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Abstract: As an efficient technique for the preparation of polymeric hexagonal orderly arrays,
the breath figure (BF) process has opened a modern avenue for a bottom-up fabrication method for
more than two decades. Through the use of the water vapor condensation on the solution surface,
the water droplets will hexagonally pack into ordered arrays, acting as a template for controlling the
regular micro patterns of polymeric films. Comparing to the top-down techniques, such as lithography
or chemical etching, the use of water vapor as the template provides a simple fabrication process with
sustainability. However, using highly hazardous solvents such as chloroform, carbon disulfide (CS2),
benzene, dichloromethane, etc., to dissolve polymers might hinder the development toward green
processes based on this technique. In this review, we will touch upon the contemporary techniques of
the BF process, including its up-to-date applications first. More importantly, the search of greener
processes along with less hazardous solvents for the possibility of a more sustainable BF process is
the focal point of this review.
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1. Introduction

Breath figure (BF) is an example of the nature phenomenon of the formation of water droplets on
surfaces (Figure 1). Since the first discovery in 1911 [1,2], for morphology observation, and further
development by Francois et al. [3] in 1994 for materials science, the BF process has become one of the
most promising fabrication methods in the production of porous polymeric films with ordered arrays.
These pore structures, typically exhibiting a regular hexagonal arrangement, are usually regarded as
honeycomb-like polymeric films. Unlike the traditional top-down techniques, such as lithography,
etching, or the chemical vapor deposition method for regular patterns, the BF process provides a
low cost, simple, and efficient route toward polymeric films with ordered arrays by the use of the
self-assembly of water droplets on the surface.

Although the detail mechanism is profound due to the complex mass and heat transfer during
the formation of ordered array films, the comprehensive illustration of the BF process is described in
Figure 2. First, a polymer solution is drop-cast or solution-cast on a substrate (step A). Subsequently,
the cooling of the solution and the nucleation of the moisture occur simultaneously, producing small
but disordered water droplets on the solution surface (step B). As time goes by, the self-assembly of
the water droplets would form an ordered and closely-packed water droplet array that covers the
entire surface of the solution (step C and D), followed by the evaporation of the solvent and water
droplets, leaving a regular pore array on the dry film (step E, F, G). Due to certain parameters being
controllable from B to G steps, specific ordered arrays could be handled by changing the types of
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materials, substrates, solvents, and the size of water droplets. For a further detailed description of the
BF process one can refer to the literature reported by Dou et al. and Bormashenko [4,5].
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In most cases, the water vapor is utilized as templates floating on the solution to fabricate
the polymeric honeycomb-like films. As a result, the BF process is a promising candidate for a
green process that fabricates micropatterns with good sustainability. However, the use of highly
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hazardous solvents such as chloroform, carbon disulfide (CS2), dichloromethane, or benzene for
dissolving polymers would stand in the way of the development of a greener BF process. In order
to reduce the environmental impact, green chemical processes and synthesis design are strenuously
developed for improving chemical ingredient manufacturing, nanotechnology, flow chemistry, and
process intensification under harsh synthesis conditions [6]. In one example, a record high-power
conversion efficiency for rapidly-developed organic photovoltaics (OPVs) was boosted up to 16% [7].
However, the active layers of state-of-the-art OPVs were processed by highly hazardous chlorinated
solvents, such as 1,2-dichlorobenzene (DCB), chlorobenzene (CB), and chloroform (CF), which put
public health and the environment in danger. With great endeavor in the pursuit of greener process,
OPVs prepared from o-xylene could be achieved up to 13% more recently [8]. Based on the above,
the solvent issue plays a highly critical role in the fabrication of polymeric thin films. With the right
choice of solvents, the facile BF process, via water droplets as a template, can be regarded as a green
and safe process for fabricating polymeric ordered arrays.

In this review, recently-developed materials for polymeric honeycomb-like films will be elucidated
first, followed by the applications of these polymeric honeycomb-like films. Subsequently, we will
discuss the feasibility of greener processes for fabricating the polymeric honeycomb-like films.
The maneuverable BF process does hold the opportunity for a more sustainable process without using
highly hazardous solvents. Finally, a summary and an outlook on this greener BF process are presented
at the end of this review.

2. Materials

In the past two decades, a large number of polymers have been developed for fabricating
honeycomb-like films with micro- and nano-structures by a dynamic templating technique, namely the
BF process [4,5,9–16]. Some features such as (1) high quality of film forming; (2) water immiscible,
and (3) efficient stabilization of water droplets are considered to afford a polymer solution for preparing
honeycomb-like films by the BF method. Among these polymers, amphiphilic polymers [16–19] and
functionalized block copolymers [20–22], capable of balancing the hydrophobicity and hydrophilicity
of the solution–water interface, are favorable for forming ordered arrays during the BF process.
In one particular example, an ionic group/counter-ion effect on porous polymer film morphology
was investigated based on a series of PH3T-b-PMMA diblock copolymers [20]. In addition, a series
of amphiphilic hyperbranched polymers were developed by Dong et al. to obtain 5–6 µm diameter
pores, and the depth of pores were increased with increasing solution concentration [23]. Apart from
that, star and branch polymers with high segment density were also one of the popular materials for
fabricating honeycomb-like films [24–29]. On the other hand, certain small molecules with special
functional groups, such as melamine units, would induce a supramolecular assembly through the
interactions of hydrogen bonding. This makes it possible to form ordered honeycomb-like films via
the BF method [30]. It is important to note that surfactants were capable of acting as the driving
force to induce the self-assemble behavior in the formation of ordered arrays [31–33]. Furthermore,
honeycomb-like films could be fabricated based on certain polymers used as matrices for nanoparticles
(NPs), carbon nanotubes (CNTs), quantum-dot [34], or graphenes [35]. In one example, ordered arrays
of an elastomer–CNT nanocomposite were achieved based on the mixture of styrene–butadiene–styrene
(SBS) and amine-terminated polystyrene (PS-NH2) solution [36]. Apart from that, the self-assembly
of nanoparticles at the oil–water interface (Pickering emulsions) in the BF process have been widely
utilized for honeycomb-like micropatterning [35,37–42]. In fact, rings of nanoparticle-decorated
honeycomb-like polymeric films could be observed with the combination of Pickering emulsions and
capillary flow via the BF method [40]. Researchers also fabricated honeycomb-like films built on a
photo-curable and biodegradable polycaprolactone triacrylate (PCLTA) [43]. UV light was irradiated
onto the sample at the stage of water droplet condensation. Subsequently, the ordered arrays were
formed when tetrahydrofuran (THF) was evaporated completely.
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2.1. Amphiphilic Polymers for Honeycomb-Like Films

The effects of hydrophobicity and hydrophilicity could be manipulated by the variations of the
polymer end groups. Zhu et al. [44] synthesized several polystyrenes (PSs) with different functional
end groups, and fabricated honeycomb-like films from their polymer solutions (in CS2) via the BF
process. Highly-ordered honeycomb-like films were obtained from the PSs with ionized or neutralized
end groups, whereas the irregular structure was observed on the PS sample with a less hydrophilic
lactone end group. These results reveal that various morphologies of honeycomb-like films could be
achieved by these well-controlled end-functionalized polymers.

Connal et al. [45] reported the preparation of an acetonide-protected dendron-functionalized
star polymer (polystyrene based) for fabricating honeycomb-like films. The dendrons were
end-functionalized with acetonide-protected (hydrophobic), hydroxyl (hydrophilic), or perfluoroalkyl
(highly hydrophobic) groups. Various pore sizes and shapes of honeycomb-like films could
be facilely achieved based on the polystyrene-based star polymers end-functionalized with
2,2-bis(methoxy)propionic acid-based dendrons using benzene as the solvent via the BF process
(Figure 3).

Polymers 2019, 11, 1473 4 of 30 

 

Connal et al. [45] reported the preparation of an acetonide-protected dendron-functionalized 

star polymer (polystyrene based) for fabricating honeycomb-like films. The dendrons were end-

functionalized with acetonide-protected (hydrophobic), hydroxyl (hydrophilic), or perfluoroalkyl 

(highly hydrophobic) groups. Various pore sizes and shapes of honeycomb-like films could be 

facilely achieved based on the polystyrene-based star polymers end-functionalized with 2,2-

bis(methoxy)propionic acid-based dendrons using benzene as the solvent via the BF process (Figure 

3). 

 
(A) 

 
(B) 

Figure 3. Honeycomb-like films fabricated with various end groups based on bis-MPA dendrons: (A) 

SEM micrographs of the honeycomb-like film made from star-shaped dendron-functionalized with a. 

acetonide-functionalized G3 star polymer; b. hydroxyl-functionalized G3 star polymer; c. 

perfluoroalkyl-functionalized G3 star polymer. Insets show end-group structure; (B) schematic 

representation of honeycomb films change with the end groups [45]. ©  Reproduced with permission 

from Wiley. 

Amphiphilic poly(urea/malonamide) dendritic materials have been developed by Jeng et al. 

since 2006 [25-29,46-61]. In the midst of them, the honeycomb-like films were obtained based on PSs 

covalently bonded with different sizes of dendritic side chains (in chloroform) (Figure 4). The 

presence of these dendritic side chains comprising long alkyl chains in the periphery and hydrogen 

bond-rich urea/malonamide linkages in the focal part helps induce self-assembly and phase-

separation in the formation of honeycomb-like polymeric films by the BF method (Figure 5) [25,27]. 

 

Figure 3. Honeycomb-like films fabricated with various end groups based on bis-MPA dendrons:
(A) SEM micrographs of the honeycomb-like film made from star-shaped dendron-functionalized
with a. acetonide-functionalized G3 star polymer; b. hydroxyl-functionalized G3 star polymer;
c. perfluoroalkyl-functionalized G3 star polymer. Insets show end-group structure; (B) schematic
representation of honeycomb films change with the end groups [45]. © Reproduced with permission
from Wiley.
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Amphiphilic poly(urea/malonamide) dendritic materials have been developed by Jeng et al. since
2006 [25–29,46–61]. In the midst of them, the honeycomb-like films were obtained based on PSs
covalently bonded with different sizes of dendritic side chains (in chloroform) (Figure 4). The presence
of these dendritic side chains comprising long alkyl chains in the periphery and hydrogen bond-rich
urea/malonamide linkages in the focal part helps induce self-assembly and phase-separation in the
formation of honeycomb-like polymeric films by the BF method (Figure 5) [25,27].
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2.2. Surfactant-Facilitated BF Process for Honeycomb-Like Films

Park et al. [31] attempted to fabricate a hierarchically-ordered polymeric film by templating
the organization of aqueous droplets. In the study, a highly-ordered structure that can be tuned by
dissolving a small amount of surfactant (polystyrene-block-poly(ethylene oxide) in the polymer solution
(PS in benzene) (Figure 6). This lithography-free fabrication method provides a new opportunity for
the complex hierarchical structures. Recently, Zhang et al. [33] developed a magnetic honeycomb-like
structure on the indium tin oxide substrate for electrocatalysis based on a surfactant-encapsulated
polyoxometalate complex, in which dimethyldioctadecylammonium bromide acted as the surfactant
in a chloroform solution and would induce self-organization honeycomb-like patterns.

Amphiphilic poly(urea/malonamide) dendrons developed by Wu et al. [28] were also utilized
as surfactants to facilitate the formation of honeycomb-like porous structures from the BF process
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(Figure 7). These dendrons are amphiphilic, with a hydrogen-bond-rich focal part and a periphery
with nonpolar units that undergo van der Waals interactions. With the addition of a small amount of
dendritic surfactants to the polymer solutions, such as poly(d,l-lactide), PS, poly(methyl methacrylate)
(PMMA), or polycarbonate (PC) in chloroform, a free-standing film with a honeycomb-like surface
could be achieved (Figure 8).
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Figure 6. SEM images of various polymeric surfactants of polystyrene-block-poly(ethylene oxide)
contains, in a 4.0 wt% polystyrene polymer solution: (A) 0 wt%; (B) 0.4 wt%; (C) 0.8 wt%. (D,E) Schematic
comparisons of the (D) poor wetting between the polymer solution and grating surface, and (E) the red
chain indicates the addition of hydrophilic PEO blocks and the blue chain indicates the hydrophobic PS
blocks [31]. © Reproduced with permission from Wiley.
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(C) A3/PC; and (D) A3/PMMA from microscope; (E) photograph of free-standing A3/PMMA film;
and (F) image of the superhydrophobic surface of the A3/PS honeycomb-like film after the peeling-off
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2.3. Crosslinkable Materials for Honeycomb-Like Films

Su et al. [26] developed two dendritic side-chain polyurethanes (PUs), poly(urethane-co-acylurea)
(PU-PACY) and polyurethane-co-azetidine-2,4-dione (PU-PAZ), presenting reactive pendent units
for fabricating wettability-tuning and solvent-resistant honeycomb-like films via the BF process
(in chloroform). Through hydrophobic or hydrophilic modification of honeycomb-like films, the surface
properties could be manipulated (Figure 9a). In addition, the solvent-resistant honeycomb-like films
were obtained when PU-ACY or PU-PAZ films were treated with 1,6-diaminohexane for further
crosslinking reaction. In Figure 9b, the crosslinked samples exhibited significant improvement in
stability against the solvents. More recently, a crosslinked polyimide developed by Male et al. [62] also
exhibited well retention of honeycomb-like morphology after 20 h immersion in organic solvents.

An UV-curable poly(ε-caprolactone) triacrylate (PCLTA) was developed for regulating cellular
behavior by Wu et al. [43]. Honeycomb-like films were fabricated from PCLTA solution via the BF
method with photo-curing (Figure 10). It is worth noting that the volatile, water-miscible, relatively
non-toxic solvent tetrahydrofuran (THF) was utilized in the study. The obtained biocompatible
crosslinked PCLTA honeycomb-like films were also evaluated for mouse pre-osteoblastic MC3T3-E1
cell adhesion, spreading, proliferation, differentiation, and gene expression.
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3. Applications

The feature of the honeycomb structure is a two- or three-dimensional regular arrangement on
material surfaces. In the honeycomb scale, a building can be realized from the architecture field with
meter-scale to biomaterials with nanoscale [15]. Some commercial products with honeycomb-like
structures are used in our daily life (Figure 11). For example, the honeycomb matrix was a useful
structure for damping, the steel is always built in the form of honeycomb under the optical table
(Figure 11b). PU foam with honeycomb structure also plays a role of cushioning in our shoes
(Figure 11d). Furthermore, the design of the honeycomb structure with rectangular or hexagonal cells
are useful for the enhancement of heat transfer, while the triangular honeycomb structure possesses
better mechanical properties [15]. Apart from the above mentioned, the applications of polymeric
honeycomb-like films would be a totally new frontier.
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Applications of Polymeric Ordered Arrays

In recent years, polymeric honeycomb-like films via the BF process have received lots of scientific
attention, especially in pursuit of practical applications [4,5,9–14,16,63]. These applications are classified
in several fields, such as templating [64,65], surface-enhanced Raman scattering (SERS) [49,66–70],
biomedical researches [43,71], electronic devices [72–77], etc. The ordered array films could serve as
the templates to transfer certain patterns for polymers which are not easy to prepare directly by the
BF method. For instance, a polydimethylsiloxane (PDMS) elastomer precursor was poured onto a PS
honeycomb-like porous structures surface, and cured afterward (Figure 12). The PDMS microarrays
were obtained and further transferred to other materials. This transferring process exhibits great
potential for a wide variety of materials for replicating honeycomb-like films [78].
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Ou et al. [69] presented a SERS substrate which combined ordered structures and silver
nanoparticles (AgNPs) generated in situ by the BF method (Figure 13). SERS substrates
by combining hierarchically-patterned micro- and nanostructures with AgNPs adsorbed on a
poly(N,N-dimethylaminoethyl methacrylate) surface would exhibit exciting surface-enhanced factors
as high as 4 × 108. This characteristic was shown for ordered array films including AgNPs, with
diameters mostly ranging from 18 to 30 nm.
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(A) Formation of SERS substrates; (B) EDX mapping image of the Ag element on honeycomb-like film.
© Reproduced with permission from the American Chemical Society (ACS).

Apart from that, an ordered arrangement of metal nanostructures would localize the
surface plasmon resonance. This order array surface was utilized to investigate the signal of
surface-enhanced Raman scattering (SERS). More recently, Chiang et al. [49] prepared substrates
with a honeycomb-like surface for SERS detection by using amphiphilic dendron-containing
polyurethane-co-azetidine-2,4-dione (PU-PAZ) (Figure 14). This study provided 3D nanoparticle
arrays on honeycomb-like films for investigating the hot-spot effects by AuNPs. As a result,
surface enhancement factors were greatly enhanced when compared with those of the flat-film
substrates, due to the presence of the 3D porous structures.

In addition, SERS substrates were also prepared by simply peeling off the top layer of the
honeycomb-like films via Scotch tape [66]. Tanaka et al. [71] deposited silver on pincushion films and
demonstrated the detection of rhodamine 6G (R6G) at concentrations as low as 0.5 nM (Figure 15a).
For biomedical applications, these pincushions arrays could be made from biodegradable polymers
such as poly(e-caprolactone) (PCL), poly(l-lactide) (PLA), poly(d,l -lactide-co-glycolide) (PLGA), and
poly(3-hydroxy-butyrate) (PHB) (Figure 15b). These pincushion films could be used as cell-support
scaffolds to produce nano- and micro-topographies. It is also important to note that a smart
honeycomb-patterned surface can be achieved from PS-b-P4VP pH-responsive block copolymers using
the breath figure process, along with pincushion arrays after the peeling-off process [79].

On the other hand, the periodic microstructures were used in some optoelectronic devices,
including microlens arrays (MLAs), and micropatterned light-emitting diodes (LEDs) [73,74,77,80].
MLA prepared by the BF method would act as the key component for the signal enhancement
of optoelectronic devices such as optical telecommunication, displays, and solid-state lighting.
The sizes of the periodic microstructures fell within the range of 100 nm to 10 µm, matching the
requirements of optical and optoelectronic devices (Figure 16a). Therefore, the BF process provided
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a simple and inexpensive route to obtain ordered micropatterns for optical and optoelectronic
devices. Apart from that, Chiu et al. [77] developed the rod-coil diblock copolymers of poly
[2,7-(9,9-dihexylfluorene)]-block-poly(stearyl acrylate) (PF-b-PSA) to form highly-ordered microporous
films (in chloroform) through the BF process. The blue-emission of the honeycomb-like film is shown
in Figure 16b, and the emission band of these honeycomb-like films is dependent on the morphological
properties, which can be tuned by the variation of the humidity and polymer concentration.
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Figure 15. The SEM image peeling-off honeycomb-like patterned films [66]: (A) Silver pincushion films;
(B) polymer pincushions of (1) PCL; (2) PLA; (3) PLGA and (4) PHB (bar: 10 mm) [71]. © Reproduced
from [66] with permission from the Royal Society of Chemistry (RSC);© Reproduced from [66] with
permission from the Wiley.
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© Reproduced from [74] under open access license;© Reproduced from [77] with permission from the
Royal Society of Chemistry (RSC).

Honeycomb-like films via the BF process also played an important role as silicon-based
anode materials or solid-state electrolytes for the booming development of lithium ion
batteries (LIBs) [72,75,81–86]. A silicon–honeycomb graphene composite film was developed as
a high-performance anode material for lithium ion batteries [72]. The honeycomb graphene
structure is capable of circumventing the agglomeration of the silicon nanoparticles, enhancing
the electrical conductivity and decreasing the transfer resistance of Li+. Consequently, the well-mixed
Si/GO/surfactant honeycomb-like composite film presented a high specific capacity and good cycling
stability for lithium ion batteries (Figure 17).
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Figure 17. Images and performance of Si/H-rGO composite films. (A) SEM image of the Si/H-rGO
composite; (B) TEM image of the Si/H-rGO composite; (C) rate capability of the Si/H-rGO composite
film and pure silicon at various current densities ranging from 50 to 1000 mA g−1 [72]. © Reproduced
with permission from the Royal Society of Chemistry (RSC).
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Zhang et al. [75] reported on poly(vinylidene difluoride-co-hexafluoropropylene) (PVDF-HFP)
polymer membranes with multi-sized honeycomb-like architectures (Figure 18). These polymer
electrolyte membranes possessed a porosity of 78%, leading to high electrolyte uptake (86.2 wt%).
As a gel polymer electrolyte, this honeycomb-like PVDF-HFP membrane exhibited a high ionic
conductivity of 1.03 mS/cm at room temperature, which was much higher than that of commercial
polymer membranes (<0.1 mS/cm). Most importantly, the highlight in this study was the usage of
relatively benign acetone as the solvent. In addition to acetone, less hazardous solvents such as
ethyl acetate (EA) and THF were also chosen to prepare honeycomb-like porous polymer electrolyte
membranes by the BF method [81,83,84,86].
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Abbaspour et al. [76] developed honeycomb-like surfaces on transparent poly(methyl methacrylate)
(PMMA) films using a facile direct breath figure (DBF) method. This was utilized as an electrode for
solid-state supercapacitors (Figure 19). The pore size of the ordered arrays on the PMMA surface
exhibited diameters in a range of 0.5 to 10 µm. Subsequently, a graphene layer was deposited on
the surface by spray-coating. The solid-state supercapacitor with a honeycomb-like surface showed
superior specific capacitance when compared with the flat one.
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More recently, Wu et al. [29] also adopted a modified DBF process to prepare a honeycomb-like
structure on a PU substrate with shape memory effect (Figure 20). This approach is set forth to deal
with the thickness issue for the traditional BF method. A chemical cross-linkable shape-memory PU
with active side chains was utilized as the substrate material. A small amount of an amphiphilic
dendron was utilized as surfactant to form a honeycomb-like structure on the PU substrate via a BF
process [28]. As a result, a honeycomb-like structure with shape memory behavior and switchable
wettability was realized.
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4. Towards a Greener Process

4.1. Investigation of Water Droplet Nucleation

As mentioned previously, honeycomb-like film made from the BF process relies on the interfacial
stability between water droplets and solutions. In addition to the consideration of polymer design,
substrates and solvents are two critical factors that influence the morphologies of honeycomb-like
films [14]. Ferrari et al. [87] reported the use of various substrates with different surface energies.
In general, substrates typically exhibit a qualitative effect (nature, hydrophilicity, wettability) on the
formation of honeycomb-like films. Different morphologies of honeycomb-like films could be derived
from the substrates with various reagent treatments, such as glasses washed with piranha solution,
silicon wafer washed with H2O2-NH4OH-H2O solution (RCA1), glasses silanized with alkoxysilanes,
or glasses functionalized with fluorinated silanes. Furthermore, some flexible substrates based on
polyethylene (PE), polyvinylchloride (PVC), or polyethylene terephthalate (PET) are also utilized for the
formation of desirable honeycomb-like structures. Apart from that, honeycomb-like films are realized
on a liquid substrate (air–water interface) by Nishikawa et al. [88]. A self-standing honeycomb-like
film was formed via the so-called “on-water spreading” method (Figure 21).
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Figure 21. Honeycomb-like film was fabricated with water as the template [88]: (A) Fabrication process
of a microporous film on a water surface; (B) formation of the porous morphology of a polymer film. ©
Reproduced with permission from the American Chemical Society (ACS).

CS2 and chloroform were the most commonly-used solvents in preparing honeycomb-like films due
to their water immiscibility, lower boiling point, and good solubility for polymers. The first polymeric
honeycomb-like films were developed by exposing a drop of polystyrene-b-polyparaphenylene
solution in CS2 to a flow of moist air by Francois et al. in 1994 [3]. The pore size and shape depend
on the self-assembly process between water droplets–solvent interface [89,90]. During the nucleation
condensation process, the pore regularity and size were dominated by the interfacial properties
between water droplets and polymer solutions. During this stage, the solvent played a critical role in
maintaining the interfacial balance between solvent–water and solvent–substrate for a polymer solution.
In particular, the interfacial properties between the water droplets and the solvent would mainly
influence the morphology of honeycomb-like films. The interfacial energy balance (z0) can be defined
as: z0 = z/R = (γw − γw/s)/γs, where z is the distance between the droplet center and the air–solution
interface; R is the droplet radius; γw/s is the interfacial tension between water and solution; γw and γs

are the surface tension of the water and the solution, respectively (Figure 22). Consequently, the shape
of ordered arrays can be predicted by the calculation of interfacial energy balance.
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Figure 22. The relationship between a water droplet and polymer solution surface [89]. © Reproduced
with permission from the American Chemical Society (ACS).

In order to understand the nucleation mechanism of water droplets on the solution surface and
evaporation during the BF process, a high-speed camera system was set up to observe the real-time
images [91–95]. Therefore, the formation of ordered array pores could be closely monitored. The layout
of a high speed camera with temperature control equipment and the actual system setup are shown in
Figure 23.Polymers 2019, 11, 1473 16 of 30 
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Figure 23. Schematic of the CCD camera system for real-time image during the BF process.

4.2. The Concept of Green Solvents

The solvent properties of boiling point, density, miscibility with water, and the thermodynamic
affinity with a polymer solution have to be taken into account when it comes to the choice of solvent for
proper water–solution interfacial tension. Because of this, most of the reported honeycomb-like films via
the BF process were obtained using volatile solvents such as CS2, chloroform, dichloromethane, benzene,
and chlorobenzene [87,96–99]. However, according to various solvent selection guides, including the
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CHEM21 selection guide of classical and less classical solvents, GlaxoSmithKline (GSK), AstraZeneca,
and the American Chemical Society Green Chemistry Institute (ACS GCI), these commonly-used
solvents were considered as highly hazardous (marked in bold in Table 1) [100–103].

Table 1. Solvent category from the CHEM21 selection guide [100].

Category Solvents

Recommended Water, alcohols (EtOH, i-PrOH, n-BuOH), ethyl acetate (EtOAc; EA),
isopropyl acetate (i-PrOAc), butyl acetate (n-BuOAc), anisole, sulfolane.

Recommended or
problematic?

MeOH, tert-butyl alcohol (t-BuOH), benzyl alcohol, ethylene glycol
(EG), acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone

(MIBK), cyclohexanone, methyl acetate (MeOAc), acetic acid (AcOH),
acetic anhydride (Ac2O).

Problematic
2Me-THF, heptane, Me-cyclohexane, toluene, xylenes, chlorobenzene,

acetonitrile, N,N′-dimethylpropyleneurea (DMPU), dimethyl sulfoxide
(DMSO).

Problematic or hazardous? Methyl tert-butyl ether (MTBE), THF, cyclohexane, dichloromethane
(DCM), formic acid, pyridine

Hazardous
Diisopropyl ether, 1,4-dioxane, dimethyl ether (DME), pentane, hexane,

N,N′-dimethylformamide (DMF), N,N′-dimethylacetamide (DMAc),
N-methyl-2-pyrrolidone (NMP), methoxy-ethanol, triethylamine (TEA).

Highly hazardous
Diethyl ether, benzene, chloroform, tetrachloromethane (CCl4),
1,2-dichloroethane (DCE), nitromethane, carbon disulfide (CS2),

hexamethylphosphoramide (HMPA)

4.3. Greener Solvents for the BF Process

4.3.1. Use of Less Hazardous Solvents (Toluene, THF, Acetone, Acetonitrile, EA, and MEK)

Based on the solvent selection guide above, several researches revealed the possibility
of using less hazardous solvents such as toluene [87,104–108], and acetone [75,81,86,87,109],
THF [43,63,84,87,105,107,108,110–115], acetonitrile [116], EA [83,87,109,114,117], and MEK [87] for
the BF process (marked in bold in Table 1). Sakurai et al. [106] found that by using toluene
as the solvent, the mesh size was increased during the lower evaporation rate of kinetic control.
Meanwhile, the pore size decreased tremendously with increasing rate under the higher evaporation
rate due to temperature-gradient control (Figure 24).

THF, a water-miscible solvent, has been widely utilized for polymer processing because it
is a moderately polar solvent and can dissolve a wide range of nonpolar and polar polymers.
Zhao et al. [118] prepared a random copolymer poly(styrene-co-acrylonitrile) (SAN) in THF for
the fabrication of honeycomb-like films via the BF process (Figure 25). Well-defined macroporous
membranes with good mechanical properties were achieved under 50–70% relative humidity.

Acetonitrile is considered less hazardous when compared with benzene, chloroform, CS2,
and dichloromethane. Honeycomb-like films were fabricated from a highly-ordered supramolecular
polymer soluble in acetonitrile via the BF process [116]. In fact, this is a premier study of supramolecular
polymer honeycomb-like films via the BF process. The integration of the reversible formation and
stimuli-responsiveness of supramolecular polymers with ordered arrays is of great potential in
applications (Figure 26).
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Figure 25. The SEM images of SAN copolymer in THF solution (0.08 g/ml) under various relative
humidity at 25 ◦C after BF processing: (A) 30%; (B) 40%; (C) 50%; (D) 60%; (E) 70%; (F) 80% [118].
© Reproduced with permission from Elsevier.

The utilization of mixed solvents in polymer processing is often made for morphological
control [119–121]. This is because the mixed-solvent system comprises two solvents of different
boiling points and polarity. In some cases, the researchers would rather opt for a less hazardous solvent
to be involved. A mixed solvent system of THF and toluene was utilized for fabricating polymeric
ordered arrays via the BF process by Tung et al. [105]. The amphiphilic diblock copolymer poly(vinyl
phenol)-block-polystyrene (PVPh-b-PS) was first dissolved in THF. Subsequently, a small amount of
toluene was added into the stirring polymer solution to incur partial precipitation of the PVPh blocks
(i.e., formation of micelles). A three-dimensional honeycomb-like morphology was achieved via the
BF process (Figure 27). The concept of the mixed-solvent system for fabricating honeycomb-like films
via the BF process provides the possibility of using a greener solvent for polymeric ordered arrays.
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Figure 27. TEM images of PVPh-b-PS honeycomb-like films [105]: (A) 20 mg in THF + 0.1 mL toluene;
(B) 50 mg in THF + 0.1 mL toluene. © Reproduced with permission from Elsevier.

Another ingenious approach for a robust mixed-solvent system was reported by Park et al. [109].
Honeycomb-like films by the BF process were prepared by spin-coating of polymer solutions (THF or
acetone) under a dry condition with a relative humidity (RH) of 30% (Figure 28). It is important to note
that small amounts of water were added to water-miscible solvents such as THF or acetone. The water
content, relative humidity, and the spinning rate were closely related to the pore sizes after the drying of
solvent. Thus, this unique approach exhibited great potential for fabricating large-scale honeycomb-like
films with various pore sizes. In addition, Madej et al. [121] also reported the morphology control of
PMMA blend ordered arrays (in THF), by not only mixing with a certain amount of water content
(3 wt% ≤ H2O ≤ 20 wt%), but changing the relative humidity in the range of 5% to 80% as well.
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Figure 28. Honeycomb-like films by spin coating: (A) SEM images of the surface and cross section of
cellulose acetate butyrate-based films (a,c): 1000 rpm, (b,d): 3000 rpm; (B) plots of the number average
diameter (Dn) versus water content with various rotating speeds for honeycomb-like films fabricated
under a dry condition (RH = 30%) [109]. © Reproduced with permission from the American Chemical
Society (ACS).

4.3.2. Stabilizing Water Droplets with Surfactants and Colloidal Particles

Fukuhira et al. [122] investigated the manipulation of interfacial tension between water and polymer
solution (in toluene) for the preparation of honeycomb-like films. By the addition of a small amount of
phospholipid surfactants to poly(d,l-lactic acid) (PLA), the dierucoylphosphatidylethanolamine- and
dioleoylphosphatidylethanolamine-containing PLA solutions all exhibited high interfacial tension in
the fabrication of biocompatible honeycomb-like films. On the other hand, the usage of nanoparticles
would able to stabilize the interface between solution and water droplets without changing the
interfacial tension [40,123,124]. The presence of colloidal particles provides more stabilization energy
(i.e., the Pickering-emulsion effect) during the formation of water condensation on the solution surface.
Once the spherical colloidal particle adsorbs in the interface, the energy required to remove the particle
from the interface is given by Equation (1):

E = πR2γWO(1− |cosθ|)2, (1)

where R refers to the radius of particle, γWO refers to the interfacial tension between water and solution,
θ is the contact angle through the water phase (Figure 29).Polymers 2019, 11, 1473 20 of 30 
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A similar colloidal particles approach was also attempted by Li et al. [126]. Honeycomb-like films
were fabricated by using dodecanethiol-capped gold nanoparticles in toluene. The pore morphology
with circle or ellipse shapes would be dependent on the direction and velocity of vapor.

In another example, Lakshmi et al. [110] fabricated polystyrene–alumina nanocomposite films
with ordered arrays, which were prepared from suspensions of amphiphilic-modified alumina particles
in polystyrene solutions via the so-called particle-assisted BF process. The key factors for influencing
morphological phenomena are particle concentration and the hydrophobic–hydrophilic balance of the
amphiphilic-modified alumina particles in the polar or nonpolar solvents (Figure 30).
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4.4. Unique Techniques for Ordered Arrays

Other than the typical BF process, there are some unique routes to achieve polymeric ordered
arrays. Pericet-Camara et al. [127] investigated that toluene-vapor-softened polystyrene surfaces were
micropatterned with nonsolvent sessile droplets. Through sequentially depositing non-evaporating
droplets of EG/H2O on the original polystyrene surfaces, and exposing the surfaces to saturated toluene
vapor, ordered arrays could be obtained (Figure 31).
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Figure 31. (A) Illustration of the toluene (arrows) into a polystyrene (PS) substrate, covered with a
sensible drop of an equal amount mixture of EG and water (EG/H2O), and drying of the expanded
polymer surface; (B) atomic force microscopy (AFM) image of a dried PS surface after a 5 min exposure
to toluene vapor and consecutive condensation of water microdroplets, and its height profile of a pore
along the dashed white line in [127]. © Reproduced with permission from Wiley.
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In another example, Castaño et al. [128] reported a clean methodology by the combination of
supercritical CO2 (SCCO2) foaming technology and the BF process. The formation of inner porosity
for poly(ε-caprolactone) (PCL) was obtained via the SCCO2 technique, whereas the outer porosity
was produced via the BF process. Despite that the dipping process in the chloroform was required
for the BF process, this porous PCL material provided spaces for tissue penetrating in the scaffold,
and improved cell adhesion and proliferation until its degradation.

5. Summary and Future Prospects

The BF method for fabricating polymeric honeycomb-like films has been drawing great attention
since Francois initially created ordered hexagonal honeycomb-like films in 1994. Even though an
uncertainty in precise surface morphology control is present for the polymeric ordered arrays, the BF
process is a reliable method because of its low cost and certain degree of maneuverability. With great
advances in the BF process, several practical applications of honeycomb-like films via the BF method
were realized, such as templating, surface-enhanced Raman scattering (SERS), biomedical researches,
and electronic devices. In this review, we attempted to search for greener BF processes along with less
hazardous solvents for the sake of safety, health, and the environment. The utilization of less hazardous
solvents such as toluene, THF, acetone, acetonitrile, EA, and MEK for fabricating honeycomb-like films
via the BF process indicates that there are alternatives for the commonly-used “highly hazardous”
solvents such as chloroform, CS2, and benzene. Moreover, certain greener solvents can be candidates
for the BF process based on the concept of the mixed-solvent system, which comprises two solvents of
different boiling points and polarity. Apart from that, greener BF processes can be facilitated by the
addition of small amounts of surfactants or colloid particles to the polymer solutions, especially with
the right choice of certain green solvents. Based on the above, we strongly believe that green BF
processes will be within reach soon enough.
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