peptide derivatives have been reported as
potent GHS-R1a ligands,46,57,58 this perspective is focused on

Figure 1. Structure of the octanoylated AG. The octanoyl group linked to Ser3 is colored in red.

Figure 2. Different physiological effects mediated by distinct signaling
pathways of GHS-R1a. Reproduced from ref 7 with permission from
Elsevier.
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the development of recent small molecules acting as GHS-R1a
agonists, antagonists, and inverse agonists and bearing classical
or new molecular scaffolds. G-protein and β-arrestin signaling
bias will be considered. Moreover, GHS-R1a ligands developed
for positron emission tomography (PET) imaging will be
reported. Finally, the pharmacological effects of the most
studied ligands will be discussed.

2. STRUCTURE OF GHS-R1a

Solution-state nuclear magnetic resonance (NMR) combined
with advanced molecular modeling have provided useful
information about the conformation of GHS-R1a bound to
ghrelin in its active and inactive state. In particular, the
octanoyl chain of AG seems to be required to form a well-
defined hydrophobic core and to favor access of AG to the
binding pocket. The results have also demonstrated some
degree of both conformational and positional local dynamics of
AG even after it reaches its binding pocket.15 Solid-state NMR
in combination with site-directed mutagenesis and modeling

studies have also been performed to investigate the structural
basis of GHS-R1a bound to ghrelin. The results have revealed
an extended binding surface for this interaction and support
the evidence that AG binds the receptor through two sites.17

Recently, the crystal structure of GHS-R1a in complex with
the antagonist 1 has also been determined (Figure 3).19 The
results have revealed that the binding pocket is characterized
by a wide gap between TM6 and TM7 and is bifurcated into
two cavities by a salt bridge between Glu124 and Arg283
(Figure 3B). The larger cavity has been named cavity I, and the
smaller one cavity II. Mutagenesis studies have suggested that
the cavity I is more important for the binding of AG.
In another study, the analysis of cryo-electron microscopy

structures of ghrelin and the peptide agonist GHRP-6 (2) in
complex with Gq-coupled GHS-R1a has revealed a unique
binding pocket for the octanoyl group of AG, which favors its
correct positioning to activate the receptor (Figure 4).16

Figure 3. Binding mode of compound 1. (A) Side chain interactions within 4.0 Å residues are shown in stick representation. Hydrogen bonds are
shown as black dashed lines. (B) Schematic representation of the interactions between GHS-R1a and compound 1, analyzed using Discovery
Studio 2016. The black dot line indicates a hydrogen bond. Reproduced from ref 19, which was published under a Creative Commons Attribution
4.0 International (CC BY 4.0) License.

Figure 4. (A) Chemical structure of compound 2 (GHRP-6). (B) Binding poses of ghrelin and 2. (C) The binding pocket of GHS-R1a is
bifurcated into two cavities by a salt bridge between Glu124 and Arg283. Ghrelin is shown in magenta, ghrelin-bound GHS-R1a in slate blue,
compound 2 in green, and 2-bound GHS-R1a in salmon. 1-bound GHS-R1a (PDB 6KO5) is colored in gray. Adapted from ref 16, which was
published under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.
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In this structure, the octanoyl group is located at cavity II
but not at cavity I. This result is different from those reported
in previous modeling studies.15,17,19

Accordingly, the reported cryo-electron microscopy struc-
tures of Gi-coupled GHS-R1a in complex with ghrelin and the
nonpeptide small molecule ibutamoren (MK-0677, 3) (Figure
5) have shown that the peptide moiety of AG mainly occupies
cavity I, while the octanoyl moiety is accommodated at cavity
II, adopting an extended conformation.18 Compound 3
occupies both the cavities at the bottom area of the binding
pocket, mimicking the first four residues of AG (including the
octanoyl moiety).
Very recently, the crystal structure of GHS-R1a in complex

with the inverse agonist PF-5190457 (4) together with a cryo-
electron microscopy structure of the Go-coupled GHS-R1a in
complex with AG highlighted that the inverse agonist 4 shows
a binding mode different from those of both neutral
antagonists and agonists (Figure 6).20 In particular, a

hydrophobic cluster and a polar network seems to be required
for the receptor activation and constitutive activity.
Altogether, these structural studies have discussed active and

inactive states of GHS-R1a and have shed light on the different
binding modes of agonists, neutral antagonists, and inverse
agonists, improving the knowledge of the molecular mecha-
nism for GHS-R1a recognition and activation and providing
useful information for the structure-based design of new GHS-
R1a selective drugs.

3. MEDICINAL CHEMISTRY OF GHS-R1a LIGANDS
3.1. GHS-R1a Agonists. Over the years, several GHS-R1a

agonists have been reported and developed for the treatment
of disorders related to the dysregulation of the functions
mediated by GHS-R1a. Some of them, such as 3 (Figure 5),
capromorelin (CP-424391, 5), anamorelin (ONO-7643, 6),
and ulimorelin (TZP-101, 7) (Figure 7), have reached
advanced clinical trials for gastrointestinal diseases, cancer
cachexia, and sarcopenia (see section 4).

Figure 5. (A) Chemical structure of compound 3 (ibutamoren, MK-0677). (B) Alignment of ghrelin and ibutamoren. GHS-R1a bound to 3 is
colored in green. Compound 3 is shown as yellow sticks. C) Compound 3 is in the binding pocket. Adapted from ref 18, which was published
under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.

Figure 6. (A) Chemical structure of the GHS-R1a inverse agonist 4 (PF-5190457). (B) The detailed binding mode of 4 (marine blue sticks) in the
orthosteric pocket of the GHS-R1a. Adapted from ref 20, which was published under a Creative Commons Attribution 4.0 International (CC BY
4.0) License.

Figure 7. Chemical structure of the GHS-R1a agonists 5−7.
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Recently, new agonists with different molecular scaffolds are
emerging as potential tools to treat a variety of clinical
conditions. A high-throughput screening (HTS) approach on
AstraZeneca’s library, followed by hit to lead generation, led to
the discovery of a series of indane diamides behaving as GHS-
R1a partial agonists (8−10) with submicromolar potency
(Figure 8A).59 From a subsequent lead optimization strategy,
an interesting modulation of the biological profile from partial
to full agonism was obtained. In particular, an extensive SAR
study led to the identification of the potent druglike GHS-R1a

full agonist 11 (EC50 = 1.6 nM; Emax = 89%) (Figure 8A),59

which was devoid of significant hERG channel inhibition. This
compound showed adequate pharmacokinetic (PK) profile,
displaying long half-life and limited brain penetration and
increased insulin-like growth factor-1 (IGF-1) secretion in
dogs. This effect may be useful in cachexia, which is
characterized by impairment of skeletal muscles and is
associated with several chronic diseases such as chronic
obstructive pulmonary disease, cancer, and acquired immuno-
deficiency syndrome. Unfortunately, compound 11 also

Figure 8. Chemical structure of (A) the indane diamide GHS-R1a agonists 8−11 and (B) the pyrrolidine and piperidine GHS-R1a agonists 12−
17.

Figure 9. Chemical structure of (A) the 2-pyridone GHS-R1a agonist 18, (B) the quinolone GHS-R1a agonists 19−21, and (C) the 7-
azanorbornane GHS-R1a agonists 22−25.
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showed off target activity toward the mu1-opioid receptor that
stopped its further development.
Later, a new series of derivatives retaining the key

pharmacophoric features of indanes and showing improved
selectivity and PK profiles was designed and developed.60 In
particular, the potent pyrrolidine and piperidine full agonists
12 (EC50 = 0.79 nM; Emax = 93%) and 13 (EC50 = 0.79 nM;
Emax = 98%) (Figure 8B), respectively, structurally related to
11, have been reported. Their optimization led to the
identification of the highly potent and selective compound
14 (EC50 = 0.40 nM; Emax = 98%) (Figure 8B), which showed
sustained dose-dependent activity in a dog IGF-1 model, long
and suitable PK, and safety profile.60 However, 14 was not
considered a clinically suitable candidate as it was poorly
absorbed when administered per os in rodent species owing to
a combination of low permeability and P-glycoprotein (Pgp)-
mediated efflux. In the effort to increase the permeability and
reduce the affinity for Pgp, derivatives 15−17 (Figure 8B)
were also prepared and studied.60 They can be considered
potential prodrugs of 14, which was identified as their major
metabolite in human, dog, and rat hepatocytes. However, due
to the too low detected levels of 14, derivatives 15−17 were

not progressed as prodrugs. Studies focusing on the
modifications to the core structure are still in progress.
Some “privileged structural motifs”, including 2-pyridone,

quinolone, and 7-azanorbornane, have also been used as
scaffolds of compounds acting as potent GHS-R1a agonists.
2-Pyridones were selected for a screening program to

identify nonpeptidic small molecules able to potently activate
GHS-R1a in vitro in both transfected human cells and mouse
hypothalamic cells and to induce in vivo orexigenic effects.56 In
particular, the lead compound 18 (Figure 9A) showed a
significantly increased food intake following intraperitoneal
administration in male C57BL/6J mice and may represent a
potential tool for the treatment of cachexia. Recently, this
compound has been reported as a biased agonist that showed
functional selectivity toward G-protein-dependent signaling,
being able to increase Ca2+ influx, without affecting GHS-R1a
internalization or increasing β-arrestin recruitment.61

Another bioversatile scaffold, that has been considered a
core structure of potent GHS-R1a agonists, is the quinolinone
nucleus. Such a privileged structure is present in synthetic
compounds endowed with different pharmacological proper-
ties, including antimicrobial, antiallergenic, and anticancer
activities. Sixteen quinolones, characterized by various

Figure 10. Chemical structure of the pseudopeptide GHS-R1a agonist 26 and the structurally related triazole ligands 27−33, belonging to the
general structures I and II.
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substituents in positions 3, 6, 7, and 8 and alkyl chains of
different lengths in position 2, were investigated for their

potential to modulate GHS-R1a activity.62 Based on an
intracellular calcium mobilization test in both transfected

Figure 11. Chemical structure of (A) the acylurea GHS-R1a ligands 34−37, (B) the 2-aminoalkyl nicotinamide GHS-R1a ligands 38−41, and (C)
the spiro-azetidine-piperidine GHS-R1a ligands 42−45.
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human cells and mouse hypothalamic cells, the hit compounds
19−21 (Figure 9B), characterized by a CH3O, F, or (CH3)3C
substituent, respectively, in position 6 and an n-heptyl chain in
position 2, emerged as the most promising agonists (EC50 =
4.5 μM, Emax = 121% for 19; EC50 = 2.2 μM, Emax = 95% for
20; EC50 = 73 μM, Emax = 102% for 21) with an effect like that
induced by ghrelin (EC50 = 0.3 μM, Emax = 100%). Moreover,
they were not able to induce β-arrestin recruitment and
subsequent GHS-R1a internalization and desensitization and,
therefore, might be considered functionally selective GHS-R1a
agonists. Further studies are needed to investigate the role of
this functional selectivity in mediating the potential of the
quinolone GHS-R1a ligands as orexigenic agents in cachexia
and associated disorders.
A series of 22 compounds with “druglike” properties and

bearing the sp3-rich 7-azanorbornane scaffold was prepared by
click chemistry.63 Among them, the hit derivatives 22−24
(Figure 9C), bearing a tert-butyldimethylsilyloxyalkyl group on
a triazole ring, dose-dependently activated GHS-R1a. This
effect was contrasted by pretreatment with a competitive GHS-
R1a antagonist, demonstrating that they bind to the orthosteric
site of the receptor. Interestingly, further efforts devoted to the
structure optimization concerning the substituent on the N7 of
the azanorbornane scaffold of the most active compound 23
led to the discovery of the putative β-arrestin-biased super-
agonist 25 (Figure 9C).64 Since the effect of 25 was only
partially blocked by a competitive antagonist, its binding to an
allosteric site was also hypothesized. Moreover, this study
suggests that, despite its easy-to-perform nature, the calcium
assay alone might not be sufficient to completely highlight all
the remarkable features of the GHS-R1a ligands.
3.2. GHS-R1a Antagonists and Inverse Agonists. The

GHS-R1a antagonists and inverse agonists published and
patented so far bear different molecular scaffolds. Many of
them have been accurately described in previous review
articles.50,51 The most recently discovered compounds will be
discussed in this section.
Starting from the known pseudopeptide macimorelin (JMV

1843, 26) (Figure 10), acting as a potent GHS-R1a agonist,65 a
series of structurally related small molecules bearing the 1,2,4-
triazole scaffold was developed. Interesting results emerged
from structure−activity relationship (SAR) studies of these
compounds. Many of them present an α-aminoisobutyryl
moiety as an R1 substituent of the general structure I (Figure
10). However, the replacement of such a moiety with different
groups led to GHS-R1a ligands endowed with high affinity and
different functional behavior. The isonipecotyl compound 27
(JMV 2951) (Figure 10) proved to be an agonist (EC50 (Ca

2+)
= 1.6 nM). Interestingly, the replacement of the piperidine NH
of 27 with an oxygen atom, yielding the isostere JMV 3168
(28, IC50 (Ca

2+) = 60 nM). (Figure 10), modulated the profile
from GHS-R1a agonism to antagonism.66−68

The glycyl and 2-picolinic derivatives 29 (JMV 2959) and
30 (Figure 10), respectively, also behaved as potent GHS-R1a
antagonists (IC50 = 32 nM and 0.7 nM for 29 and 30,
respectively). From a PK point of view, 30 showed a better
profile than 29, displaying a slow clearance and a long drug
exposure to the body. Starting from compound 30, an
extensive SAR study, performed by modifying the position of
the pyridine ring and introducing substituents on it, indicated
that the ortho position of the N atom is crucial for the affinity
and various substituents (F, CH3, OCH3) are well tolerated.

69

A subsequent study, performed on this 1,2,4-triazole series
and concerning the introduction of a second chiral center, led
to compounds of general structure II (Figure 10), endowed
with nanomolar affinities for GHS-R1a.70 Interestingly, while
most of the compounds were GHS-R1a agonists, compound
31 behaved as a neutral antagonist (Ki = 3 nM, Emax = 0%) and
32 (JMV4484) (Figure 10) as a partial inverse agonist (Ki = 3
nM, EC50 = 70 nM, Emax = −37%) with a potency similar to
that of the hexapeptide KwFwLL-NH2 (Ki = 255 nM, EC50 =
100 nM, Emax = −55%) used as reference compound.71

Very recently, compound 29 has been used as a model for
the preparation of a series of 45 new 3,4,5-trisubstituted 1,2,4-
triazole ligands,72 among which 17 compounds behaved as
GHS-R1a inverse agonists with a potency similar to that of the
reference compound K-(D-1-Nal)-FwLL-NH2.

73 Moreover, 4
inverse agonists showed an efficacy even higher than that of the
first inverse agonist analog of substance P ([(D)Arg1,(D)Phe5,
(D)Trp7,9,Leu11]-substance P), often referred in the liter-
ature as SPA (Emax = 78%).74 Derivative 33, one of the most
promising compounds (Figure 10), was selected for in vitro
and in vivo studies, demonstrating to block the inhibitory
action of ghrelin on insulin secretion in rat-isolated pancreatic
islets and to reduce food intake induced by ghrelin in mice.72

Such a result confirms the suitability of the properly
substituted 1,2,4-triazole scaffold for the development of
inverse agonists potentially useful for the treatment of
obesity-related metabolic diseases.
Inverse agonists bearing other molecular scaffolds, including

acylurea, spiro-azetidine-piperidine, and nicotinamide, have
been identified by an HTS approach, followed by chemical
optimization through SAR studies. A HTS campaign on the
AstraZeneca compound library led to the acylurea hit 34
(Figure 11A), which showed moderate affinity for GHS-R1a
(IC50 (affinity) = 210 nM).75 The removal of one chlorine
atom and the substitution of the 6-methoxy group with a (3-
(4-methylpiperazin-1-yl)propyl)sulfonyl side chain afforded
the partial agonist 35 (IC50 (affinity) = 1.3 nM) (Figure
11A) which showed higher affinity than 34.
Further structural optimization led to the modulation of the

biological profile from partial to inverse agonism and to the
optimization of physicochemical and PK properties. In
particular, the CNS penetrant inverse agonist 36 (AZ-GHS-
38) (IC50 (affinity) = 0.77 nM) and the non-CNS penetrant
inverse agonist 37 (AZ-GHS-22) (IC50 (affinity) = 6.7 nM)
(Figure 11A), bearing a morpholine moiety in position 5 of the
phenyl ring, were identified. Interestingly, compound 36, but
not 37, reduced acute food intake in wild-type mice. This effect
was not observed in GHS-R1a knockout mice, demonstrating
the involvement of such a receptor in the mechanism of action.
New potent GHS-R1a inverse agonists bearing the 2-

aminoalkyl nicotinamide scaffold were identified by Asubio
Pharma.76 Optimization of the 2-aminoalkyl and 5-(N-
propyl)pyrazolyl groups of the hit compound 38 (IC50
(affinity) = 84 nM) afforded the lead 39 (IC50 (affinity) =
0.96 nM) (Figure 11B), characterized by an azabicyclo ring at
the 5-position and by a (2,3-(dihydrobenzofuran)methylamine
at the 2-position of the pyridine ring. It peripherally blocked
ghrelin-induced food intake and showed anorexigenic effects in
mice.
The low oral bioavailability of 39 prompted the optimization

of its structure through the modification of the substituents in
positions 2 and 3 of the pyridine ring to improve the metabolic
stability and in position 5 to reduce the molecular weight. The
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peripherally acting compound 40 (IC50 (affinity) = 6.6 nM)
and the brain-penetrant derivative 41 (IC50 (affinity) = 0.28
nM) (Figure 11B), both endowed with oral bioavailability
higher than 39, were evaluated in rat models of obesity.77

Compound 41 showed higher efficacy than 40 in abolishing
weight gain, indicating that the antiobesity effects of these
inverse agonists might be attributed to the suppression of CNS
GHS-R1a activity.
Pfizer identified the HTS-hit 42 (Ki = 213 nM) bearing a

spiro-azetidine-piperidine scaffold,78 which was optimized to
the centrally acting GHS-R1a inverse agonist lead 43 (Ki = 6.3
nM) (Figure 11C).79 This last compound induced insulin
secretion in a glucose-dependent manner in islet cells.80

However, its poor selectivity over other targets, such as α2a and
α2c adrenergic, D2-like dopaminergic and H1 histaminergic
receptors, as well as hERG channels, and inadequate
physicochemical properties and safety profiles prevented its
further development. A physicochemistry-based strategy to
improve the PK properties and to reduce both the off-target
activity and CNS penetration of the compounds, with the aim
to limit the CNS-based side effects, led to the identification of
4 (PF-5190457) (Ki = 4.4 nM) (Figure 6), characterized by an
imidazothiazole group and an R configurated 6-methyl-4-
pyrimidinyl indane linked to the spiro-azetidine-piperidine
scaffold. Compound 4 behaved as a potent and very selective
peripherally acting GHS-R1a inverse agonist, with an improved
safety profile and PK properties. For its pharmacological
profile, 4 progressed to human clinical trials.80 Recently, its
main circulating hydroxy metabolite 44 (PF-6870961) (Figure
11C) has been identified by LC-MS/MS in human plasma.81

Considering the promising result obtained from clinical studies
with 4 and its therapeutic potential in the alcohol abuse
treatment (see section 4.7), a synthetic chemistry route was
developed to obtain a sufficiently large amount of 44, in order
to evaluate the properties and pharmacological profile of this
metabolite.82

Starting from lead 43, another series of spiro-azetidine-
piperidine derivatives was also developed to improve potency,

PK, and the safety profile by emphasizing increased polarity of
the compounds.83 Compound 45 (Ki = 9.2 nM) (Figure 11C),
endowed with an optimal combination of potency, polarity,
and in vivo PK properties, was obtained. However, owing to
pH-dependent chemical instability of the ortho-carboxamide
function, its further development was discontinued.
More recently, the structure of the peripherally active inverse

agonist 4 has been combined with that of the substituted
asymmetric urea compound 46 (Figure 12), behaving as a
potent competitive GHS-R1a antagonist with a favorable PK
profile,84 by a chimeric drug design approach,85 generating an
“imidothiazol”, “piperidine”, and “spiro-piperidine” structure
series. From SAR and structure−property relationship studies,
compound 47 (Figure 12) was identified as a potent GHS-R1a
antagonist (IC50 = 68 nM) and inverse agonist (EC50 = 29
nM) in cellular assays.85 It also showed high CNS penetration
and moderate oral bioavailability in rat. In in vivo studies it
effectively reduced food intake in mice. Further studies are
needed to better evaluate the potential of such a compound as
a therapeutic agent for the treatment of metabolic disorders
associated with obesity.
A recent successful approach concerns the analysis of the

properties of small molecules, originally reported as GHS-R1a
inverse agonists or antagonists, in different signaling pathways,
to evaluate whether they show functional selectivity. For this
purpose, the pharmacological behavior of several GHS-R1a
synthetic ligands was revisited by evaluating their selectivity
toward several G-protein isoforms and G-protein-independent
pathways. Some of them, such as the above-discussed
compound 29 (Figure 10), as well as JMV 3002 (48), and
JMV 3018 (49) (Figure 13), behaved as biased agonists for Gq
activation and IP production and antagonists for β-arrestin
recruitment, ERK1/2 phosphorylation, and Gi2, Gob
activation. Instead, compound 32 (Figure 10) proved to be
an inverse agonist only toward Gq activation and IP
production and was silent toward G13 activation.8

In a more recent study, compound 29 proved to decrease
the constitutive activity of GHS-R1a by specifically reducing

Figure 12. Chemical structure of GHS-R1a inverse agonist 47, in which the structure of the inverse agonist 4 was combined with that of the
competitive antagonist 46.

Figure 13. Chemical structure of GHS-R1a biased ligands 48−51.
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the GHS-R1a basal internalization, without affecting ERK1/2
basal phosphorylation state and β-arrestin recruitment,
suggesting that it might represent a specific biased inverse
agonist.61

Such an approach also highlighted that compound 50
(YIL781) (Figure 13), previously described by Bayer as a
GHS-R1a antagonist,86 behaved as a biased ligand, selectively
activating Gαq/11 and Gα12, and devoid of intrinsic activity
for β-arrestin recruitment and other G-proteins activation.41 In
in vivo studies, it demonstrated to decrease gastric emptying
and to increase food intake. In contrast, the Abbott antagonist
51 (Abb13d)87 (Figure 13) proved to be a Gαq/11 inverse
agonist, decreasing both these in vivo effects. This result
suggests that Gαq/11 activation promotes homeostatic food
intake, while reduction of gastric emptying is induced by
neutral antagonism or inverse agonism at the other pathways.41

3.3. GHS-R1a Ligands for Molecular Imaging. Recent
efforts have been devoted to the development of PET imaging
agents targeting GHS-R1a, with the aim to image and target
this receptor for diagnosis and treatment of different diseases,
especially cancer and cardiovascular disorders, as well as for the
study of the localization and functions of GHS-R1a in the
body. Though several studies have been focused on ghrelin
analogues and peptide derivatives,88−90 as stated above, in this
section we will only discuss radiopharmaceutical nonpeptide
small molecules. In particular, fluorine-containing molecules

with high GHS-R1a affinity have been identified to be
radiolabeled with 18F, one of the most common radioisotopes
used for PET imaging.91

Within a series of derivatives bearing an azaquinazolinone
nucleus, one of the scaffolds used in the design of potent GHS-
R1a ligands,92 the fluorinated derivatives (S)-52 (IC50
(affinity) = 2.2 nM), (R)-52 (IC50 (affinity) = 3.9 nM), and
53 (IC50 (affinity) = 2.7 nM) (Figure 14), endowed with good
bioavailability and able to cross the blood-brain barrier (BBB),
have recently been identified as suitable compounds for 18F-
labeled PET radiotracers for brain imaging.93

A parent class of small molecules targeting GHS-R1a is
represented by quinazolinones,86 for which an extensive SAR
study has recently been carried out to develop derivatives with
very high affinity for GHS-R1a and moderate cLogD. Among
them, the fluorinated compound 54 (Figure 14) emerged as
the ligand endowed with the highest GHS-R1a binding affinity
reported until then (Ki = 20 pM), but unfortunately, attempts
to radiolabel this derivative were unsuccessful. However, the
lead compounds 55 and 56 (Figure 14), showing nanomolar
affinity (IC50 (affinity) = 20.6 and 9.3 nM, respectively), were
successfully 18F-radiolabeled and might represent potential
tools for cancer diagnosis and therapy.94

Other nonpeptide PET tracers for GHS-R1a are represented
by [11C]57 (Ki = 22 nM) (Figure 14), showing moderately
specific binding to GHS-R1a in in vivo mouse brain but not in

Figure 14. Chemical structure of GHS-R1a ligands 52−60, potentially useful for molecular imaging.
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periphery,95 and the more recently radiosynthesized [18F]58
(Ki = 16 nM), [11C]59 (Ki = 4 nM), and [11C]60 (Ki = 7 nM)
(Figure 14).96 Among these, [11C]60 might be considered a
useful PET tracer for in vivo imaging of GHS-R1a in pancreas,
showing specific binding to GHS-R1a in mice pancreas and
good uptake.

4. PHARMACOLOGICAL POTENTIAL OF GHS-R1a
LIGANDS

Due to the wide distribution of GHS-R1a in CNS and in
periphery, and its involvement in several physiological
functions, ligands modulating GHS-R1a signaling pathways
might be beneficial to the treatment of numerous disorders,
including anorexia, cachexia, sarcopenia, gastrointestinal and
metabolic diseases, neurological and neurodegenerative dis-
orders, pain, and substance use disorders (Table 1).12,53 The
effects of small molecules behaving as GHS-R1a agonists,

antagonists, and inverse agonists on such pathologies will be
discussed in this section. Moreover, molecules potentially
useful as diagnostic compounds, such as the orally active GHS-
R1a agonist 26, recently commercialized as Macrilen for the
diagnosis of GH deficiency in adults, being reliable, safe, well
tolerated, and able to potently and selectively stimulate the GH
release, deserve to be mentioned.97−101

4.1. Anorexia and Cachexia. Due to the established
lipogenic and orexigenic effects of AG, various preclinical and
clinical studies were performed and supported the beneficial
role of AG or GHS-R1a agonists in the treatment of anorexia
and cachexia.12,102 Prevention of tissue wasting and increased
food intake have been observed in a series of studies evaluating
the role of known GHS-R1a agonists, such as compound 6,
HM01 (61), and Z-505 (62) (Figure 15) in rodents bearing
tumors associated with cachexia.103−108 Recently, it has been
reported that both compounds 6 and 61 potently induce Ca2+

mobilization, but as compound 6 is more effective in the β-
arrestin recruitment and GHS-R1a internalization, it is
potentially more susceptible than compound 61 to treat-
ment-induced tolerance, highlighting the importance of
signaling bias characterization in the future development of
GHS-R1a ligands.109 Compound 62 was also demonstrated to
decrease anorexia after total gastrectomy in rats.110

Several clinical studies have reported that GHS-R1a agonists
can be effective in improving anorexia and cachexia with
limited side effects in healthy young adults and cancer patients,
and in particular compound 6 represents a promising agent for
the treatment of such pathologies.111−115 In December 2020, it
was approved in Japan for cancer cachexia.116 Moreover, a very
recent trial has reported its efficacy in association with
nutrition counselling and physical activity in improving
cancer-related fatigue, one of the most common symptoms
in advanced cancer patients.117

4.2. Sarcopenia. Due to the low ghrelin levels found in
elderly subjects with sarcopenia,118 GHS-R1a agonists might
be beneficial in the treatment of this disease. The Japanese
herbal medicine rikkunshito, acting as a ghrelin-potentiator,
was able to inhibit age-related sarcopenia in a mouse model of
senescence.119 Oral administration of the agonist 3 for 12
months in a randomized double-blind placebo-controlled
clinical trial prevented lean mass loss and caused an increase
of IGF-1 and GH levels in healthy elderly humans with respect
to younger adults with few adverse effects.120 Serum IGF-1
levels were also increased in hemodialysis individuals,
suggesting the beneficious potential of compound 3 for end-
stage renal disease and chronic kidney disease patients with
protein-energy wasting.121

4.3. Gastrointestinal Diseases. One of the first functions
identified in the study of ghrelin signaling is the effect on the
gastrointestinal tract, where AG stimulates gastric motility and
acid secretion in rats.122 Treatment with the ghrelin-
potentiator rikkunshito was also demonstrated to ameliorate
symptoms of dyspepsia.123 One of the most clinically studied
GHS-R1a agonists for gastric motility diseases and con-
stipation is the pentapeptide relamorelin (RM-131, BIM-
28163).124−127 However, focusing our attention on nonpeptide
small molecule, the centrally acting GHS-R1a agonist 61
proved to potently induce colorectal motility and bowel
emptying, through the stimulation of the lumbosacral spinal
defecation center.128 This compound, and its more periph-
erally acting analogue HM02 (63) (Figure 15), contrasted the
delayed gastrointestinal transit induced by abdominal surgery

Table 1. GHS-R1a Nonpeptide Ligands Showing
Therapeutic Potential in Preclinical and/or Clinical Studies

compound GHS-R1a functional behavior
potential therapeutic

applications

3 (ibutamoren,
MK-0677) agonist

sarcopenia,120,121

Alzheimer’s disease170

4 (PF-5190457) inverse agonist
metabolic diseases,155

alcohol use disorders192−194

5 (capromorelin,
CP-424391) agonist gastrointestinal

diseases132−135

6 (anamorelin,
ONO-7643) agonist cancer cachexia,

anorexia106,107,109,111−117

7 (ulimorelin,
TZP-101) agonist gastrointestinal

diseases136−141

11 agonist cachexia59

14 agonist cachexia60

18
biased ligand

cachexia56
(G-protein agonist)

26 (macimorelin,
JMV 1843) agonist

diagnosis of GH
deficiency,97−101

epilepsy165,167

29 (JMV 2959)

antagonist or biased ligand obesity,149,150

(Gq agonist, β-arrestin, ERK
1/2 phosphorylation and
Gi2, Gob antagonist)

substance use
disorders180−189

33 inverse agonist obesity72

36 (AZ-GHS-38) inverse agonist obesity75

41 inverse agonist obesity77

47 inverse agonist obesity85

48 (JMV 3002)

antagonist or biased ligand

obesity149(Gq agonist, β-arrestin, ERK
1/2 phosphorylation and
Gi2, Gob antagonist)

50 (YIL-781)
biased ligand metabolic diseases,86,148

(Gαq/11 and Gα12 agonist,
β-arrestin antagonist)

substance use disorders190,191

51 (Abb13d) Gαq/11 inverse agonist gastrointestinal diseases41

61 (HM01) agonist

cancer cachexia,103,104,109

gastrointestinal
diseases,129,130

neurotoxicity,164 Prader−
Willi syndrome,161

Parkinson’s disease,174,175

pain179

62 (Z-505) agonist cancer cachexia,
anorexia107,108,110

63 (HM02) agonist gastrointestinal diseases129

65 (LY444711) agonist Alzheimer’s disease169
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in a rat model of postoperative ileus, whereas in a rodent
defecation assay only ligand 61 was able to significantly
increase the weight of fecal pellets. These results suggest that a
peripheral site of action is involved in the stimulation of
gastrointestinal transit induced by synthetic GHS-R1a agonists,
while the increase of the weight of fecal pellets is mediated by a
centrally located site.129 Compound 61 also promoted motion-
induced emesis more effectively than compound 63 in suncus
murinus, suggesting that this effect is centrally induced,
probably by the activation of GHS-R1a of the paraventricular
hypothalamic nucleus.130

Compound 5, another brain penetrant GHS-R1a agonist
recently approved for veterinary use in cats and dogs,131

effectively accelerated gastric emptying in mice132 and
stimulated defecation in a rat model of low fiber-induced
constipation.133 This compound also induced colon contrac-
tions and spontaneous defecation in spinal cord-injured rats.134

A phase 1 clinical trial demonstrated the safety profile and
tolerability of compound 5 in constipated spinal cord-injured
patients.135

Gastrointestinal motility was also accelerated by the
synthetic macrocyclic agonist 7 both in preclinical and clinical
studies.136−138 However, this compound failed to meet end
points in two multicenter placebo-controlled phase 3 trials in
postoperative ileus.139 Recently, its effects on stomach and
colon motility of healthy volunteers have been investigated and
the results suggested that the stomach is the main site of AG
action in humans, as 7 is a potent gastric prokinetic devoid of
activity in the colon.140 Compound 7 also proved to be safe
and effective in the treatment of enteral feeding intolerance.141

4.4. Metabolic Diseases. Considering the well-known role
of ghrelin in inducing adiposity and stimulating appetite142,143

as well as in the regulation of glucose metabolism,29,144

different active vaccines based on the ghrelin structure have
been developed over the years to prevent obesity.145−147 GHS-
R1a antagonists or inverse agonists might also represent
promising agents for the management of metabolic diseases.
Over the years, GHS-R1a antagonists with different molecular
scaffolds proved to be potentially beneficial for disorders such
as obesity, diabetes, and hyperglicemia.53 In particular,

quinazolinone derivatives, including ligand 50, were reported
to induce weight loss in diet-induced obese mice. This
compound also improved glucose tolerance associated with
obesity by increasing insulin release.86,148 However, more
recently, it has demonstrated to decrease gastric emptying and
increase food intake in mice. As discussed in section 3.2, such
an effect might be due to its biased behavior.41

Different 1,2,4-triazole antagonists, including the aforemen-
tioned 29, 33, and 48, were able to inhibit food intake in
rodents.66,149,150 In contrast, the carbohydrazide antagonist
GSK1614343 (64) (Figure 15)151 surprisingly enhanced food
intake and weight gain in dogs and rats,152 indicating that the
benefit of antagonists in the metabolic disorders needs to be
further investigated. A more promising strategy to contrast
these pathologies is represented by inverse agonists, owing to
their ability to reduce the constitutive GHS-R1a activity.74,153

Among the aforementioned acylureas developed by
AstraZeneca, the CNS penetrant inverse agonist 36 but not
the non-CNS penetrant 37 reduced acute food intake in wild-
type mice.75 Accordingly, the nicotinamide brain-penetrant
compound 41 showed higher efficacy than the peripherally
acting derivative 40 in reducing weight gain (see section 3.2),
indicating that the antiobesity effects of these inverse agonists
might be attributed to the suppression of CNS GHS-R1a
activity.77 Two more recently reported inverse agonists
(structures not disclosed) demonstrated to decrease food
intake in mice. One of them also caused hypoglycemia and
reduced body weight and triglyceride levels.154

Among the spiro-azetidine-piperidines, the already men-
tioned orally bioavailable GHS-R1a inverse agonist 480 reached
the clinical trials, being able to increase insulin secretion both
in the human pancreas and Langerhans islets. In healthy
people, it reduced stomach motility and evacuation, as well as
GH secretion, and induced hypoglycemia.155

A metabolic disorder caused by genetic defects is
represented by Prader−Willi syndrome (PWS), which is
characterized by several symptoms, including obesity, hyper-
phagia, low GH, neonatal hypoglycemia, infertility, and
accelerated mortality.156,157 Though many studies suggest
that high ghrelin levels might be responsible for hyperphagia

Figure 15. Chemical structure of GHS-R1a ligands 61−66.
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and obesity in patients with PWS,158 this association has never
been demonstrated. On the contrary, other known effects of
ghrelin, such as hyperglycemia and increase of GH secretion,
muscle mass and strength, and survival,1,159 as well as its
anxiolytic and antidepressant actions34,160 might be beneficial
for PWS. Interestingly, the GHS-R1a agonist 61, daily
administered for 2 weeks, markedly enhanced survival of
Snord116del neonatal mice, a preclinical model of PWS. These
results prompt to explore in depth the therapeutic potential of
GHS-R1a agonists in limiting mortality in PWS, especially
before the hyperphagic nutritional phase starts.161

4.5. Neurological and Neurodegenerative Disorders.
As mentioned above, AG signaling plays a crucial role in the
CNS functions, such as synaptic plasticity, learning, memory,
and neurogenesis,32,162,163 supporting the potential use of
GHS-R1a agonists in the treatment of neurological and
neurodegenerative disorders.26 The neuroprotective effects of
GHS-R1a agonists were also observed in cancer patients
treated with neurotoxic chemotherapy. Indeed, the brain
penetrant compound 61 was able to attenuate cisplatin-,
oxaliplatin-, and bortezomib-induced neurotoxicity in mice.164

4.5.1. Epilepsy. Recently, ghrelin and GHS-R1a agonists are
gaining substantial recognition as an innovative approach to
treat epilepsy.37 The full agonist 26 proved to decrease the
seizure severity score both in acutely 6 Hz corneal electrical
stimulated mice and in fully kindled mice but not in GHS-R1a
knockout mice. This effects were not observed after
administration of the antagonist 29.165 On the contrary,
kindled mice treated with the aforementioned biased ligand 50,
selectively activating Gαq/11 and Gα12 and being devoid of
intrinsic activity for β-arrestin recruitment, showed more
severe and longer seizures, suggesting that the anticonvulsive
effect of ligand 26 might be due to the activation of the β-
arrestin signaling pathway.166 Very recently, compound 26 has
proved to induce anticonvulsant effects in drug-refractory
intrahippocampal kainic acid mouse model of epilepsy,
suggesting its potential use in pharmacoresistant epilepsy.167

4.5.2. Alzheimer’s Disease. Several studies have reported
the effects of GHS-R1a agonists on Alzheimer’s disease (AD)
symptoms.168 Improved cognitive functions and reduced
cerebral inflammation and beta-amyloid levels have been
induced by the oral administration of the GHS-R1a agonist
LY444711 (65) (Figure 15) in a mouse model of AD.169

More recently, the agonist 3 has been reported to reduce Aβ
deposition, neurodegeneration, and neuroinflammation in a
mouse model of early stage of AD.170 However, this compound
failed to prevent hippocampal lesions in a mouse AD model
and to mitigate cognitive impairment in a clinical trial with AD
patients, suggesting its ineffectiveness alone for the treatment
of AD.171,172

4.5.3. Parkinson’s Disease. The observation that ghrelin
could prevent the degeneration of striatal dopaminergic
neurons, expressing GHS-R1a, induced by the neurotoxin 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine,173 supports the
potential of GHS-R1a agonists in the management of
Parkinson’s disease (PD). In a 6-hydroxydopamine rodent
model of PD, the brain penetrant agonist 61 was able to
normalize the decreased 4 h fecal output and the gastric
emptying blocked by levodopa.174 Following chronic admin-
istration, the same compound ameliorated several nonmotor
symptoms of PD including body weight loss, fecal weight and
water content, water consumption, as well as enhanced food
intake. These findings suggest a potential benefit of GHS-R1a

agonists to alleviate nonmotor symptoms in PD patients with
gastrointestinal disorders.175

4.6. Pain. Due to its anti-inflammatory effects, ghrelin has
been demonstrated to show antinociceptive activity in models
of inflammatory and neuropathic pain.176,177 Interestingly, it
has been reported that these effects can also be mediated by
different central pathways.178

Recently, the GHS-R1a agonist 61 has shown analgesic
effects in a rat model of noninflammatory visceral hyper-
sensitivity and somatic mechanical allodynia, suggesting the
activation of GHS-R1a signaling as a potential novel approach
for the treatment of visceral and somatic pain.179

4.7. Substance Use Disorders. GHS-R1a blockade has
been suggested as a promising approach for the treatment of
substance use disorders.33,36 The GHS-R1a antagonist 29
demonstrated to decrease alcohol-, morphine-, nicotine-,
cocaine-, amphetamine-, methamphetamine-, fentanyl-, or
cannabinoid-induced conditioned place preference and/or
locomotor stimulation,180−188 as well as to reduce alcohol-,
amphetamine-, morphine-, nicotine-, or cocaine-induced
dopamine release in the nucleus accumbens and/or the ventral
tegmental area in rodents.186−189

Moreover, the GHS-R1a biased ligand 50 significantly
reduced hyperlocomotion in a dopamine-transporter knockout
mouse model,190 as well as in cocaine-sensitized mice,
suggesting that the blockade of β-arrestin recruitment might
be required for this effect.191

Interesting results have recently been obtained with the
inverse agonist 4, which reached clinical trials for its potential
in the treatment of alcohol use disorders. Safety and tolerability
of this compound, coadministered with alcohol in active heavy
alcohol drinking patients, were demonstrated in preclinical
safety experiments and phase 1b clinical studies. Compound 4
was also suggested to decrease alcohol cue-induced craving,
which represents a risk factor for relapse in subjects with
alcohol use disorders.192−194

5. CONCLUSIONS AND PROSPECTS

The considerable attention of researchers from both
pharmaceutical companies and academies concerning the
modulation of the ghrelin system by using GHS-R1a ligands
is demonstrated by the large number of papers published in the
last years. This interest is due to the fact that GHS-R1a
represents a promising target for the treatment of numerous
disorders. In particular, while agonists have shown efficacy in
the management of anorexia, cachexia, sarcopenia and
gastrointestinal diseases, epilepsy, and pain and neuro-
degenerative disorders, antagonists and inverse agonists have
proved to have potential in the treatment of substance use
disorders and metabolic diseases, including obesity and
diabetes. Over the years, compounds with different molecular
scaffolds have been identified, and some of them have been
extensively studied in clinical trials. In this regard, inverse
agonists have demonstrated to be more effective candidates
than antagonists for preclinical and clinical studies, as they are
able to reduce the unusually high constitutive activity of GHS-
R1a.
Another important aspect concerns the development of PET

imaging GHS-R1a radiolabeled ligands, potentially useful for
diagnosis and treatment of cancer and cardiovascular diseases
as well as for the study of GHS-R1a localization and functions
in the body.
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The recently resolved structures of GHS-R1a bound to
ghrelin or potent ligands have greatly improved the knowledge
of the molecular mechanism for GHS-R1a recognition and
activation and provided useful information for the design of
new GHS-R1a selective drugs.
A further strategy for the discovery of new drugs has

originated from the assessment of the functional profile of
small molecules in different signaling pathways of GHS-R1a to
evaluate whether they behave as biased ligands. This approach
has helped to improve the knowledge of the biological
functions associated with each pathway and to identify
functionally selective compounds, which might be useful for
the treatment of diseases associated with the modulation of a
specific signaling pathway, avoiding potential side effects.
Overall, this perspective aims to provide information which

might help to develop new potent GHS-R1a agonists,
antagonists, and inverse agonists to clarify the role played by
GHS-R1a in the diseases in which it is involved and to identify
new pharmacological tools potentially useful for their treat-
ment.
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