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Abstract: This review highlights the application of different types of nanosilicon (nano-Si) materials
and nano-Si-based composites for (bio)sensing applications. Different detection approaches and
(bio)functionalization protocols were found for certain types of transducers suitable for the detection
of biological compounds and gas molecules. The importance of the immobilization process that
is responsible for biosensor performance (biomolecule adsorption, surface properties, surface
functionalization, etc.) along with the interaction mechanism between biomolecules and nano-Si
are disclosed. Current trends in the fabrication of nano-Si-based composites, basic gas detection
mechanisms, and the advantages of nano-Si/metal nanoparticles for surface enhanced Raman
spectroscopy (SERS)-based detection are proposed.
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1. Introduction

Nanoscale (porous) silicon (Si) was accidentally discovered in 1956 by Arthur Uhlir Jr. and
Ingeborg Uhlir in the process of developing a technique for polishing and shaping the surface of
silicon [1]. However, for a long time, this material was beyond the concerns of the scientific community
until A. G. Cullis and L. T. Canham reported on the visible light emission due to the quantum size effects
in highly porous crystalline silicon (PSi) in 1990 [2]. This discovery provided another opportunity for
further investigation and application.

Up until now, nano-Si remains one of the most popular and sought-after materials in applied
science. The fabrication procedure of nanoscale silicon is not labor intensive and does not require
special (expensive) equipment and chemicals. Depending on the structure/morphology, for example,
porous silicon (PSi) [3–5], silicon nanopillars (SiNPs) [6,7], and silicon nanowires (SiNWs) [8], this
material can be used for Li-ion batteries [9], water-splitting [10], solar cell [11], sensor and biosensor
applications [12,13], etc.

(Bio)sensors are devices designed for the selective detection of (bio)molecules in a multimolecular
environment. Generally, they consist of a detection platform (transducer) with a selective layer and
target (bio)molecules in liquids or gases. The main idea is to observe the modification of the transducer
response (optical, electrical, chemical, thermal, etc.) through “surface–target analyte” interaction in
real-time or express detection [14].

Nowadays, sensors and biosensors based on nano-Si have been successfully applied to
molecules [15], biomolecules [16] and light [17] detection using different responses (PL [18,19],
SERS [20], I–V [21], reflectance [22,23], resistance [24], capacitance [25], fluorescence [26]) and material
modifications (PSi, SiNWs, SiNPs). Such strong interest in (bio)sensors based on nano-Si can be
explained by their enhanced surface to volume ratio, biocompatibility, and low-cost.
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The most common methods for PSi sample fabrication are metal-assisted chemical etching
(MACE), stain etching, and electrochemical etching [27]. Use of these methods enables the fabrication
of PSi substrates with different pore sizes (from nanoporous to macroporous), depending on the
chemical/physical procedure parameters. Currently, many works have been dedicated to PSi-based
(bio)sensor application as well as PSi-based nanocomposites (PSi/Au [13], PSi/ZnO [8], PSi/TiO2 [28–30])
with enhanced selectivity, sensitivity, and tailored properties.

SiNWs and SiNPs are the most advanced modifications of nano-Si due to their enhanced surface
to volume ratio when compared with PSi. On the other hand, their fabrication involves additional
steps such as etching mask deposition by using photolithography [31], polystyrene nanosphere
lithography [6], or electron-beam lithography [32]. Recently, attention from the scientific community
has been given to the fabrication of highly-sensitive (bio)sensor platforms based on SiNW and SiNP
nanocomposites. It has been established that Au, Ag, Pd, and Pt nanoparticles deposited over silicon
nanopillars or nanowires can be aggregated to “hot spots” and demonstrate a high enhancement
factor in SERS-based biosensors with a detection limit less than 10-12 M [33]. Furthermore, SiNWs
and SiNPs in conjunction with metal oxides (TiO2, ZnO, WO3, F2O3, TeO2) have shown promising
results for gas and biomolecule detection via an electrochemical response with a detection limit of
about 1 ppm [34–38]. Recently, a number of new composites have been developed based on SiNWs
and SiNPs with sulfides (CdS, MoS2) [39,40] and nitrides (Si3N4) [41] that are suitable for sensitive
light, humidity, and gas detection due to enhanced absorption and adsorption.

Tailored and advanced properties of nano-Si and silicon nanocomposites open great possibilities
for use in novel trends in (bio)sensor applications. This paper is dedicated to nano-Si and silicon
nanocomposites suitable for (bio)molecule detection as well as future prospects of this research
area. Additionally, the application of nano-Si and its nanocomposites for (bio)sensors was discussed.
The effects of metal and metal oxide nanoparticles on the structural, optical, electrical, and (bio)sensor
properties were analyzed. The mechanism of interaction between nano-Si/silicon nanocomposites and
(bio)molecules was also clarified. New trends, affecting the development of nano-Si-based biosensors
are presented.

2. Types of Nano-Si Morphology and Methods of Fabrication

2.1. Porous Silicon (PSi)

PSi is a well-studied Si-based nanomaterial. As above-mentioned, PSi has obtained great interest
within the scientific community after light emission was discovered in 1990. PSi has a number of unique
properties such as visible light emission, enhanced light absorption, and biocompatibility. Recently,
a number of publications have been dedicated to PSi and PSi-based nanocomposite fabrication and
its application in (bio)sensing. As previously mentioned, electrochemical anodization, stain etching,
and MACE (Figure 1a–d) [42] remain the most common methods for PSi substrate fabrication, which
enable the production of PSi (Figure 2a) with tailored morphological properties (porosity, pore size,
and depth of pores).

2.2. Silicon Nanowires (SiNWs)

SiNWs (Figure 2c) are another type of nano-Si, where the height of the Si nanoelements is much
higher than its diameter (h >> d). Due to the high surface to volume ratio, SiNWs have found successful
applications in solar cells, sensors, biosensors technologies, photovoltaics, etc. [43]. Traditionally,
this nanomaterial can be fabricated from bulk Si by RIE [44] and MACE [45] in combination with
lithographic techniques (photolithography, polystyrene nanosphere lithography) or bottom-up and
top-down technologies [46]. In addition, the initial synthesis of SiNWs is often accompanied by thermal
oxidation steps to yield structures with an accurately tailored size and morphology [47].
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2.3. Silicon Nanopillars (SiNPs)

A SiNP (Figure 2b) substrate (h ≥ d) is a kind of nano-Si with densely packed and well-ordered
morphology. This substrate, like that of SiNWs, possesses an enhanced surface to volume ratio and
absorption when compared with bulk silicon. Relying on this fact, SiNP arrays have become popular
and prospective for solar, cell water-splitting, and (bio)sensors application. This kind of nano-Si is
generally fabricated by RIE and MACE with different types of lithographic masks (Figure 1f) [48,49].
The mechanical robustness of the SiNP area is substantially better when compared with SiNWs due to
h~d and a well-ordered morphology.
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Figure 1. (a–d) Schematic illustrations of the formation mechanism for synthesizing porous Si films using
the MACE process [50]. (e) Electrochemical energy diagram of corresponding reaction. The illustration
of the Si NPAs fabrication process [50]. (f) Schematic illustration of the fabrication of SiNP arrays.
Close-packed monolayer of polystyrene (PS) nanospheres on a clean Si reduced diameter of PS by
reactive ion etching, Au deposition, metal-assisted chemical etching, and the removal of Au/PSi [51].
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3. (Bio)sensors Based on PSi, SiNWs, SiNPs and Their Composites with Polymers

Nowadays, nano-Si remains one of the most popular materials for sensor and biosensor
applications. A number of unique properties make it prospective for (bio)molecules, pH, and
light detection via different sensing techniques (optical, resistive, volt-amperometry, etc.). High surface
to volume ratio allows for an increase in the number of adsorbed (bio)molecules, resulting in enhanced
sensitivity when compared with planar Si surfaces. The selectivity of nano-Si to the target analyte
can be achieved via (bio)functionalization such as a bioselective layer for target biomolecules (e.g.,
antigen–antibody interaction) [3,19]. Additionally, significant interest by the scientific community has
been paid to real-time measurements and the design of a microfluidic system with embedded nano-Si
transducers [53].

As mentioned below, biofunctionalization plays a very important role in bioselective layer
evolution and allows for the binding of organic molecules to a non-organic nano-Si surface
without unspecific interaction. Currently, a number of biofunctionalization protocols have been
proposed: silanization [3,19,53–67], aminosilanization [68–70], direct immobilization [16,22,71,72],
enzyme [18] or peptide [73] treatment, phospholipid bilayers formation [74], hydrosilylation treated
by N-Hydroxysuccinimide and 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (NHS/EDC) [75–77]
or resazurin [78], and polymer synthesis [79]. However, the most common technique is silanization,
due to the possibility of controlling the thickness of the(3-Aminopropyl)triethoxysilane (APTES) layer
as well as using different cross-linking agents (glutaraldehyde, NHS/EDS) [18,80].

In recent years, nano-Si has been widely used for optical (bio)sensor applications due to its portability
and high sensitivity. Among all of the optical detection approaches, photoluminescence (PL)-based
measurement looks the most promising, especially for real-time monitoring [3,18,19,72,78,81–84].
Previously, we reported on low-cost, highly sensitive PSi-based immunosensors for ochratoxin
A (OTA) detection using a PL approach. It was established that the intensity of PL changes under
different OTA concentrations via antibody–antigen interaction onto the PSi surface. The limit of
detection (4.4 pg/mL) and the sensitivity range (0.01–5 ng/mL) to OTA were estimated [3,19]. In [18],
Syshchyk et al. reported on a PSi-based photoluminescence platform for heavy metals, urea, and
glucose detection. PSi surface biofunctionalization was performed by enzyme (urease and glucose
oxidase) treatment. The sensor mechanism was based on the effect of PL changing with the varying pH
of the solution caused by the enzymatic reactions [18]. Furthermore, it was reported that the PL-based
detection approach could be utilized for O2 detection on a SiNW platform [84]. SiNWs were fabricated
by the MACE method and O2 detection was carried out through the measurement of different oxygen
flow pressure. The general sensing mechanism was based on the PL intensity change, which can
be explained by the reversible charging/recharging of surface defects (Pb-centers) due to the oxygen
adsorption/desorption.

Another nano-Si optical response suitable for (bio)molecule detection is reflectance or other
optical parameters related to reflectance [22,48,53,55–58,62,65,67,68,70,71,74,76,85–96]. Generally, the
(bio)sensor technique based on reflectance response can be performed via reflective index (RI) [71]
or optical density [16] (OD) measurements in the initial state and after the addition of the analyte.
The changes in RI and OD caused by analyte-transducer surface interaction can be processed and
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used as the effective (bio)sensor signal. Other pathways for detection based on reflectance usually
involve the analysis of the interferogram average over wavelength (IAW–IAW0) [89,97] as well as the
estimation of effective optical thickness ratio (EOT/EOT0) [53,54]. For instance, PSi sensors based on
the reflectance response for heavy metal detection were studied in [61,97–99]. Politi et al. reported
on the highly-sensitive (LOD ~ 1.2 ± 0.3 ppb) method for Pb(II), As(III), and Cd(II) detection via the
modification of PSi surfaces by lysine and oligopeptides [98]. The advanced optical approach for
E. coli detection was also proposed by Y. Tang et al. [53]. Real-time measurements were performed in
a microfluidic system with a PSi oxidized substrate via indirect Fourier transformed reflectometric
interference spectroscopy (FT-RIS) measurements. Detection included two steps: capture of the bacteria
on the PSi surface and measurement of pore accessibility by BSA treatment. It was assumed that the
EOT shift of PSi decreased with increased E. coli concentration on its surface, causing a block of the
porous array. Furthermore, Luan et al. developed photonic waveguides and microring resonators based
on SiNPs for a high sensitivity label-free transducer that was suitable for isopropyl and streptavidin
detection [71]. The sensitivity of each resonator to isopropyl (228–580 nm/RIU) was calculated as
the ratio of the wavelength shift slopes to the change of reflective index (RI). The authors noted
that sensitivity could be enhanced by minimizing the scattering loss by applying the new advanced
fracturing strategies and single line edge smoothing (SLS) in the process of nano-Si fabrication.

Fluorescent optical response is usually used for the labeled biomolecule detection
technique [60,64,66]. The general idea of this approach is based on analysis of a fluorescence signal from
labeled biomolecules via their binding with previously functionalized nano-Si structures. In [64,66], the
PSi Bragg mirror was used to enhance the fluorescence signal from the CdSe/ZnS QD embedded within
the PSi pores for single-stranded DNA (ssDNA) detection. Target DNA hybridization was labeled with
a cyanine (Cy3) fluorophore and the detection limit to DNA hybridization was estimated as 1 nM [60].
The novel “label-free” fluorescent detection approach was proposed by Piya and coauthors [75].
Arginylglycylaspartic acid (RGD) peptides have been used to provide non-selective adhesion of target
J774 macrophage cells on (polyethylene glycol) PEG hydrogel patterned PSi Bragg reflectors. The J774
cells previously stained by calcein AM and adhered over peptides were lysed chemically. When the
cells were lysed, there was a leakage of calcein from inside the cells due to the rupture of the cell
membrane that led to a decrease in fluorescence intensity (Figure 3). This approach was suitable even
for single cell detection, however, the selective layer was not described [75].
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Figure 3. (a) Bright field (BF) and (b) fluorescence images of J774 macrophage cells on pattern before
and after lysis. The dye for cells staining was calcein AM. When the cells were lysed, pores were
created on the cell membrane, thus causing the leakage of calcein from the cells. Thus, the fluorescence
intensity started to decrease due to the leakage of calcein. Cells were still on the micropatterns after
lysis, as can be seen from the BF images. Scale bar 100 µm [75].
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In [73,100], the authors reported on the visual colorimetric sensing techniques suitable for
(bio)molecule detection. Photonic polymer modified PSi templates have shown prospective results
for non-pathogenic E. coli and isopropanol alcohol detection. The key idea for the development of
composite sensors capitalized on the high refractive index contrast afforded by Si. It was established
that composite sensors gave a strong reflectance spectrum that was more readily seen by the eye when
the sensor was wetted with the isopropanol solution. These photonic PSi/polymer composites have
also shown enhanced sensitivity to E. coli when compared with all-polymer photonic sensors. This can
be attributed to differences in their wettability, which affects E. coli adhesion [100]. Ramakrishan et al.
reported on a PSi microcavity for autoimmune disease detection based on H2 B antigens or antibodies
quantification via red, green, and blue (RGB) spectral analysis (Figure 4). Images for RGB analysis
were captured by smartphone camera and blue color information was extracted. An extremely low
concentration (10 fg/mL) of autoimmune antibody was detected, making this approach suitable for
application [73].
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Figure 4. (a) The sequence of the 21-mer Si-specific peptide conjugated with the H2 B antigen (the site
of acetylation is annotated); (b) Schematic representation of the H2 B glass sensor; (c) The measuring
scheme, (d) the red-green-blue (RGB) layers of the obtained colored product; (e) Generation of colored
solution by TMB-HRP reaction after capture of H2 B antibody on PSi. Color intensity depends on the
concentration of the captured Anti-H2 B antibody [73].

Optical transmittance of PSi microring resonators and microcavities was used as the signal for
sensor and biosensor applications [101–104]. Weiss et al. reported on 10 µm and 25 µm microring
waveguides for nucleic acid (PNA) detection via transmittance measurements. It was established that
PNA hybridization shifts the resonance peak at 2.00 nm and 1.48 nm for the 10 µm and 25 µm radius
PSi rings, respectively. This difference in resonance shift with PNA treatment can be explained by
the variation in molecular adsorption on the two samples [101,102]. Girault et al. proposed a similar
approach for glucose quantification in aqueous solutions. Despite the fact that the LOD was estimated
as 0.7 g/L, information about the selectivity to glucose was not available [103].
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In parallel with the above-mentioned optical transducers, nano-Si is widely used for (bio)sensor
application based on electrical and electrochemical responses [77]. For instance, I(J)-V measurements
were carried out for the detection of biomolecules [79,105], gases [21,49,106–108], light [109–111], and
pH [112–114]. Shashaani et al. reported about Mebendazole (MBZ) drug activity on breast cancer cells
(MCF-7) adhered over a SiNW chip [105]. It was established that MCF-7 cells treated with MBZ drugs
caused a significant (increased from 5 nA to 300 nA for 2 nM of MBZ) effect on I–V patterns due to the
change in the ionic state of cytoplasm, and subsequently, the ionic equilibrium between the cell’s inner
and outer parts. The detection limit to the MBZ drug tracing was calculated as 0.01 nM [105].

Capacitive [21,115,116] and resistive [45,115,117,118] responses of the nano-Si substrates were
examined for gas and alcohol detection. Qin et al. reported on enhanced H2 adsorption on SiNWs
fabricated by MACE and post-etched in KOH to enhance the surface rough. It was shown that
relative resistance response to 200 ppm H2 was equal to 83% and significantly higher than for the
same concentration of methanol, ethanol, isopropanol, acetone, or methane at room temperature [45].
In addition, Qin et al. reported on Polypyrrole (PPy) shell/Np functionalized SiNWs (PPy-shell@SiNWs
and PPy-NPs@SiNWs) suitable for ultra-low detection resolution (130 ppb) and excellent selectivity
toward NH3 [118]. The underlying mechanism for the enhanced relative resistance response of
PPy-shell@SiNWs in comparison to the PPy-NPs@SiNWs was analyzed based on the modulation of
PPy sensitization on axial conductance. In [115], PSi sensing elements on paper for humidity sensing
were demonstrated. The detection approach was based on the relative resistance and capacitance
measurements in environments with different humidity. The PSi based humidity sensor was used
for real-time measurements and a relatively fast recovery was observed even though no refreshing
methods were employed.

Thual et al. proposed a theoretical model of hybrid Psi–polymer optical waveguides for BSA
detection [119]. Due to the PSi high specific surface and biocompatibility, it was used as the sensing
part of the sensor. Additionally, polymer waveguides were fabricated for the reference part of the
sensor due to their low optical losses. The theoretical limit of detection and sensitivity were calculated
as 0.019 pg mm−2 and 12.5 nm/(pg mm−2), respectively.

4. (Bio)sensors Based on Nano-Si and Metals Oxides Nanocomposites

Currently, there is a growing number of publications dedicated to the (bio)sensing properties
of nanocomposites based on nano-Si and metal oxide (MOx). Such significant interest in these
types of nanomaterials can be explained by the enhanced sensitivity [17,24,120,121] and surface
stability [25,26,122] of these nanocomposites. MOx nanoparticles and nanolayers synthesized
over nano-Si can positively effect nano-Si surface passivation and degradation. The advances
in nano-Si fabrication and MOx deposition enable the production of nanocomposites with
tailored morphologies and electro-optical properties (photoluminescence, type of conductivity,
etc.), which play a crucial role for the effective detection of (bio)molecules. Mainly, MOx
nanolayers/nanoparticles can be deposited over a nano-Si surface through the following techniques:
(i) RF and DC magnetron sputtering [24,34,36,37,120,121,123–126]; (ii) sol–gel/hydrothermal synthesis
+ spin coating [17,26,127–131]; (iii) drop casting technique + pulsed laser ablation in liquid [132];
(iv) vapor–liquid–solid growth and chemical vapor deposition [25,40,133]; (v) catalytic immersion
method [134]; and (vi) electrochemical and chemical deposition [35,122,135].

Some types of nano-Si/MOx nanocomposites used as a (bio)sensor platform are shown in Figure 5.
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(a) SEM images of the PSi/ZnO nanocomposite [125]; (b) SEM images of the SiNWs/WO3
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the PSi/V2O5 nanocomposite [37].

It has been ascertained that silicon/MOx nanocomposites are widely used for gas detection through
the I–V curve characterization [136], resistance [24,34,35,37,39,120–122,124–126,129,131,133,135,137,138],
and capacitance [25,40] measurements. Generally, the main gas sensing mechanism is based on
oxygen adsorption on the nano-Si/ MOx surface, causing electron extraction from the conductive
band of semiconductors. This leads to a reduction in the electron concentration and hence the initial
resistance increase or decrease for p-type and n-type semiconductors, respectively [37]. In the next step,
chemisorbed oxygen species react with different molecules (H2, CO2, ethanol, acetone, isopropanol,
toluene gas, etc.), releasing the electron back to the conductive band of the semiconductor, and causing
a reverse change in resistance.

It was found that p-p and p-n heterojunctions formed at the interface of nano-Si/MOx
nanocomposites play an important role in charge separation and charge life-time increasing due
to the barrier layer formation. Liu et al. proposed that the composition of p-CuO and p-PSi led to a p-p
heterojunction formation due to the different electron affinity (χ(CuO) = 4.07 eV, χ(PSi) = 4.01 eV) [124].
As the Fermi levels are not at the same level, electrons from CuO migrate to Psi, and holes migrate
in the opposite direction until the Fermi energies become equal. This charge transfer leads to a
formation of the depletion layers in PSi and CuO, respectively. The heterojunction effectively separates
charges, resulting in the high concentration of holes in the accumulation layer and increased the
lifetime of the charge carriers. This simplifies the electrons extracted from the conductive band of
heterostructures during the gas adsorption. A similar mechanism was proposed for p-TiO2/p-PSi [34],
p-Cu2O/p-PSi [135] and proven by experimental measurements.

A number of works have also been published on the p-n heterojunction by using a combination of
p-type PSi and n-type ZnO [24,35,36,122,125,134], WO3 [36,129,137–139], SnO2 [122,133], V2O5 [37],
and TiO2 [120]. The sensitivity of these nanocomposites was enhanced in comparison to the bare
semiconductors and this can be explained as follows [120]: (a) a reduction in the surface activation
energy Ea upon the formation of the p-n heterojunction, resulting in increased analyte adsorption;
(b) the presence of oxygen species and dangling bonds on PSi/MOx, and as a consequence, more
reaction sites on the surface, which improved the adsorption of target molecules. As an example,
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Figure 6 shows the band diagram of TiO2/PSi. The formation of the heterojunction produces the barrier
effect, so electrons lose their capacity to move from the n to p side. In this case, the holes play a main
role in sensing. When the surface of the nanocomposites is exposed to air, the number of holes on the
surface increases (Equation (1)) [120].

1/2 O2 (g)→ O−(ads) + h+, (1)

when the sensor is treated with some gases, free electrons are injected to the surface, and neutralized
holes result in an increase in sensor resistance.
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It should be noted that tuning the scale of the MOx nanolayer or nanoparticles and the morphology
of the Si surface are very important elements for sensor design. Husairi et al. showed that the PSi/ZnO
sensor response to ethanol depends on the concentration and type of defects and area of active sites for
absorption as the number of defects and active species on the PSi/ZnO surface was directly affected by
the precursor (Zn(NO3)26H2O) concentration [134]. In [122,125], ZnO nanolayers were deposited over
PSi and c-Si by using zinc acetate (ZA) and carbonate (ZC) precursors via chemical bath deposition
(CBD) and the magnetron-sputtering technique, respectively. It was demonstrated that PSi/ZnO
possessed enhanced sensitivity in comparison to c-Si/ZnO. This was due to the increase in the PSi/ZnO
effective surface area, resulting in higher adsorption on its surface [125]. On the other hand, the
PSi/ZnO substrate deposited using ZC showed a better response to CO2 than film deposited using ZA
due to a more homogeneous covering [122].

Nano-Si/MOx nanocomposites have been applied as biosensors [26,130,140]. In [26], PSi/TiO2

substrates showed enhanced sensitivity to mycotoxins in comparison with pure PSi. Before the
sensing experiment, PSi/TiO2 and Psi were functionalized by (3-Glycidyloxypropyl)trimethoxysilane
(GPTMS) and selectivity to the mycotoxins was achieved by using hybridized aptamers of mycotoxins.
Furthermore, both substrates were exposed to the same concentration of Cy3-labeled mycotoxins
and fluorescence intensities were collected by utilizing a fluorescence scanner. It was found that the
fluorescence intensity of the analyte on the PSi/TiO2 surface was almost 14 times higher than the
thermally oxidized PSi surface. This result can be attributed to the following reasons: (i) the surface
of PSi/TiO2 was more stable than PSiO2; and (ii) the surface of PSi/TiO2 had more active sites for
analyte immobilization. The emission intensity of the dye was increased because the polar TiO2 surface
enhanced the delocalization of the π electrons and lowered the highest occupied molecular orbital and
lowest unoccupied molecular orbital energy levels of the dye [26].

The sensitivity of nano-Si/MOx via noble metal deposition [15,36,38,121,139,141–143] has also
been studied. It a found that noble metal (Ag, Au, Pt, Pd) nanoparticles, imbedded into nano-Si
/MOx nanocomposite play an important role in charge generation and significantly increases the
quantity of the chemisorption of oxygen ions O− and creates additional active sites, leading to the
formation of a deeper depletion region in comparison to that of pure sensors [80,112,115]. Herein,
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Qiang et al. reported on enhanced sensitivity of PSi/WO3/Pd nanocomposites to NH3 [139] (Figure 7a)
and NO2 [15] gases. The main differences between the PSi/WO3/Pd and PSi/WO3 sensing mechanisms
were explained by the following (Figure 7b,c) [139]:

• In the case of the PSi/WO3 nanocomposite, the sensing mechanism directly depends on the
heterojunction parameters and efficiency of O2 absorption-desorption;

• PSi/WO3 substrates decorated with Pd NPs would possess enhanced catalytic activity that will
lead to enhanced dissociation of oxygen molecules O2 and absorption of oxygen ions O− on the
PSi/WO3/Pd surface. More ion absorbed oxygen on the surface would provide more sensing sites,
leading to enhanced gas response and reaction rate.

• Additionally, the work function of Pd was larger than that of WO3, therefore the electrons from
WO3 will transfer to Pd, causing the generation of the Schottky barrier at the interface between Pd
and WO3. By these reasons, the conduction band of PSi/WO3/Pd will become much narrower
when compared with WO3 and the concentration of the conduction electrons will be reduced.
As a consequence, the interaction of NH3 molecules with the PSi/WO3/Pd substrate will lead to
more significant resistance variation and higher sensor response.
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5. (Bio)sensors Based on Nano-silicon and Metals Nanoparticles

The large active surface of nano-Si as well as enhanced stability, catalytic activity, and
surface-enhanced Raman scattering (SERS) of the metal nanoparticles in combination are very promising
for highly-sensitive (bio)sensor applications. Therefore, different nano-Si/metal nanocomposites
(MNps) have been widely employed for rationally designing and fabricating high-performance
(bio)sensors for the detection of various chemical and biological species [144]. The deposition
of metal nanoparticles/nanofilms over all types of nano-Si can be implemented by the following
techniques: (i) magnetron sputtering [31,51,145–149]; (ii) immersion, chemical, and electrochemical
depositions [13,20,27,150–170]; (iii) thermal evaporation [32,44,171–179]; and (vi) laser ablation
technique/pulsed laser deposition [180,181].

Nowadays, nano-Si/MNps nanocomposites have been utilized for (bio)sensors based on
SERS [12,20,31,32,51,145,149–155,165,168,173,175–178,182–184], optical [13,44,158,164,167,171,180],
and electrical [27,146,148,156,159–162,166,169,170,172,173,179,181,185,186] responses. Among all of
these approaches, SERS of MNps decorated nano-Si is extensively exploited as the most efficient
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spectroscopic phenomenon for high-sensitive sensing. The development of a practically applicable
SERS-based (bio)sensor requires an efficient SERS substrate, which possesses strong enhancement
factors (EF), robustness, stability, uniformity, and reproducibility. It was found that PSi has a major flaw
for these applications because the surface morphology has an uncontrolled stochastic character, making
it impossible for hot spots to be uniformly distributed over the surface [51,177]. Therefore, 3D nano-Si
substrates such as SiNPLs and SiNWs are more suitable for SERS-based (bio)sensors because of their
well-ordered surface, leading to uniform distribution and the accessibility of hot spots (see Section 2).
Furthermore, arrays of SiNPLs and SiNWs stabilize the distribution of MNps, which results in high
EF and excellent reproducibility with a low detection limit [149]. For instance, in [31,51,149,177], 3D
SiNPs/Ag and SiNPs/Au nanocomposites were utilized for Rhodamine 6G (R6G) molecule detection
via SERS. The authors showed that the smallest limit of R6G detection was equal to 10−13 M [149]. This
was attributed to the high EF (2.4 × 108) achieved due to the well-organized fabrication and variation
of wavelength excitation.

In order to obtain a high-sensitive SERS–active platform, the authors in [20] proposed a multi-step
fabrication process including the following steps: (i) fabrication of Ag dendrites; (ii) AuNPs
deposition over Ag dendrites; (iii) synthesis of Si nanoneedles; and (iv) nanoneedle decoration
by AgNPs. The authors noted that such 3D multi-structures were fabricated to achieve a much stronger
enhancement when compared with the SERS-active AgNPs or 1DAg dendrites. Additionally, the
hierarchical scaffolds and the hydrophilic performance could endow the substrates with improved
sensitivity and reproducibility. Eventually, the substrates showed a low limit of detection to malachite
green (~10−13 M), which may be promising in the field of sensing, imaging, and clinical diagnosis.

In [12,184], SERS measurements were applied for real sample investigation. Hakonen et al.
constructed a handheld (Figure 8a,b) device based on the SiNWs/Au SERS signal for polar organic
liquids O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate (VX) and Tabun detection at
ambient conditions [12]. The low detection limits were achieved for nerve gases due to high droplet
adhesion. The high sensitivity result of the small droplet contact area and target molecule accumulation
within the SERS hot-spots were formed by clustered nanopillars. Cui et al. reported on flexible,
transparent, and self-standing SiNWs/Au consisting of ultrathin three- dimensional SiNW networks
suitable for pesticide residue detection via SiNWs/Au wrapping onto the lemon surface [184]. SERS
signals were collected by two approaches: (i) directly, from the lemon surface with a previously
adhered small piece of SiNWs/Au and treated with ethanol; (ii) SiNWs/Au paper could be torn off

the lemon surface before the ethanol completely evaporated and the Raman signal could be recorded
from the sample placed on a flat Si substrate or glass. The limit of detection to pesticides on the lemon
surface was estimated as 72 ng/cm2 for both approaches, meaning that this technique has the potential
for fast in situ and nondestructive sensing (Figure 8c).

In [52,181], SiNWs/Pt/Pd and SiNWs/Pd were used for H2 detection via resistance and I–V
measurements, respectively. It was suggested that H2 physical and chemical adsorption on Pt/Pd
nanoparticles takes place through the incorporation of hydrogen atoms into a metal lattice (MHx) [181].
Physisorbed molecules on the nanoparticle’s surface and H species incorporated in the interstitial
sites of the Pt/Pd NPs can act as electron scattering centers and decrease the carrier mobility, causing
an increase in the electrical resistance of the Pt/Pd ultra-thin film. When Pt/Pd is deposited over the
SiNWs, it is also will take the place of the shortest current path by contacting the neighboring clusters
and thus perfect contacts can be formed between almost all nanowires inside each cluster at higher H2

concentration ranges. For this reason, after hydrogen absorption, electron scattering was reduced and
the resistance change was rapid, this phenomenon forms the basis of H2 detection. Such a point of view
has correlation with the results published in [52]. In the process of the H2 deposition over SiNWs/Pd,
they dissociated into hydrogen atoms, causing the I–V curve to shift and a significant reduction in
the current. These processes can be explained by the SiNWs/Pd Schottky barrier increasing (from
0.678 meV to 0.685 meV) when H2 was adsorbed. It was noted, that according to the Butler theory, the
absorption and desorption of H2 in a thin layer of Pd at room temperature and pressure leads to the



Materials 2019, 12, 2880 12 of 25

reversible hydride PdHx, where x is the atomic ratio H/Pd [52]. The absorption of H2 can be related to
a crystallographic phase transition.
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In our previous research [13], we showed that Au nanoparticles deposited onto the PSi surface
led to an increase in the sensitivity to the target (Aflatoxin B1) and decreased the response time of the
immunosensors. The analytical performance of the PSi/Au PL-based immunosensor showed very
good characteristics with a maximal sensitivity range within 0.01–10 ng/mL. Compared to the standard
enzyme-linked immunosorbent assay (ELISA) [3] method, the Au/PSi immunosensor showed about
100 times lower concentration range. In [180], PL-based sensing was performed for ethanol, n-hexane,
and trichloroethylene detection on a PSi/Au platform. It was found that the PL intensity of the PSi/Au
nanocomposite in ethanol vapor was significantly less compared with the PL intensity in n-hexane
and/or trichloroethylene. This can be attributed to the larger dipole moment in ethanol, leading to the
enhancing of non-radiative emissions in the PSi/Au surface layer.

Cui et al. reported on the 2D PSi/Au platform for explosives detection and identification [164].
The main idea of this approach was based on the simultaneous measurements of PSi/Au
electroluminescence (ELC) peak intensity and position under interaction with explosives including
nitro compounds, peroxides with nitrogen atoms, and peroxides without nitrogen atoms due to their
different oxidation and electron transfer ability. In this case, Au nanoparticles catalyze the oxidation
reaction between PSi and H2O2 and due to this, the ELC change is faster in comparison with bare
PSi. Consequently, it was established that pre-oxidation of PSi with oxidants could introduce surface
defects and, accordingly not only quench the ECL intensity, but also decrease the rate of the initial peak
shift when compared with the blank PSi. In contrast, explosives containing the nitro group could just
quench the ECL of PSi through the electron transfer process but without a pre-oxidative effect, whereas
compounds with an electron donating ability (e.g., amine group) could enhance the ECL intensity.
However, if this compound also contains a peroxy group, the quenching and enhancing effect might
be counteracted.
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6. (Bio)sensors Based on Nano-Si and Carbon-based Nanomaterials

As previously mentioned, the current trends in (bio)sensors are oriented toward the development
of novel composite nanomaterials in order to obtain sensing substrates with enhanced surface to
volume ratio, biocompatibility, and sensitivity. In the last decade, carbon based materials (carbon
nanotubes (CNT), graphene (G), graphene oxide (GO)) have recommended themselves as efficient
platforms suitable for (bio)sensor applications due to their high electron mobility, large surface
area, and biocompatibility. Therefore, it is expected that materials based on carbon nanomaterials
incorporated with nano-Si will possess more efficient sensing with a wide detection range and low
detection limit. Another advantage lies in the fabrication process, which is not labor intensive and
not time consuming, for instance, graphene can be synthesized over nano-Si through the in situ CVD
process [187]. In [188,189], fabrication processes were carried out by the separate preparation of nano-Si
and graphene substrates with the following graphene transfer on the nano-Si surfaces. In the case of
graphene oxide, it can be covalently bonded to the PSi in the presence of EDC/NHS [190] and added
dropwise over the substrate followed by spin coating [191].

Currently, nano-Si/carbon-based nanomaterials have been examined as (bio)sensor platforms with
optical [187,190,192,193] and electrical [188,189,191,192,194] responses and have shown prospective
results for future investigation and application. For instance, in [187] and [193], SiNWs/GNP/AuNP
and GO/AgNPs/Cu@Si substrates were utilized for R6G determination via SERS measurements.
Additionally, it was found that GO modified AgNPs/Cu@Si substrates possessed higher SERS enhanced
factor (2 × 1012) in comparison with bare AgNPs/Cu@Si (6,7 × 1011) [193]. This can be attributed to the
well distributed hot spots and the GO films covering both AgNPs and spaces could make the probe
molecule more effectively absorbed around the hot spots. While in the case of the absence of the GO
film, the molecules will be distributed unevenly on the AgNPs/Cu@Si substrate, which will lead to the
weak homogeneity of the SERS signal.

Eom et al. reported on PSi/graphene substrates suitable for room-temperature H2 gas detection via
resistance measurements [194]. The main idea of this technique is similar to that of gas detection using
nano-Si materials decorated with metal and/or MOx nanospecies. Generally, the sensing mechanism
can be explained by the Schottky junction generation and formation of an electric depletion layer near
the p-type Si and the hole accumulation layer near the graphene due to the difference in the Si and G
work functions. Upon adsorption of the hydrogen gas molecules to the surface of the PSi/graphene,
the accumulated holes near the graphene react with hydrogen molecules. As a consequence of this
interaction, ionized hydrogen is formed, consequently leading to the reduction in the carrier density in
the graphene layer. The conductivity of G-doped/p-Si becomes weaker due to the decreased graphene
carrier concentration. Additionally, when the hydrogen gas was removed, the oxygen molecules in
air react with the formed ionized hydrogen on the graphene and p-type Si, which increases the hole
accumulation layer of graphene and decreases the ionized hydrogen in the p-type silicon, consequently,
the conductivity of the PSi/graphene becomes higher (Figure 9).

Table 1 presents some of the main results on the application of nano-Si composites for (bio)sensor
application. Table is divided into four sections, each of them corresponding to the nanostructures
presented in Sections 3–6.



Materials 2019, 12, 2880 14 of 25

Table 1. Summarized data about nano-Si and nano-Si composites suitable for (bio)sensing applications.

(Bio)sensors Based on PSi, SiNWs, SiNPs and Their Composites with Polymers
Type of

transducer Detection approach Material for detection LOD a/Sensitivity b

range/Sensitivity c Reference

PSi

Photoluminescence
Glucose, urea b 0–3.0 mM [18]

Cu2+, Pb2+, Cd2+ c 10 nM
Colorimetric sensing Autoimmune antibodies a 10 fg/mL [73]

Fluorescence J774 macrophage cells a few and/or single cells [75]
Visual colorimetric sensing Non-pathogenic E. coli a 1.5 ± 0.4 × 105 CFU/mL [100]

SiNWs

Resistance H2O b 10–50 ppm [117]
Capacitance Pressure a 0.1 Pa [116]

Luminescence Streptavidin a 1.6 fM [72]
I–V curves Near-infrared (NIR) light c 14.86–844.33 mA/W [111]

SiNPLs

I–V curves Relative humidity (RH) a 10% [49]
Refractive index Isopropyl alcohol a 579.5 nm/RIU [71]

I–V curves Ethanol, acetone gas a 0.25% [108]

I–V curves
Light c 1.3 mA/W [109]

UV light c 0.82 mA/W
(Bio)sensors based on nano-Si and MOx nanocomposites

PSi/WO3 Resistance NO2
a 100 ppb

b 100 ppb–3 ppm [129]

PSi/ZnO Electrochemical impedance
analysis Ethanol solution b 0.05–0.6 M [134]

PSi/TiO2 Fluorescence
Aflatoxins B1 a 15.4 pg/mL

[26]Ochratoxin A a 1.48 pg/mL
Fumonisin B1 a 0.21 pg/mL

PSi/ZnO Photocurrent UV Light (325 nm) c 1.98 A/W [123]
PSi/TiO2 I–V curve UV illumination c 0.045 A/W [132]

PSi/SnO2:Sn Capacitance Relative Humidity b 11–95% [25]
SiNWs/TeO2/Pd Resistance C6H6, CO, C7H8, N2O b 10–50 ppm [121]

SiNWs/ZnO I–V curves Glucose
a 12 µM

c 129 µA mM−1 [130]

SiNWs/WO3 Resistance N2O b 0.25–5 ppm [126]
SiNWs/ZnO Resistance N2O b 5–50 ppm [131]

SiNPLs/Fe2O3/Ag SERS Malachite green (MG) a 10−8 M [38]
SiNPLs/TiO2 I–V curves CH4

a 20 ppm [136]
(Bio)sensors based on nano-Si and metals nanoparticles

PSi/Ag SERS
Rhodamine 6G a 10−15 M [168]
Crystal violet a 100 pM [153]

Porphyrin CuTMPyP4 a 10−11 M [151]

PSi/Au Photoluminescence Aflatoxin B1
a 2.5 ± 0.5 pg/mL
b 0.01–10 ng/ml [13]

PSi/Ag Amperometric response Ascorbic acid

a 0.83 µM
c 1.279 mA mM−1 cm−2

b 20–600 µM
[170]

SiNWs/Au Differential pulse
voltammetry DNA a 1.63 × 10−12 M [160]

SiNWs/Ag Resistance NO2
a10 ppb [27]

SiNWs/Au I–V measurements Glucose
a 11 µM

b 55.1 µM–16.53 mM [148]

SiNWs/Au Impedance measurements Avidin a 10 × 10−12 M [179]
SiNWs/Pd/Pt Resistance H2

b 1–40,000 ppm [181]

SiNPs/Au SERS Nerve gases VX a 13 fM [12]
Tabun a 630 fM

SiNPs/Ag SERS Rhodamine 6G

a 10−11 M [177]
a 10−13 M

b 10−7–10−13 M
[149]

SiNPs/Au SERS
Rhodamine 6G b 10−10–10−6 M [51]

Cloxacillin b 15.6–500 pM [183]
(Bio)sensors based on nano-Si and carbon-based nanomaterials

PSi/GO substrate Impedance Aflatoxin B1 b 1 fg/mL–1 pg/mL [189]
PSi/GO

AgNPs/PCu SERS Rhodamine 6 G a 10−15 M [193]

PSi/Pd/GO Resistance H2
a 200 ppm at 15 ◦C [191]

PSi/Graphene I–V curves H2
b 100–1000 ppm [194]

SiNWs/Graphene SERS R6G a 10−6 M [187]

SiNWs/Graphene I–V curves characterization,
PL measurements DNA b 0.1–500 nM [192]

Superscript letter a—indicates the limit detection (LOD), b—indicates sensor sensitivity range and c—indicates
sensor sensitivity.
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7. Conclusions and Future Work

In this paper, we have provided an overview of the recent progress in (bio)sensing with nano-Si
and nano-Si composites with polymers, MOx, metal nanoparticles, and carbon-based materials.
It was found that novel nanocomposites are suitable for different detection techniques whereas
pure nano-Si did not show acceptable results. For instance, pure nano-Si is hardly used for the
SERS-based detection approach, while the nano-Si/MNps composites have recommended themselves
as efficient SERS-active platforms with a high enhanced factor. Additionally, nano-Si, combined
with the above-mentioned nanomaterials, possesses a number of different advantages such as the
opportunity to obtain material with the necessary parameters and properties as well as using different
surface (bio)functionalization protocols.

Significant attention has been paid to the estimation of gas sensing mechanisms. It should be
noted that the nano-Si/MOx sensing mechanisms that have been provided in different publications have
good correlation between each other and could be established as the fundamental knowledge in gas
detection theory. Furthermore, novel sensing mechanisms have been proposed for more complicated
nanostructures such as nano-Si/MOx/MNps. In this case, new effects are appearing and totally changing
the type and rate of “sensor surface–gas” interaction.

Basic approaches and biosensing mechanisms that are now in use for nano-Si sensors have also
been presented in detail. The advantages of this class of materials are that they can detect the target
molecules in real-time with minimal sample damage and good repeatability. It can clearly be seen
that researchers working in the area of improving the design and scheme of sensing equipment will
gradually move to the size of microfluidic systems that possess a high precision of sample analysis.
However, the fast response time, sensitivity, selectivity, long-term stability, and portable nano-Si based
sensor devices remain important challenges for their future commercial applications.

To summarize the above-mentioned, there are many important challenges for the further
prospective of nano-Si for fast and real-time diagnostic/detection. However, it can be clearly seen
that all of the points of challenge could be solved through different approaches and techniques.
For instance, filters can help to avoid the noise and background signal. A thick polymer layer coverage
or combination of nano-Si with MOx, MNps, etc. could be used to achieve the nano-Si surface stability.
The sensor’s signal homogeneity directly depends on the sensor’s surface homogeneity, which can
be achieved by precise fabrication techniques such as electron beam lithography, photolithography,
reactive ion lithography, etc. Microfluidic systems with incorporated nano-Si are the most prospective
for the field of medicine and allows for the minimization of the necessary volume of detection
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solution. Other advantages of the microfluidic system are the small dimensions and the possibility of
monitoring samples in real-time. The area of nano-Si sensor design is a multidisciplinary field, and
many researchers are working on these challenges, furthermore, the rapid development of nanoscience
and the appearance of novel tools will speed up the applied use of nano-Si.
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