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Stress can cause a variety of central nervous system disorders, which are critically mediated by the y-aminobutyric acid
(GABA) system in various brain structures. GABAergic neurons have different subsets, some of which coexpress certain
neuropeptides that can be found in the digestive system. Accumulating evidence demonstrates that the gut-brain axis,
which is primarily regulated by the vagus nerve, is involved in stress, suggesting a communication between the “gut-vagus-
brain” pathway and the GABAergic neuronal system. Here, we first summarize the evidence that the GABAergic system
plays an essential role in stress responses. In addition, we review the effects of stress on different brain regions and
GABAergic neuron subpopulations, including somatostatin, parvalbumin, ionotropic serotonin receptor 5-HT3a,
cholecystokinin, neuropeptide Y, and vasoactive intestinal peptide, with regard to signaling events, behavioral changes, and
pathobiology of neuropsychiatric diseases. Finally, we discuss the gut-brain bidirectional communications and the

connection of the GABAergic system and the gut-vagus-brain pathway.

1. Introduction

Stress is associated with various effects and mental disorders.
Responses to stress vary from diet alteration to movement
and sleep changes. Acute stress, such as trauma, can lead to
rapid emotional changes and even result in long-term mental
impairments. For instance, posttraumatic stress disorder
(PTSD), a typical mental disorder, is often accompanied by
depression and anxiety [1]. Chronic stress exposure, such as
life stress (interpersonal loss, physical danger, humiliation,
entrapment, role change/disruption, etc.), also increases
depressive response and anxiety, and even triggers suicide
in extreme cases [2-5]. Both acute and chronic stress-
induced mental problems are associated with the y-aminobu-
tyric acid (GABA) system [6-9]. Gene polymorphism analy-

sis of healthy subjects indicates that the GABA(A)a6 receptor
subunit gene (GABRAG6) polymorphism is responsive to psy-
chological stress [10]. Therefore, agents targeting the
GABAergic system are used to regulate depression, anxiety,
or fear [11-13]. Interestingly, growing evidence has shown
that gut-brain signals influence emotional behaviors [14-
16], and the gut-brain axis may be a possible target for treat-
ing stress-related disorders [17]. A recent review has summa-
rized the psychophysiological effects of prebiotics and
discussed the important roles of bacteria-gut-brain signals
in psychobiotic activity [18]. In addition to the gut micro-
biome, neurotransmitters and neuropeptides are also
involved in the gut-brain communications [19-21]. Some
neurotransmitters and neuropeptides in the central nervous
system (CNS) are involved in regulating the function of the
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digestive system [22-25]. Moreover, some neuropeptides are
expressed in GABAergic neurons, which may be parts of the
GABAergic system. In this review, we focus on how the
GABAergic system impacts the gut-brain interaction in order
to mediate stress-related disorders.

2. GABAergic Neuron Signaling and Stress

GABA is a major inhibitory neurotransmitter and is synthe-
sized from the amino acid glutamate regulated by glutamate
decarboxylases (GADs), including GAD1 and GAD2, whose
genes encode GAD67 and GADG65 proteins, respectively [26].
GABAergic neurons are widely distributed in the CNS of
mammals, and together with other GABA related factors,
they compose the GABAergic system. The ventral medial
prefrontal cortex (vmPFC) responds to the GABA reuptake
inhibitor tiagabine [27] and is associated with fear responses
and stress [28, 29], suggesting that the vmPFC GABAergic
system plays a role in regulating stress-related emotion and
responses. Additionally, many other GABAergic neuron-
containing brain structures (such as the hippocampus and
amygdala) and GABA-associated signaling are also involved
in the stress regulation [30, 31].

GABAergic neurons coexpress various proteins or neu-
ropeptides, such as somatostatin, parvalbumin, ionotropic
serotonin receptor 5-HT3a (5-HT3aR), cholecystokinin,
neuropeptide Y (NPY), vasoactive intestinal peptide, cal-
bindin, and calretinin [32-34]. In addition, ~40% of
GABAergic neurons are parvalbumin interneurons, ~30%
are somatostatin interneurons, and ~30% are 5-HT3aR
interneurons in the neocortex [35], which make up the
three major subtypes of GABAergic neurons. Other pro-
teins or neuropeptides are expressed in different subtypes
of GABAergic neurons. For example, cholecystokinin and
vasoactive intestinal peptide may express in 5HT3aR inter-
neurons, and NPY is colocalized with somatostatin inter-
neurons [35].

The changes in subpopulations of GABAergic neurons
vary in different brain areas under stress [36, 37]. For exam-
ple, long-term daily stress reduces the number of parvalbu-
min, calretinin, NPY, and somatostatin cells, but does not
affect cholecystokinin and calbindin interneurons in the hip-
pocampus [36]. Early life stress changes the structure and
function of several brain regions, in addition to alterations
of emotional behaviors and responses to stress in adults
[38-40]. Exposure to long-term daily stress reduces calbindin
neuron densities in the dorsolateral, medial, and ventral
orbital cortex, but has no effect on cholecystokinin, NPY,
parvalbumin, somatostatin, and calretinin neurons in any
brain subregions in adult rats. Interestingly, enhanced den-
sity of cholecystokinin and NPY neurons in the ventral and
lateral orbital cortices, respectively, is observed in stress-
resilient rats, suggesting that cholecystokinin and NPY in
the orbitofrontal cortex may be involved in stress resilience
[41]. Taken together, these results suggest a complex
GABAergic network change under stress. Also, it raises a
question of how to control the GABAergic network in order
to regulate stress-induced emotional behaviors. Of those
coexpressing markers in GABAergic neurons, cholecystoki-
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nin, NPY, and vasoactive intestinal peptide are also known
as gut-related modulators and involved in the regulation of
energy. Subsequently, how do they connect to GABA signal-
ing to play a role in the regulation of stress?

2.1. Somatostatin. Somatostatin is a chemical marker of
GABAergic neurons [33]. Somatostatin deficit is a common
pathological characteristic in neurological disorders with
emotional changes. In patients with schizophrenia and bipo-
lar disorder, somatostatin-immunoreactive neurons are
decreased in the lateral amygdala, which may affect responses
to fear and anxiety [42]. Mice deficient in somatostatin
exhibits high behavioral emotionality, increased basal plasma
corticosterone, and decreased GABA-synthesizing enzyme
GADG67 gene expression [43], indicating that somatostatin
influences the GABA signal and stress response. Upon 2
weeks of chronic mild stress in rats, somatostatin-2 receptors
are significantly upregulated in the medial habenula, while
the plasma somatostatin levels are also increased, suggesting
that somatostatin and its receptors are involved in the stress
response [44]. Longer duration (e.g., 7 weeks) of chronic mild
stress in rats can cause decreases in consumption of sucrose
solution and changes in somatostatin-2 receptors in response
to antidepressant treatment [45]. Moreover, selective
inactivation of the y2 subunit gene of GABAA receptors in
somatostatin-positive GABAergic interneurons (SSTCre:y2(f/f)
mice) mimic the behavioral effects of antidepressant and anxio-
Iytic drugs, suggesting that sustained increases in GABAergic
transmission produce antidepressant-like behavior by disinhi-
biting somatostatin-positive GABAergic interneurons [46].

2.2. Parvalbumin. Parvalbumin is another chemical marker
of GABAergic neurons. Parvalbumin and somatostatin
interneurons play distinct roles in the medial entorhinal
cortex [47], a critical brain region associated with
contextual memory [48]. Besides, parvalbumin- and
somatostatin-expressing interneurons in the mPFC also
have different activity patterns (weak and strong target-
dependent delay-period activity), as well as distinct stim-
ulation effects in spatial working memory. For instance,
parvalbumin interneurons are strongly inhibited by
reward, while only a subtype of somatostatin interneurons
is inhibited [49]. Thus, parvalbumin and somatostatin
interneurons may function in different ways. Selectively
silencing parvalbumin, but not somatostatin, interneurons
in the infralimbic cortex eliminates ventral hippocampal-
mediated inhibition, while blocking infralimbic projectors
reduces fear renewal [50], indicating that parvalbumin
interneurons are involved in fear responses. Parvalbu-
min/GADI] transgenic mice (silencing the GAD1) exhibit
reduction of fear extinction, marked sensorimotor gating
deficits, and elevated novelty-seeking [51]. Inhibition of
parvalbumin interneurons disinhibits projection neurons
from the prefrontal region and synchronizes their firing,
resulting in fear [52]. After fear conditioning, parvalbu-
min interneurons show target- and region-selective plas-
ticity in basolateral amygdala (BLA) subareas [53].
Together, parvalbumin interneurons regulate stress-
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induced fear, and fear affects the parvalbumin interneu-
rons in return.

2.3. HT3aR. Among the serotonin (5-HT) receptors in mam-
mals, the 5-HT3R is the only ligand-gated ion channel recep-
tor for 5-HT. The 5-HT3aRs are found in cholecystokinin
positive and vasoactive intestinal peptide positive GABAergic
interneurons, and these 5-HT3aR-expressing vasoactive
intestinal peptide/cholecystokinin interneurons receive sero-
tonergic and cholinergic fast synaptic transmission [54]. Fur-
thermore, coexpression of 5-HT3aR and central calbindin 1
cannabinoid receptors have been detected in GABAergic
neurons in the anterior olfactory nucleus, the cerebral cortex,
hippocampus, dentate gyrus, subiculum, entorhinal cortex,
and amygdala [55, 56]. Interestingly, the activation of 5-
HT3 receptors by serotonin causes GABA release, whereas
stimulation of calbindin 1 receptors by cannabinoids inhibits
GABA release, indicating opposing effects on GABA neuro-
transmission [55]. The amygdala has been known to be
involved in the regulation of emotion. A moderate density
of 5-HT3aR neurons are found in the amygdalar basolateral
nuclear complex, and almost all 5-HT3aR neurons are GABA
positive. Therefore, serotonin may activate 5-HT3 receptors
in the 5-HT3aR positive GABAergic neurons in the amyg-
dala and lead to GABA release, resulting in emotional
changes under stress.

2.4. Cholecystokinin. Cholecystokinin is a peptide hormone
produced by enteroendocrine cells of the small intestine
and released into the blood. Cholecystokinin is also widely
distributed throughout the CNS, with high levels in the lim-
bic system. The sulfated octapeptide, cholecystokinin-8S, is
the major biologically active form of cholecystokinin in the
CNS [57]. Intraperitoneal injections of cholecystokinin-8
enhance c-Fos (an immediate-early gene) expression in the
dorsal CA3 and dentate gyrus of the hippocampus [58], indi-
cating that cholecystokinin-8 activates neurons in the hippo-
campus. In the dentate gyrus, the activation of presynaptic 5-
HT1B receptors in cholecystokinin interneurons inhibits
GABA release and further disinhibits parvalbumin interneu-
rons, leading to reduction of the granule cells activity.
Furthermore, the inhibition of cholecystokinin neurons
exhibits antidepressant-like effects on behavior, similar to
selective serotonin reuptake inhibitors [59]. Thus, the activa-
tion of cholecystokinin neurons affects GABA release and
depressant-like behavior.

Cholecystokinin-4, another form of cholecystokinin, has
been known to induce panic attacks. In a double-blind,
placebo-controlled study, 26 of 30 subjects exhibited obvious
panic responses when they were challenged with
cholecystokinin-4 [60]. Subjects who were treated with anxi-
olytics alprazolam prior to the rechallenge of
cholecystokinin-4 showed a significant reduction of the
panic-related scale scores and reported symptoms, as well
as lower adrenocorticotropic-hormone and cortisol release.
Because slow GABABR-mediated inhibitory postsynaptic
currents were recorded in most cholecystokinin interneurons
[61], it is possible that cholecystokinin interacts with the
GABAergic system. Systemic activation of cholecystokinin-

GABA neurons by clozapine-N-oxide in triple transgenic
cholecystokinin-GABA/hM3Dq mice, in which about 22%
of GABAergic neurons in the hippocampus and 19% in the
prefrontal cortex are cholecystokinin-GABA neurons, not
only enhanced contextual fear conditioning/discrimination,
social/object recognition, and puzzle box performance, but
also enhanced anxiety in the elevated plus maze [62].

2.5. NPY. NPY is a peptide derived from the brain and sym-
pathetic nerves and involved in various functions in both the
peripheral and central nervous systems. In the periphery,
NPY is mainly released from the sympathetic nerves and
serves as a regulator of fat growth [63]. In the brain, it is pro-
duced in various regions (such as the hypothalamus and
amygdala) and is implicated in multiple functions, includ-
ing energy homeostasis, food intake, metabolism, and
stress response [64-67]. Stress can increase NPY expres-
sion in the brain [67]. Also, stress response and emotion
can be affected by human NPY expression, as lower
haplotype-driven NPY expression is related to higher
emotion-induced activation of the amygdala [68]. Thus,
NPY is thought to have stress-relieving and anxiolytic
properties [69]. Chronic unpredictable stress for 5 weeks
has been shown to reduce GAD67 protein levels in the
prefrontal cortex and hippocampus in rats, without chang-
ing GADG65 protein expression. Additionally, the protein
and RNA levels of somatostatin and NPY are also
decreased following stress exposure, suggesting these sub-
sets of GABAergic neurons may be sensitive to chronic
stress [70]. NPY is colocalized with somatostatin interneu-
rons in the brain [35]. In the BLA, somatostatin interneu-
rons express NPY2-receptors, some of which coexpress
NPY; stimulating BLA NPY2-receptors reduces tonic
GABA release onto local principal neurons [30]. A combi-
nation of stress and high-fat diet activates central amyg-
dala NPY neurons, resulting in increased feeding and
reduced energy expenditure [67].

2.6. Vasoactive Intestinal Peptide. Vasoactive intestinal pep-
tide, a gut hormone regulating energy metabolism [71, 72],
is produced in many tissues, such as the gut and the hypotha-
lamic suprachiasmatic nucleus in the brain [71, 73]. In the
CNS, neocortical vasoactive intestinal peptide positive neu-
rons are one subpopulation of GABAergic interneurons
[74]. Vasoactive intestinal peptide increases GABA release
in the hippocampus without changing glutamate release.
Concerted synaptic action of vasoactive intestinal peptide
causes disinhibition of pyramidal cell dendrites and enhances
GABAergic transmission [75]. The connections between dif-
ferent types of GABAergic neurons result in disinhibitory
effects. For example, in the primary somatosensory cortex,
most of the parvalbumin cells are innervated by vasoactive
intestinal peptide neurons [76]. Therefore, neocortical vaso-
active intestinal peptide positive GABAergic neurons send
outputs onto other interneurons or principal neurons and
display a disinhibitory effect [74]. Vasoactive intestinal pep-
tide modulates hippocampal synaptic GABAergic transmis-
sion via activation of two vasoactive intestinal peptide
receptors, ie, VPACl1 and VPAC2 receptors, which,



however, possess opposite effects on GABA release, as activa-
tion of VPAC1 or VPAC2 receptors inhibits or enhances
GABA release, respectively [77]. Together, vasoactive intesti-
nal peptide can affect GABAergic neurons, GABA level, and
GAD expression [78, 79], which may further influence the
stress-related behaviors.

3. Crosstalk between the GABAergic System and
the Gut-Brain Pathway in Stress

3.1. The Vagus Nerve-Mediated Gut-Brain Pathway. The
vagus nerve is an important neuronal component of the bidi-
rectional communication of the gut-brain axis [80]. In addi-
tion to regulating the ingestive behavior, vagal afferent
signaling has been implicated in the modulation of mood
and affect, such as motivation and depression [81, 82].
Abdominal vagal afferents in rats display anhedonic behavior
and increase behavioral despair [82]. It has been reported
that disrupted vagal afferent signaling by subdiaphragmatic
vagal deafferentation results in brain transcriptional changes
in functional networks associated with schizophrenia, as well
as dopamine alteration in the nucleus accumbens [83]. In
another study, subdiaphragmatic vagal deafferentation rats
exhibited a reduction in innate anxiety-like behavior assessed
by open field test, elevated plus maze test, and food neopho-
bia test, whereas their learning auditory-cued fear was
increased [84]. Furthermore, these behavioral changes were
related to the alterations of GABA and noradrenaline levels
in the limbic system, without functional changes in the
hypothalamus-pituitary-adrenal grand stress [84]. It suggests
that vagal afferents may connect with the limbic system and
affect the GABAergic system in the CNS. Selective ablation
of gastrointestinal vagal sensory/afferent by saporin-based
lesion impaired hippocampus-dependent behaviors in rats,
indicating that vagus-mediated gut signaling, activates the
hippocampus. Further monosynaptic and multisynaptic
virus-based tracing investigation revealed a “medial nucleus
tractus solitarius-medial septum-dorsal hippocampus gluta-
matergic neurons” connection, suggesting the existence of
“gut-vagus-brainstem-septum-hippocampus” pathway [58].
Two types of vagal sensory neurons have been found to target
the nucleus of the solitary tract (NTS) [85]. Moreover, vari-
ous brain regions have been identified to be connected with
the gut via the vagus nerve. Following the injection of patho-
logical a-syn preformed fibrils into the duodenal and pyloric
muscularis layer, pathologic a-syn could spread to the dorsal
motor nucleus (DMN), caudal portions of the hindbrain
(including the locus coeruleus), BLA, dorsal raphe nucleus
(DRN), and the substantia nigra pars compacta (SNC). In
addition, this gut-to-brain spread could be prevented by
truncal vagotomy and a-syn deficiency [86]. This study sup-
ports the idea that the vagus nerve directly mediates the com-
munication from the gut to the brain.

In the NTS, cholecystokinin-containing neurons, activa-
tion of which reduces appetite, are responsive to nutritional
state and send projections to the paraventricular nucleus of
the hypothalamus (PVH) [87]. The PVH also projects
directly to the NTS [88], thereby establishing a connection
from the brain to gut linked by the vagus nerve [80, 89].
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Thus, the central autonomic network integrates the vagus
nerve mediated visceral information and regulates the
hypothalamic-pituitary-adrenal (HPA) axis [90], which is
implicated in stress-related disorders [91, 92]. Moreover,
cholecystokinin-4 administration could alter anxiety-like
behavior and the HPA axis hormones such as corticosterone
in rats exposed to early life stress [93].

To sum up, the vagus nerve-mediated gut-brain path-
ways at least involve “gut-vagus-NTS-septum-hippocampus”
and “gut-vagus-DMN-hindbrain/BLA/DRN/SNC”  path-
ways. The “NTS-PVH” loop might be a potential connection
that regulates the “up-down” and “down-up” transmission.
These complex neural pathways involve various stress-
related brain regions, within which GABA signals play a cru-
cial role. Alongside the gut-vagus-brain pathway, gut-
associated factors, including cholecystokinin, NPY, and vaso-
active intestinal peptide, act as modulators of GABA signal-
ing, so as to regulate stress. Thus, we further discuss the
crosstalk between the GABAergic system and the vagus
mediated gut-brain pathway, especially the link with the hip-
pocampus, amygdala, and hypothalamus, as well as related
neural network.

3.2. The Crosstalk between the GABAergic System and the
Vagus Nerve-Mediated Gut-Brain Pathways. The hippocam-
pus is an important brain structure involved in various neu-
ral circuits and functions. Exposure to chronic stress has been
shown to be accompanied by rising GABA levels in the dorsal
hippocampus [94]. However, different stressors may cause
distinct changes in hippocampal extracellular GABA levels;
for instance, a novel environment increases GABA whereas
forced swimming reduces GABA [7]. Interestingly, chronic
stress affects specific GABAergic neuronal subpopulations
in the hippocampus, including parvalbumin, calretinin,
NPY, and somatostatin neurons, but not cholecystokinin
and calbindin interneurons [8, 36]. The hippocampus
receives inputs from the septum [95] and generates theta
oscillations linked to multiple processes, including affect
and locomotion [96, 97]. The septum receives inputs from
the median raphe nucleus, in which inhibition of the
GABAergic pathway affects theta oscillations and decreases
anxiety [98]. Both the lateral and medial septum GABAA
receptor signal can influence the hippocampal theta fre-
quency, and the GABAA receptor agonist muscimol infused
in the dorsal lateral septum reduces anxiety-like behavior
[99]. Infusion of the GABAB receptor agonist baclofen into
the lateral septum reduces stress-induced anorectic effect
while increases sucrose intake [100]. It has been shown that
early-life stress reduces GAD67 in the lateral septum [101].
These results suggest that the lateral septum GABAergic sys-
tem is related to stress and food intake. Moreover, somato-
statin interneurons in the dorsal lateral septum receive
inputs from hippocampal CA3 directly [102], thereby form-
ing a feedback loop between the hippocampus and the sep-
tum. The medial septum sends both GABAergic and
glutamatergic outputs to the lateral habenula, which affects
the aversion [103]. In addition, somatostatin interneurons
in the hippocampus can be selectively inhibited by GABAer-
gic neurons from the nucleus incertus, modulating of which
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can shift the hippocampal network state and modify fear
[31]. Overall, the median raphe nucleus projects to the sep-
tum, which projects to the hippocampus and lateral habe-
nula, and the nucleus incertus projects to the hippocampus,
thus forming a complex neural network associated with
stress.

Amygdala is associated with stress and fear regulation
[104-107]. In patients with schizophrenia and bipolar disor-
der, somatostatin positive neurons decreased in the amygdala
[42]. Selective activation of NPY neurons in the central
amygdala (CeA) leads to increased food intake and decreased
energy expenditure under stress [67]. GABAergic serotonin
receptor 2a-expressing neurons in the CeA modulate food
consumption [108]. Furthermore, BLA to CeA neural circuit
also mediates appetitive behaviors [109]. Thus, the BLA-CeA
microcircuit within the amygdala plays a potential role in
regulating stress and stress-induced appetitive behaviors. In
the BLA, 5-HT3aR positive GABAergic neurons are found,
and the main coexpressing marker is cholecystokinin, very
few express calretinin, vasoactive intestinal peptide, or par-
valbumin, and none expresses somatostatin or calbindin
[110]. Another study also shows that vasoactive intestinal
peptide interneurons are found in the mouse BLA [111].
Dopamine in the BLA selectively suppressed GABAergic
transmission from parvalbumin interneurons to principal
neurons but not to interneurons [112]. Activation of BLA
NPY2-receptors reduces tonic GABA release onto BLA prin-
cipal neurons and increases anxiety [30]. Selective activation
of the BLA-mPFC input provides a safety-signaling mecha-
nism whereby the mPFC taps into the microcircuitry of the
amygdala to reduce fear [113]. In general, BLA neurons pro-
ject to the CeA and mPFC, and the GABA pathways within
these circuits are implicated in stress regulation through mul-
tiple mechanisms.

The mPFC is an important brain region involved in the
emotional memories. By using a rat model for depression,
researchers examined the effect of stress on GABAergic sys-
tem changes in the mPFC [114]. Nine weeks of chronic mild
stress exposure has been shown to decrease the amount
of cholecystokinin, calretinin, and parvalbumin-positive
GABAergic neurons in the mPFC. In contrast, NPY-
positive neurons are increased in the entire mPFC in stress-
resilient rats. Moreover, the object-place paired-associate
learning is impaired in stress-susceptible rats, suggesting that
fronto-limbic GABAergic dysfunctions may contribute to
emotional changes in depression [114]. In addition, chronic
stress increases presynaptic GABA release, which is accom-
panied by increased inhibition onto prefrontal glutamatergic
output neurons, leading to a reduced effect on modulating
stress-related behavior [115]. The frontal cortex subregion
cingulate projects to the primary visual cortex and affects
visual discrimination. These long-range projections induce
synaptic disinhibition of pyramidal neurons through local
GABAergic neurons microcircuit, including vasoactive intes-
tinal peptide, somatostatin, and parvalbumin-positive
GABAergic interneurons [116].

The hypothalamus is a component of the HPA axis.
Neurons in the hypothalamus subarea PVH produce
corticotropin-releasing hormone (CRH) involved in endo-

crine stress response. GABAergic neurons projecting to the
PVH regulate the excitability of CRH neurons [117]. Follow-
ing adrenalectomy in rats, the synthetic and secretory activi-
ties of CRH neurons are increased, and a higher number of
GABA-CRH synaptic contacts are detected in the PVH
[118], suggesting a connection between the GABAergic sys-
tem and the HPA axis. Moreover, a population of CRH pos-
itive GABAergic long-range-projecting neurons in the
extended amygdala innervates the ventral tegmental area,
and the chronic lack of CRH from this type of neurons pro-
duces anxiety [119]. Therefore, the GABAergic system may
regulate anxiety-like behavior through the HPA axis and
related networks. As described previously, there is a
“NTS-PVH” loop linking to the “gut-vagus-NTS-septum-
hippocampus” pathway. Intraperitoneal injection of
cholecystokinin-8S increases the amount of activated neu-
rons in the NTS and PVH [120], while activating the
NTS cholecystokinin axon terminals within the PVH
affects appetite [87, 121], suggesting the effects on the
gut pathway. The vagus nerve stimulation reduces the
CRH/adrenocorticotropic hormone responses in the
depressed subjects [122], suggesting the potential connec-
tion between the vagus and the HPA axis. Collectively,
the gut and vagus pathways are related to the HPA axis,
at least in part, through the “NTS-PVH”.

3.3. Gut Microbiome in the GABAergic System and Vagal
Communication. Growing evidence has shown that gut
microbiome is involved in regulating stress-related behaviors
and brain functions. Stress-associated anxiety- and
depression-related behaviors are prevented by treatment
with Lactobacillus paracasei Lpc-37, Lactobacillus plan-
tarum LP12407, Lactobacillus plantarum 1P12418, and
Lactobacillus plantarum LP12151 [123]. Lactobacillus plan-
tarum LP12418 can normalize the stress-induced reduc-
tion in adrenocorticotropic hormone [123]. Following
probiotic bacterium Lactobacillus rhamnosus (JB-1) treat-
ment, GABA levels are increased in the brain [124], and
expression of GABA(B1f) and GABA(A«2) is changed
in several brain regions, including the hippocampus (lower
GABA(B1f3), higher GABA(Aa2)), amygdala (lower
GABA(B1f) and GABA(Aa2)), and prefrontal cortex
(lower GABA(Aa2)) [14]. One possible reason might be
because many strains of Lactobacillus and Bifidobacterium
are able to produce large quantities of GABA and activate
GABA producing pathways [125, 126]. Moreover, Lactoba-
cillus rhamnosus (JB-1) decreases stress-induced corticoste-
rone and anxiety- and depression-related behavior, while
no effects are found in vagotomized mice [14]. Similarly,
Lactobacillus plantarum LP12418 also changes the expres-
sion of GABA(Aa2) and GABA(B1f) in the prefrontal
cortex [123]. Lactobacillus casei strain Shirota not only
suppresses stress-induced increases in glucocorticoids both
in subjects and in rats but also stimulates vagal afferent
activity and suppresses stress-induced activation of CRF
cells in the PVH [127]. However, the effects of Lactobacil-
lus rhamnosus (JB-1) were still unsatisfying in modifying
stress-related measures and HPA response in male subjects
in a clinical trial [128]. Overall, gut microbiome may play
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an important role in regulating stress-related behavior
through the GABAergic system and the gut-vagus-brain
pathway.

4. Conclusion and Future Perspectives

Stress can cause various mental changes and reactions,
which may be attributed to multiple changes in the body,
including the brain structure and related circuitry path-
way. Several gut-related modulators, such as cholecystoki-
nin, NPY, and vasoactive intestinal peptide, not only
express in the digestive system but also exist in the CNS
and colocalize with GABAergic neurons. In addition to
regulating the diet, they are also implicated in stress,
which involves various brain structures. Stress may alter
gut-associated behavior, such as increased or decreased
food intake [129, 130], which can further affect the gut
hormone release [131]. The vagus nerve connects the gut
with the brain bidirectionally, thereby establishing a gut-
vagus-brain pathway. Thus, the crosstalk between the
GABAergic system and the gut-vagus-brain pathway may
play a potential role in stress (Figure 1).

Given that specific neuron types can be manipulated
with chemogenetic and optogenetic approaches, the roles
of different GABAergic neuron subgroups or relative cellu-
lar and molecular signals in stress can be further investi-
gated. This may help find out more potential therapeutic
targets for the treatment of stress-related CNS disorders,
such as PTSD. It has been known that individuals with
low plasma GABA levels are more susceptible to PTSD

Neural Plasticity

[132], which is commonly accompanied with functional
gastrointestinal disorders [133]. Recent evidence indicates
that gut microbiome is associated with stress-induced
behaviors [134, 135]. Vagus nerve stimulation may
improve PTSD-like symptoms [136]. Therefore, manipula-
tion of the gut-vagus-brain pathway may have therapeutic
potential for treating PTSD. However, the complex neuro-
nal markers may lead to various functions of each
GABAergic neuron subset in different brain regions or
even in different subareas of the same region. In addition,
the complicated connections between the GABAergic sys-
tem and the gut-vagus-brain pathway may play a potential
role in regulating stress. Further studies are needed to
increase the target and region selectivity, which appears
to be a challenge to the development of novel drugs or
approaches for the treatment of stress-induced CNS
disorders.
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