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Electronegative low-density lipoprotein (LDL(-)) has been found in the plasma of familial hypercholesterolemia and acute
myocardial infarction and has been implicated in atherosclerosis and cardiovascular disease. However, less is known about the
involvement of LDL(-) in atherosclerosis-related inflammation. This study aims at investigating the inducibility of LDL(-) by
atherogenic diet in rabbits and at exploring the proinflammatory potential of the diet-induced LDL(-) in macrophages. Rabbits
were fed with an atherogenic diet; LDL was isolated from plasma by NaBr density gradient ultracentrifugation and was then
resolved into nLDL and LDL(-) by anion-exchange chromatography. Isolated nLDL and LDL(-) were directly used or incubated
with 10 μM CuSO4 for 24 h to produce copper- (Cu-) ox-nLDL and Cu-ox-LDL(-). The effects of these LDLs on inflammation
were evaluated in THP-1-derived macrophages. Macrophages were treated with nLDL, LDL(-), and extensively oxidized LDL
(ox-LDL), then the levels of interleukin- (IL-) 1β, IL-6, and tumor necrosis factor- (TNF-) α in a culture medium were
determined by ELISA, and the levels of total and phosphorylated IκB, p65, p38, JNK, and ERK in cell lysates were determined
by Western blotting. The LDL(-) induced significantly higher levels of IL-1β, IL-6, and TNF-α in the medium. The levels of
phosphorylated/total IκB, p65, p38, JNK, and ERK were also upregulated by LDL(-). In contrast, nLDL, Cu-ox-nLDL, and
Cu-ox-LDL(-) exhibited much less effect. Knockdown of lectin-type oxidized LDL receptor- (LOX-) 1 resulted in
significant reduction in LDL(-)-induced IL-1β, IL-6, and TNF-α. In addition, these LDL(-) effects were also markedly
attenuated by inhibition of NF-κB and ERK1/2. The data suggested that LDL(-) induced inflammation through LOX-1-,
NF-κB-, and ERK1/2-dependent pathways. Taken together, our results show that rabbits fed with atherogenic diet produce
a highly proinflammatory LDL(-) that is more potent in inducing inflammation than nLDL and extensively oxidize LDL in
macrophages. The results thus provide a novel link between diet-induced hypercholesterolemia and inflammation.

1. Introduction

It is well known that oxidized low-density lipoprotein (LDL;
ox-LDL) contributes to the pathogenesis of atherosclerosis.
ox-LDL is recognized by macrophage scavenger receptors
and then taken up through receptor-mediated endocytosis,
ultimately leading to the formation of lipid-laden foam cells.
This process is a critical event in atherosclerosis [1]. In
addition to its role in lipid loading on macrophages, ox-
LDL also has other biological functions, such as causing
endothelial dysfunction and inducing smooth muscle cell
proliferation, that contribute to the pathogenesis of athero-

sclerosis [2]. Accumulating evidence suggests that athero-
sclerosis is also a chronic inflammatory disease [3, 4].
However, the extent of involvement of ox-LDL in vascular
inflammation is less understood.

Although the precise mechanism of LDL oxidation
in vivo is not yet fully established, ox-LDL generated by expo-
sure of LDL to Cu2SO4in vitro has been widely used in related
studies. Only a few studies have used ox-LDL from natural
sources. This could be due to the level of ox-LDL in natural
sources being low and difficult to obtain, while copper-
(Cu-) ox-LDL is relatively easy to prepare and is able to
induce foam cell formation. In a previous study, we reported

Hindawi
Mediators of Inflammation
Volume 2019, Article ID 6163130, 12 pages
https://doi.org/10.1155/2019/6163130

https://orcid.org/0000-0002-3297-1245
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/6163130


that electronegative LDL (LDL(-)) from the plasma of ST-
elevated myocardial infarction (STEMI) patients induced
production of interleukin- (IL-) 1β via the lectin-type oxi-
dized LDL receptor- (LOX-) 1 in macrophages [5]. IL-1β is
a central mediator of inflammation that was implicated in
the development of atherosclerosis and acute myocardial
infarction [6, 7]. Moreover, LDL(-), isolated from healthy
normolipemic subjects, has been shown to induce produc-
tion of GROβ, GROγ, IL-6, IL-8, and MCP1 in human
monocytes and lymphocytes [8–10]; induce IL-1β release in
human monocytes and macrophages [11]; and induce pro-
duction of MMP-9 and TIMP-1 in human monocytes [12].
Moreover, circulating ox-LDL was also associated with the
plasma levels of tumor necrosis factor-α (TNF-α) and C-
reactive protein (CRP) [13]. Those results suggested that
LDL(-) has inflammatory properties. Naturally occurring
LDL(-) was found to be elevated in the plasma of patients
with hypercholesterolemia, type II diabetes, and STEMI
[14–17], and all of those patients were associated with
chronic inflammation [18–20]. Thus, LDL(-) may contribute
to inflammation in these patients. In addition, our previous
study showed that STEMI LDL(-) is more potent than
Cu-ox-LDL in inducing IL-1β production by macrophages
[21]. Those results suggested that the characteristics of
LDL(-) and Cu-ox-LDL differed in terms of inducing
inflammation.

Only a few papers have reported that plasma LDL(-) can
be induced by an atherogenic diet [22, 23]; moreover, it is not
clear if diet-induced LDL(-) is able to induce an inflamma-
tory response in macrophages. Feeding cholesterol to rabbits
is a widely used model for experimental atherosclerosis stud-
ies [24, 25]. We reported that an atherogenic diet induced
inflammation in aortic atherosclerotic plaque and elevation
of plasma ox-LDL, detected using an ox-LDL enzyme-
linked immunosorbent assay (ELISA) kit, in rabbits [26]. In
the present study, we isolated native LDL (nLDL) and
LDL(-) from the plasma of rabbits fed an atherogenic diet.
LDL(-) and nLDL were directly used or exposed to
Cu2SO4in vitro for 24 h to produce extensively oxidized Cu-
ox-nLDL and Cu-ox-LDL(-). Then, the effects of nLDL,
LDL(-), Cu-ox-nLDL, and Cu-ox-LDL(-) on the production
of the proinflammatory cytokines, IL-1β, IL-6, and tumor
necrosis factor- (TNF-) α, and activation of nuclear factor-
(NF-) κB and mitogen-activated protein kinases (MAPKs)
in macrophages were investigated.

2. Materials and Methods

2.1. Materials. RPMI 1640, penicillin/streptomycin, fetal
bovine serum (FBS), and L-glutamine were obtained from
Gibco BRL/Life Technologies (Rockville, MD, USA).
Dimethyl sulfoxide (DMSO), phorbol 12-myristate 13-
acetate (PMA), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyl tetrazolium bromide (MTT) were obtained from
Sigma-Aldrich (St. Louis, MO, USA). The Beckman Para-
gon System was from Beckman (Palo Alto, CA, USA).
Human IL-1β, IL-6, and TNF-α ELISA kits were obtained
from R&D Systems (Minneapolis, MN, USA). The Beckman
Paragon System was from Beckman (Palo Alto, CA). A

mouse monoclonal antibody against human β-actin was
obtained from Chemicon (Temecula, CA, USA). Antibodies
against ERK1/2, inhibitor of NF-κB (IκB), c-Jun N-terminal
kinase (JNK), p38, and p65 were purchased Santa Cruz
Biotechnology (Santa Cruz, CA, USA). Antibodies against
phosphorylated- (phospho-) IκB were obtained from Abcam
(Cambridge, UK). Antibodies against phospho-JNK, phos-
pho-p65, phospho-extracellular signal-regulated kinase 1/2
(ERK1/2) (Thr202/204), and phospho-p38 were obtained
from Cell Signaling Technology (Danvers, MA, USA).
U0126 (a MEK inhibitor), SB203580 (a p38 MAPK inhibi-
tor), SP600125 (a c-Jun N-terminal kinase inhibitor), and
LY294002 (a phosphoinositide 3-kinases inhibitor) were
purchased from Calbiochem (San Diego, CA). A poly-
clonal lectin-type oxidized LDL receptor- (LOX-) 1 anti-
body was obtained from Biorbyt (San Francisco, CA, USA).
A TRIzol reagent was purchased from Invitrogen (Carlsbad,
CA, USA).

2.2. Animal Feeding and LDL Preparations. Sixteen-week-old
male New Zealand White rabbits (~2 kg) were allowed an
acclimation period of 2 weeks and then were fed an athero-
genic diet (chow supplemented with 5% lard and 0.25% cho-
lesterol) for 2 months, after which blood was drawn from an
ear vein and collected in tubes containing EDTA. Plasma was
obtained by centrifugation of the pooled blood at 1400 g and
4°C for 10min. LDL (d = 1 019 – 1 063 g/ml) was isolated by
sequential ultracentrifugation from the plasma as described
previously [21]. Isolated LDL was then resolved into nLDL
and LDL(-) by anion-exchange chromatography on a fast
protein liquid chromatographic system (AKTA Explorer;
GE, Uppsala, Sweden) as described previously [5, 21], and
levels of electronegativity were ascertained through agarose
gel electrophoresis using the Beckman Paragon System and
were performed according to the manufacturer’s instructions
[27]. All lipoprotein isolations were carried out within 5 days
after the blood was obtained. Cu-ox-LDL was prepared by
incubating nLDL with 10 μM CuSO4 for 24 h; the reaction
was stopped by the addition of EDTA and then dialyzed
against 2000 volumes of PBS overnight [27]. Precautions
were taken to prevent all LDL preparations from endotoxin
contamination and further oxidation [5, 21]. The degree of
lipid peroxidation in LDL was determined by measuring
thiobarbituric acid-reactive substances (TBARS) using a
commercial kit (Cayman, Ann Arbor, MI, USA) according
to the manufacturer’s protocol. Malondialdehyde (MDA)
was used as a standard. Protein concentrations were esti-
mated by the Bradford method (DC Protein Assay Reagent,
Bio-Rad, Hercules, CA, USA).

2.3. Cell Culture and Lipoprotein Treatment. The THP-1, a
human monocytic leukemia cell line, was obtained from the
American Type Culture Collection (ATCC, Manassas, VA)
and maintained in RPMI 1640 containing 10% FBS as
described previously [5, 21]. In these experiments, 2 × 105
cells/wellwere seeded on 24-well plates and induced differen-
tiation into macrophages by being cultured for 3 days with a
medium containing 160 nM PMA. Cells were then cultured
in a serum-free RPMI culture medium and treated with
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10~40 μg/ml nLDL, LDL(-), or Cu-ox-LDL for 24 h or as
indicated. Control cells were treated with phosphate-
buffered saline (PBS) in all experiments or as indicated. The
culture medium was collected, and levels of cytokines in the
medium were determined.

2.4. Quantification of IL-1β, IL-6, and TNF-α in the Culture
Medium. Levels of IL-1β, IL-6, and TNF-α in the culture
medium were analyzed by ELISA kits (R&D Systems).
All assays were performed according to the manufacturer’s
instructions.

2.5. Western Blot Analysis. Cells were washed with cold PBS
and then lysed in RIPA buffer (150mM NaCl, 50mM
Tris-HCl at pH7.8, 5mM EDTA at pH8.0, 0.5% NP-40,
0.5% Triton X-100, 0.1% sodium dodecyl sulfate (SDS),
1mM NaF, 1mM PMSF, 1mM Na3VO4, and 1x protease
inhibitor cocktail). Protein concentrations were determined
by the Bradford method. Proteins (20 μg/well) were loaded
and separated on SDS-polyacrylamide gel electrophoresis
(PAGE) and transferred to a polyvinylidene difluoride
membrane. Levels of ERK1/2, IκB, JNK, p38, p65, phos-
pho-ERK1/2, phospho-IκB, phospho-JNK, phospho-p38,
phospho-p65, LOX-1, and β-actin were detected using
specific antibodies. Bound antibodies were detected using
a luminescence imaging system (Fujifilm LAS 4000,
Tokyo, Japan). Protein levels on Western blots were quan-
tified using ImageJ software (National Institutes of Health,
Bethesda, MD, USA).

2.6. Statistical Analysis. Results are shown as the mean ±
standard deviation (SD) or standard error (SE). Differences
between means were evaluated using Student’s t-test or by
one-way ANOVA followed by Tukey’s multiple comparison
test and were considered significant at p < 0 05.

3. Results

3.1. LDL(-) Induced Production of IL-1β, IL-6, and TNF-α by
Macrophages. Rabbit plasma total and LDL cholesterol were
56 0 ± 11 0 and 19 5 ± 4 2mg/dl, respectively, and LDL(-)
were not detected in the anion-exchange chromatography
in rabbits feeding with the control chow diet. Plasma total
cholesterol (C) and LDL-C were 172 1 ± 46 2 and 98 9 ±
23 8mg/dl, respectively, at 4 weeks and were 342 7 ± 44 5
and 183 1 ± 35 6mg/dl, respectively, at 12 weeks after feed-
ing with the atherogenic diet. LDL(-) was isolated from
plasma of 2 to 3 rabbits each time, and LDL(-) accounted
for about 17 2 ± 5 5% of the LDL fraction (ranging from 10
to 27%) (Figure 1(a)). Agarose gel electrophoresis confirmed
the electronegativity of rabbit LDL(-) (Figure 1(b)). To exam-
ine the effects of nLDL and LDL(-) on inflammatory cytokine
production by macrophages, THP-1 macrophages were
treated with 20 μg/ml nLDL or LDL(-) for 24 h, and then
levels of IL-1β, IL-6, and TNF-α proteins in culture media
were determined. There were negligible levels of IL-1β, IL-
6, and TNF-α in the control cells. Treatment with LDL(-)
led to 3.7-, 2.7-, and 7.2-fold increases in IL-1β, IL-6, and
TNF-α production, respectively, compared to treatment with
nLDL (Figures 2(a)–2(c)). Treating THP-1 macrophages
with LDL(-) (10, 20, and 40 μg/ml) for 24h induced
dose-dependent increases in IL-1β, IL-6, and TNF-α
(Figures 2(d)–2(f)). In addition, treatment with LDL(-)
(20μg/ml) for 6~24 h induced time-dependent increases
in IL-1β, IL-6, and TNF-α, and all had achieved a signifi-
cant increase after 6 h (Figures 2(g)–2(i)).

3.2. LDL(-) Induced Activation of NF-κB and Expressions of
NF-κB Downstream Genes. In a previous study, we demon-
strated that STEMI LDL(-) induced activation of NF-κB in
macrophages [5]. To investigate whether rabbit LDL(-) is
able to induce the activation of NF-κB and expressions of
IL-1β, IL-6, and TNF-α messenger RNAs (mRNAs),
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Figure 1: Characterization of LDL(-) in rabbit plasma. Rabbits were fed an atherogenic diet for 6 weeks, then LDL was isolated by
ultracentrifugation and loaded onto a UnoQ6 column to separate native (n)LDL and electronegative LDL (LDL(-)). (a) Representative fast
protein liquid chromatographic analysis showing the distribution of the nLDL and LDL(-). (b) Isolated nLDL and LDL(-) were analyzed
by agarose gel electrophoresis.
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macrophages were treated with 20 μg/ml nLDL or LDL(-).
Then, protein levels of total and phospho-IκB were deter-
mined by Western blotting, and levels of IL-1β, IL-6,
TNF-α, CD86, and IL-10 mRNAs were determined by a
quantitative reverse-transcription polymerase chain reac-
tion (RT-qPCR). Figures 3(a)–3(c) shows that levels of
phospho-IκB and phospho-p65 were slightly induced by
nLDL but were greatly induced by LDL(-) at 2 h. In addi-
tion, LDL(-) induced 2.4-, 2.2-, 3.4-, and 2.2-fold increases
in IL-1β, IL-6, TNF-α, and CD86 mRNA levels, respec-
tively, compared to nLDL-treated cells (Figure 3(d)).
CD86 is a marker for M1 (classically activated) macro-
phages; the result suggests that LDL(-) induced THP-1
polarized toward a proinflammatory type. However, the
levels of the anti-inflammatory cytokine IL-10 mRNA

were about the same in the nLDL- and LDL(-)-treated
cells. We then tested if LDL(-)-induced proinflammatory
cytokines could be inhibited by an NF-κB inhibitor, BAY
11-7082. Results showed that BAY 11-7082 significantly
inhibited LDL(-)-induced IL-1β, IL-6, and TNF-α
(Figures 3(e)–3(g)).

3.3. LDL(-)-Induced IL-1β, IL-6, and TNF-α Production via a
LOX-1-Dependent Pathway. LOX-1 and CD36 are consid-
ered major receptors for mildly oxidized LDL [28]. The roles
of LOX-1 and CD36 in LDL(-)-induced IL-1β, IL-6, and
TNF-α expressions were investigated using LOX-1- and
CD36-knockdown cells, with LacZ-knockdown cells used
as a knockdown control. Knockdown cells were generated
as described in previous studies [5, 21]. Figures 4(a)–4(c)
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Figure 2: Effects of nLDL and LDL(-) on production of IL-1β, IL-6, and TNF-α in THP-1 macrophages. THP-1 macrophages were incubated
with 20 μg/ml of nLDL or LDL(-) for 24 h, then levels of IL-1β (a), IL-6 (b), and TNF-α (c) in the medium were measured by ELISA. Values
are themean ± SD of five independent experiments. Differences between means were evaluated using Student’s t-test. ∗p < 0 05, compared to
PBS- and nLDL-treated cells. Cells were incubated with 0, 10, 20, or 40 μg/ml of LDL(-) for 24 h (d–f) or incubated with 20μg/ml of LDL(-)
for 0, 6, 12, or 24 h (g–i). Then, levels of IL-1β (d, g), IL-6 (e, h), and TNF-α (f, i) in the medium were determined by ELISA. Values are the
mean ± SE of five (in (d–f)) or four (in (g–i)) independent experiments. Data was analyzed by one-way ANOVA followed by Tukey’s multiple
comparison test. ∗p < 0 001, compared to 0 μg/ml of LDL(-) or 0 h.
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shows that levels of IL-1β, IL-6, and TNF-α were low in con-
trol LOX-1-, CD36-, and LacZ-knockdown cells. LDL(-)
induced IL-1β, IL-6, and TNF-α to similar levels in LacZ-
and CD36-knockdown cells; however, LDL(-)-induced

IL-1β, IL-6, and TNF-α were significantly lower in LOX-1-
knockdown cells. These results suggest that LDL(-) induced
IL-1β, IL-6, and TNF-α through a LOX-1-dependent path-
way in macrophages.
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Figure 3: LDL(-)-induced activation of NF-κB and expressions of NF-κB downstream genes. (a) THP-1 macrophages were incubated with
20 μg/ml of native (n)LDL or LDL(-) for 2 h, and then protein levels of total and phosphorylated IκB (IκB and p-IκB, respectively) and p65
(p65 and p-p65, respectively) were determined byWestern blotting. β-Actin was used as a loading control. (b, c) Relative levels of p-IκB/total
IκB (b) and p-p65/total p65 (c) were expressed relative to the control (PBS, relative value = 1). Values are themean ± SD of three independent
experiments. ∗p < 0 05, compared to PBS- and nLDL-treated cells. (d) THP-1 macrophages were treated with 20μg/ml of nLDL or LDL(-) for
6 h, and levels of IL-1β, IL-6, TNF-α, CD86, and IL-10 mRNAs were determined by an RT-qPCR, normalized to levels of GAPDH mRNA,
and expressed relative to levels in nLDL-treated cells (relative value = 1). ∗p < 0 05, compared to nLDL-treated cells. (e–g) Cells were
pretreated with 10μM BAY 11-7082 for 1 h and then treated with LDL(-) (20 μg/ml) for 24 h. Levels of IL-1β (e), IL-6 (f), and TNF-α (g)
in the medium were determined by ELISA. ∗p < 0 05, compared to DMSO-treated cells.
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3.4. LDL(-) Is More Potent than Cu-ox-LDL in Inducing
Production of IL-1β, IL-6, and TNF-α and Activation of
NF-κB and MAPKs in Macrophages. LOX-1 has been
shown to have a higher reactivity with mildly ox-LDL,
such as LDL(-), than with extensively oxidized LDL [29].
We then compared the proinflammatory effects of LDL(-)
and extensively ox-LDL. To prepare extensively ox-LDL,
nLDL and LDL(-) were incubated with copper for 24 h
to, respectively, produce Cu-ox-nLDL and Cu-ox-LDL(-).
The degrees of oxidation were estimated by measuring
TBARS. Levels of TBARS with nLDL and LDL(-) were
both <1nmol/mg protein, while levels of TBARS with
Cu-ox-nLDL and Cu-ox-LDL(-) were 17.6 and 15.8 nmol/mg
protein, respectively. Then, 20 μg/ml nLDL, LDL(-), Cu-ox-
nLDL, and Cu-ox-LDL(-) were incubated with THP-1 mac-
rophages for 24 h. Figure 5 shows that Cu-ox-nLDL induced

higher levels of IL-6 than nLDL but not the levels of IL-1β
and TNF-α. However, oxidation of LDL(-) resulted in
decrease of its ability to induce IL-1β, IL-6, and TNF-α.
Cu-ox-LDL(-) induced lower levels of IL-1β, IL-6, and
TNF-α than did LDL(-). Further, LDL(-) induced signifi-
cantly higher levels of IL-1β, IL-6, and TNF-α than did either
nLDL or Cu-ox-nLDL (Figure 5). These results show that
LDL(-) is more potent in inducing IL-1β, IL-6, and TNF-α
than nLDL and extensively ox-LDL.

3.5. Effects of LDL(-) and Cu-ox-nLDL on Phosphorylation of
IκB, p38, ERK1/2, and JNK. Next, we compared the effects of
LDL(-) and Cu-ox-nLDL (20 μg/ml) on inducing levels of
phosphorylated IκB and MAPKs, including p38, ERK1/2,
and JNK. Figure 6 shows that the levels of phosphorylated
IκB, MAPK-p38, ERK1/2, and JNK were all greatly induced
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Figure 4: Knockdown of lectin-type oxidized LDL receptor (LOX-1) decreased LDL(-)-induced production of IL-1β, IL-6, and TNF-α. LOX-
1-, CD36-, or LacZ-knockdown (KD) cells were generated as described previously [5, 21]. Knockdown cells were incubated with PBS or
20mg/ml LDL(-) for 24 h. Levels of IL-1β (a), IL-6 (b), and TNF-α (c) in the medium were determined. Values are the mean ± SD of
three independent experiments. ∗p < 0 05, compared to CD36- or LacZ-KD cells.
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Figure 5: Effects of copper oxidation of nLDL and LDL(-) on IL-1β, IL-6, and TNF-α production in THP-1 macrophages. THP-1
macrophages were treated with 20μg/ml of nLDL, LDL(-), Cu-ox-nLDL, or Cu-ox-LDL(-) for 24 h, then levels of IL-1β (a), IL-6 (b), and
TNF-α (c) in the medium were measured by ELISA. Values are the mean ± SD of three independent experiments. ∗p < 0 05, compared to
LDL(-)-treated cells.
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by LDL(-) but the levels were not induced by Cu-ox-nLDL.
To examine the involvement of MAPKs in LDL(-) induction
of IL-1β, IL-6, and TNF-α in THP-1 macrophages, cells were
pretreated for 30min with 10mM of U0126, 50mM of
LY294002, 20mM of SB203580, 0.5mM of L-JNKi 1 trifluor-
oacetate, or DMSO (vehicle). Subsequently, 20mg/ml of
LDL(-) was added and incubated for 24 h. Figure 7 shows
that LDL(-)-induced IL-1β, IL-6, and TNF-α were all
inhibited by U0126; in addition, LDL(-)-induced IL-6
and TNF-α were moderately inhibited by SB203580. These
results suggest that LDL(-)-induced IL-1β occurs through an
ERK1/2-dependent pathway and induction of IL-6 and TNF-
α occurs through p38- and ERK1/2-dependent pathways.

4. Discussion

In this study, we showed that an atherogenic diet induced
generation of LDL(-), a type of circulating ox-LDL, in rab-
bits. We also demonstrated that LDL(-) is potent in induc-
ing activation of NF-κB and MAPK signaling pathways
and production of IL-1β, IL-6, and TNF-α in THP-1 mac-
rophages. IL-1β is a major proinflammatory cytokine in
the pathogenesis of cardiovascular diseases. Knockout IL-
1β in atherosclerosis-prone ApoE-deficient mice leads to
attenuation of atherosclerosis development [30]. Moreover,
blocking IL-1β with a monoclonal antibody, canakinumab,
has resulted in a lower rate of recurrent cardiovascular
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Figure 6: Effects of LDL(-) and Cu-ox-nLDL on the activation of IκB, p38, ERK1/2, and JNK in THP-1 macrophages. (a) Cells were treated
with 20μg/ml of LDL(-) or Cu-ox-nLDL for 2 h, and then levels of phosphorylated IκB (p-IκB), total IκB, p-p38, total p38, p-ERK1/2, total
ERK1/2, p-JNK, and total JNK were determined by Western blotting. β-Actin was used as a loading control. (b–e) Protein levels were
quantified using ImageJ software, and relative levels of p-IκB/total IκB (b), p-p38/total p38 (c), p-ERK1/2/total ERK1/2 (d), and
p-JNK/total JNK (e) are expressed relative to PBS-treated cells (relative level = 1). Values are the mean ± SD of three independent
experiments. ∗p < 0 05, compared to corresponding PBS-treated and Cu-ox-nLDL-treated cells.
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events, cardiovascular complications, and cardiovascular
mortality in patients with MI [31]. IL-6 is a pleiotropic
cytokine that has been shown to contribute to atheroscle-
rotic plaque development and plaque destabilization [32]
and induction of the hepatic acute phase response protein
such as C-reactive protein (CRP) [33], increasing the
expression of ICAM-1 in endothelial cells [34]. TNF-α
was originally identified as a circulating factor which can
cause necrosis of tumors [35] and was also later found
crucially involved in the pathogenesis and progression of
atherosclerosis [36]. TNF-α induces expression of adhesion
molecules, proinflammatory cytokines, and chemokine
receptors in endothelial cells [37]. Therefore, induction of
IL-1β, IL-6, and TNF-α by LDL(-) in macrophages has a
link between LDL(-) and inflammation in hypercholester-
olemia. In addition, higher levels of LDL(-) and inflamma-
tion were shown in hypercholesterolemic patients than in
normolipidemic subjects [38–42]. Supplementary Figure 1
shows that rabbit LDL(-) induced the granulocyte colony-
stimulating factor (G-CSF) to a similar level as that induced
by STEMI LDL(-) [21]. These properties revealed that
LDL(-) is a highly atherogenic lipoprotein and imply a
pathogenic role for LDL(-) in hypercholesterolemia.

Atherosclerosis is now considered a chronic inflamma-
tory disorder [3, 4, 43]. Plasma levels of the proinflammatory
cytokines IL-1β, IL-6, and TNF-α were higher in atheroscle-
rotic patients than in normal subjects [44]. Moreover, an
increased level of LDL(-) was associated with high cardiovas-
cular risk [45, 46]. Our data showed that LDL(-) induced
activation of NF-κB andMAPKs and the subsequent produc-
tion of proinflammatory cytokines in macrophages; hence,
LDL(-)-activated macrophages may be associated with
inflammation in atherosclerosis. Our preliminary studies
showed that replacing the atherogenic diet with normal chow
would decrease levels of both LDL and LDL(-) in rabbits and
hamsters. Clinical studies demonstrated that statin therapy
results in a progressive decrease in the proportion of

LDL(-) and attenuates inflammation in hyperlipidemic
patients [38, 40, 47, 48]. Such outcomes could be due to
the cholesterol-lowering and/or anti-inflammatory effects
of statins. These results suggest that inflammation is asso-
ciated with hypercholesterolemia and lowering cholesterol
by dietary control or statins may have beneficial effects
on reducing LDL(-) and inflammation.

LOX-1 was implicated in vascular inflammation and the
pathogenesis of atherosclerosis [49]. Overexpression of
LOX-1 in ApoE null mice (LOX-1tg/ApoE–/–) increased
macrophage infiltration and enhanced expressions of intra-
cellular adhesion molecule- (ICAM-) 1 and vascular cell
adhesion molecule- (VCAM-) 1 and accumulation of ox-
LDL in coronary arteries [50]. Specific overexpression of
LOX-1 in the endothelium also promoted atherosclerosis
and inflammation in ApoE null mice [51], whereas LOX-1-
knockout reduced atherosclerotic lesions and proinflamma-
tory signals in LDL receptor- (LDLR-) null mice fed an ath-
erogenic diet [52]. Those results indicate that LOX-1 plays
a critical role in the pathogenesis of atherosclerosis. We
recently reported that LDL(-) from STEMI patients induced
production of IL-1β, G-CSF, and GM-CSF through a LOX-
1-dependent pathway [5, 21]. Similar to human LDL(-),
rabbit LDL(-) induced IL-1β, IL-6, and TNF-α through a
LOX-1-dependent pathway (Figure 4). Moreover, the
LOX-1 protein level was induced by rabbit LDL(-) as it was
upregulated by STEMI LDL(-) (Supplementary Figure 2).
Kakutani et al. demonstrated that copper-oxidized rabbit
LDL is a ligand for LOX-1 [29]. Those authors further
demonstrated that mildly oxidized human or rabbit LDL had
higher reactivity to LOX-1 than did either less- or more-
oxidized LDL. Those results also supported that rabbit
LDL(-) induced an inflammatory response in macrophages
through a LOX-1-dependent pathway and the LDL(-)/LOX-
1 axis may play important roles in inflammation and
atherogenesis. However, the involvement of other receptors
cannot be excluded.
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Figure 7: Effects of MAPK inhibitors on the LDL(-)-induced IL-1β, IL-6, and TNF-α in macrophages. Cells were preincubated with DMSO,
U0126 (10 μM), SB203580 (10 μM), SP600125 (15 μM), or LY294002 (10 μM) for 1 h, then treated with LDL(-) for 24 h. Levels of IL-1β (a),
IL-6 (b), and TNF-α (c) in the medium were determined by ELISA. Values are the mean ± SD of three independent experiments. ∗p < 0 05,
compared to DMSO-treated cells.
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Although extensively oxidized LDL was shown to be able
to activate NF-κB and elicit proinflammatory cytokines to
various extents [53–55], comparing our results to results
from other studies is difficult, because the source and degree
of oxidation of the ox-LDL used in different studies might
not be the same. In this study, we used relatively smaller
amounts (20 μg/ml) of LDL(-) and Cu-ox-LDL compared
to larger amounts (50 to 200μg/ml) of extensively oxidized
LDL used in other studies [53–56]. Moreover, results of this
study comparing LDL(-), Cu-ox-nLDL, and Cu-ox-LDL(-)
clearly showed that LDL(-) was more proinflammatory than
was extensively oxidized LDL. Several different receptors,
including scavenger receptors-AI and II (SR-AI and II),
CD36, and LOX-1, have been identified to recognize ox-
LDL and mediate ox-LDL-cellular interactions. The specific-
ity of the different receptors to ox-LDL with the degree of
oxidation is different [28]. SR-AI and II are considered to
be the most specific for extensively oxidized LDL [57];
CD36 was shown to bind and internalize extensively or mod-
erately oxidized LDL [58], while LOX-1 has high specificity
to moderately oxidized LDL [29]. Activation of LOX-1 has
been shown to induce several intracellular signaling path-
ways, including MAPKs, protein kinase C, and transcrip-
tional factors NF-κB and AP-1. Our previous study showed
that STEMI LDL(-) induced higher levels of G-CSF and
GM-CSF than did extensively Cu-ox-nLDL or Cu-ox-
LDL(-) in macrophages [21]. LDL(-) is considered a mod-
erately oxidized LDL and thus support LDL(-) being more
potent in inducing the production of proinflammatory
cytokines than extensively oxidized LDL.

Our results showed that LDL(-) induced activation
of ERK1/2, JNK, and p38 MAPK and showed that
LDL(-)-induced IL-1β, IL-6, and TNF-α can be inhibited by
U0126, a MEK inhibitor, and LDL(-)-induced IL-6 and
TNF-α can be partially inhibited by SB203580, a p38 inhibi-
tor. Estruch et al. have demonstrated that p38 MAPK is
involved in LDL(-)-induced activation of NF-κB and AP-1.
However, our results showed that LDL(-)-induced IL-1β
was increased by SB203580; the mechanism underlying this
is not clear and requires further investigation. In our previous
report, U0126, a MEK inhibitor that inhibited activation of
ERK1/2, inhibited LDL(-)-induced phosphorylation of
ERK1/2. ERK signaling is known to be associated with vari-
ous cellular processes, including proliferation, differentia-
tion, and survival, and it was implicated in the pathogenesis
of many diseases, including stroke, neurological diseases,
and cancer [59, 60]. ERK1/2 can be regulated by mitogens
and endotoxins. Upon stimulation, ERK1/2 is activated by
phosphorylation of a threonine and tyrosine residue in the
motif Thr-Glu-Tyr within the kinase domain [61]. Inhibition
of the ERK signaling pathway was shown to inhibit allergic
airway inflammation [62] and focal cerebral ischemia [63].
We reported that ERK1/2 is activated by LDL(-) through a
LOX-1-dependent pathway and inhibition of the ERK1/2
pathway decreased the release of G-CSF and GM-CSF in
STEMI LDL(-)-treated macrophages [21]. Moreover,
ERK1/2 have been reported to be activated by ox-LDL in
carotid arteries [64] and in human umbilical vein endothelial
cells [65] through a LOX-1-dependent manner. In this

report, we showed that in macrophages, activation of
ERK1/2 is necessary for the LDL(-)-induced production of
IL-1β, IL-6, and TNF-α. Moreover, ERK1/2 was shown to
be activated by ox-LDL in vascular smooth muscle cells and
endothelial cells via LOX-1 [66–68]. Inhibition of ERK sup-
pressed cell proliferation in ox-LDL-treated vascular smooth
muscle cells [66, 67] and reduced matrix metalloproteinase
expression in endothelial cells [68]. These results suggest that
the LOX-1/ERK axis may serve as a potential therapeutic tar-
get for LDL(-)-mediated atherosclerosis.

5. Conclusions

In conclusion, our data provide evidence that an atherogenic
diet induces highly proinflammatory LDL(-) in rabbits. The
LDL(-) was more potent than native or extensively oxidized
LDL in stimulating proinflammatory signals and cytokines.
Moreover, we also elucidated that LDL(-) triggered produc-
tion of IL-1β, IL-6, and TNF-α through a LOX-1/NF-
κB/ERK-dependent pathway. These results provide a link
between an atherogenic diet and inflammation in the patho-
genesis of atherosclerosis.
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