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Background: The ability of circulating tumor cells (CTCs) to identify lung adenocarcinoma (LUAD) and 
lung squamous cell carcinoma (LUSC) could improve pathological diagnosis and the selection of treatments 
for non-small cell lung cancer (NSCLC). Previous studies have shown that deoxyribonucleic acid (DNA) 
methylation exhibits cell and tissue specificity. Thus, we aimed to explore the methylation status of CTCs in 
LUAD and LUSC and identify the potential biomarkers. 
Methods: We first analyzed Infinium 450K methylation profiles obtained from The Cancer Genome Atlas 
and Gene Expression Omnibus. We then performed whole-genome sequencing of CTCs in tumor and 
matched normal lung tissues and white blood cells from 6 NSCLC patients.
Results: The bioinformatics analysis revealed a NSCLC-specific DNA methylation marker panel, which 
could accurately distinguish between LUAD and LUSC with high diagnostic accuracy. The whole-genome 
sequencing of CTCs in NSCLC patients also showed 100% accuracy for distinguishing between LUAD and 
LUSC based on the CTC methylation profiles. To investigate the function of CTCs, we further analyzed similar 
and different methylation profiles between the CTCs and their primary tumors, and found very high similarities 
between the CTCs and their primary tumor tissues, indicating that these cells inherit information from primary 
tumors. However, the CTCs also displayed some characteristics that differed to those of primary tumor tissues, 
which suggest that CTCs acquire some unique characteristics after migrating from the primary tumor; these 
characteristics may partly explain the ability of tumor cells to evade immune surveillance.
Conclusions: Our findings provide insights into the potential use of CTCs in the pathological 
classification of NSCLC patients. Our findings also show how CTC primary tumor inheritance and CTC 
evolution affect metastasis and immune escape.
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Introduction

Lung cancer is one of the most common and deadliest 
forms of cancer worldwide (1). Approximately 85% of lung 
cancers are non-small cell lung cancers (NSCLCs), which 
include lung adenocarcinoma (LUAD) and lung squamous 
cell carcinoma (LUSC). As the main treatment options are 
determined according to the histologic features and the 
molecular profile, pathological diagnosis is key in NSCLC 
treatment. Currently, pathological diagnoses are based 
on the morphologic features or on immune-cytochemical 
and immune-histochemical analyses of NSCLC tissues, 
or cytologic samples obtained from a surgical biopsy, 
bronchoscopy, or bronchial brushing (2), and it is difficult 
to make a pathological diagnosis in cases in which tumor 
biopsy or cytology material is not adequate.

Circulating tumor cells (CTCs) are cancer cells that 
disseminate from primary or metastatic sites into the 
peripheral blood. CTCs have great potential as diagnostic 
and prognostic biomarkers, and could be used to guide 
the individualized treatment of lung cancer patients. In 
the lung cancer diagnostic field, the CTC detection rate 
is approximately 87% among those who have >3 CTCs 
per 3.2 mL of blood (3). Further, CTCs carry information 
about the primary tumor cells and could be considered an 
alternative means of tumor subtype classification (4).

In metastasis, the methylation status of the primary 
tumor is inherited by the metastatic tumor. Previous studies 
have shown that deoxyribonucleic acid (DNA) methylation 
exhibits cell and tissue specificity (5), and changes in DNA 
methylation play an important regulatory role in the 
development of cancer (6,7). Indeed, both genome-wide 
hypomethylation and hypermethylation modifications have 
the ability to alter the expression of neighboring genes and 
contribute to cancer phenotypes (7,8). DNA methylation 
has been extensively investigated in primary tumors (9); 
however, the events that shape the DNA methylome during 
metastatic dissemination are largely uncharacterized (10,11). 
Overall, knowledge of the methylation profile of CTC 
DNA may broaden our understanding of tumor cell origin 
and evolution.

In this study, we combined immunostaining fluorescence 
in situ hybridization (FISH)-based CTC identification, laser 
capture microdissection-based CTC capture, and single-cell 
resolution DNA methylation to explore CTC methylation 
signatures in the origin, classification, and evolution of 
these cells in NSCLC. Our study provides a genome-wide 
DNA methylation landscape of primary tumor tissues, 

CTCs, matched normal lung tissues, and white blood cells 
(WBCs) in 6 NSCLC patients. The results demonstrate 
that CTCs can be used as an effective blood-based method 
for the classification of LUAD and LUSC. The results also 
showed that both CTC primary tumor inheritance and 
CTC evolution affect metastasis and immune escape. We 
present the following article in accordance with the MDAR 
reporting checklist (available at https://tlcr.amegroups.com/
article/view/10.21037/tlcr-22-50/rc).

Methods

Characteristics of patients and samples

The clinical characteristics and molecular profiles, including 
methylation data for a training cohort of 553 tumor samples 
and 60 matched adjacent normal tissue samples, and a 
validation cohort of 288 tumor and 14 matched normal 
samples, were obtained from The Cancer Genome Atlas 
(TCGA). A separate validation cohort of 37 tumor samples 
and 74 normal samples was obtained from Gene Expression 
Omnibus (GEO). Another separate validation cohort of 
6 tumor and 6 matched normal samples was obtained 
from Zhongshan Hospital of Fudan University, Shanghai, 
China. Matched adjacent normal tissue samples and WBCs 
were collected at the same time as the tumor tissue from 
each patient, and subjected to a histological analysis to 
confirm that there was no evidence of cancer. The clinical 
characteristics of all the patients are summarized in 
Table S1. None of the 6 patients received any additional 
treatment apart from the surgery. Written informed consent 
was obtained from the patients, and ethical approval was 
obtained from the Zhongshan Hospital Research Ethics 
Committee (No. Y2019-187). All procedures performed in 
this study involving human participants were in accordance 
with the Declaration of Helsinki (as revised in 2013).

Experimental method details

Subtraction enrichment of CTCs and identification of 
aneuploid CTCs
The enrichment and identification of CTCs were performed 
in accordance with the instructions of the CTCseqTM kit 
(Majorbio). The samples were fixed on slides, and then 
counted and photographed. Each suspicious tumor cell 
coordinate was recorded to facilitate subsequent target cell 
identification. The identification principle of CTCs is that 
they are (I) negative for cluster of differentiation (CD)45 
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and (II) positive for chromosome 8 heteroploidy. The slides 
were stored at –20 ℃.

Laser capture microdissection
The samples were loaded onto the stage of a Zeiss 
PALM MicroBeam (Zeiss) under a ×40 objective. After 
microdissection with a 355-nm laser beam, the target 
cells were collected on an AdhesiveCap 200 opaque cover 
(Zeiss). The 10-µL reaction volume contained 5 µL of 
M-Digestion Buffer (2×), 0.5 µL of proteinase K (EZ DNA 
Methylation-Direct™ Kit, Zymo), and 4.5 µL of nuclease-
free water (Ambion). The reagents were mixed and placed 
on the AdhesiveCap 200 opaque cover; the tube was briefly 
microcentrifuged, and the reaction was incubated in a 
thermal cycler for 20 min at 50 ℃, with a 4 ℃ hold. The 
samples were stored at –20 ℃.

WGBS analysis

Tumor DNA extraction
Genomic DNA extraction from freshly frozen normal 
or cancer tissues or WBCs was performed with a 
QIAamp DNA Mini Kit (Qiagen) in accordance with the 
manufacturer’s recommendations. DNA was extracted from 
approximately 0.5 mg of tissue and stored at –20 ℃; the 
samples were analyzed within 1 week of preparation.

Bisulfite conversion of genomic DNA and WGBS
Bisulfite conversion was performed using the EZ DNA 
Methylation-Lightning™ Kit (Zymo Research). Whole-
genome bisulfite sequencing (WGBS) was performed 
using the KAPA Hyper Prep Kit (Roche) with several 
modifications, as previously described (12). The WGBS 
libraries of tissue and WBCs were sequenced with paired-
end flow cell lanes in the HiSeq4000 system (Illumina) for 
150 cycles.

Capture and sequencing
Capture was performed using the SeqCap Epi CpGiant 
Enrichment  Kit  (Roche)  in  accordance with the 
manufacturer’s instructions. Briefly, 4–6 bisulfite-treated 
libraries (200 ng/sample) were hybridized to the SeqCap 
Epi probe pool; the beads were captured, washed, amplified, 
quantified, and qualified as directed in the protocol. The 
captured pooled library (tissue 2N) was sequenced using 
the Illumina HiSeq X Ten system with a 150-bp paired-end 
model.

Bisulfite conversion and single-cell whole-genome 
bisulfite library preparation
The library was produced according to a previously 
published protocol (12). In brief, after cell lysis for 20 min, 
the CTC samples were subjected to bisulfite conversion 
using the EZ DNA Methylation-Direct™ Kit (Zymo) 
in accordance with the manufacturer’s instructions. The 
bisulfite-converted DNA was then synthesized using Klenow 
exo-(Enzymatics) with a truncated Illumina P5 adapter 
(5'-CTACACGACGCT CTT CC GATCTNNNNNN-3') 
followed by a random hexamer at the 3'end. This step was 
repeated 4 additional times for preamplification. The excess 
primers were removed using exonuclease I (New England 
Biolabs). Following purification, the 2nd strands were 
synthesized similarly but using a truncated P7 Illumina 
adapter (5'-AGACGTGTGCTCTTCCGATCTNNNN
NN-3'). The final library was amplified using the KAPA 
HiFi HotStart ReadyMix (Kapabiosystems) with NEB 
primers (universal primer and index primer). The amplified 
libraries were purified twice with 0.9× AMPure XP beads 
(Beckman Coulter), and quantified using Qubit ds HS dye 
and a 2100 Bioanalyzer (Agilent Technologies). The final 
quality-ensured libraries were sequenced with a HiSeq4000 
system (Illumina) for 150 cycles.

Quantification and statistical analysis

Processing methylation microarray data
The DNA methylation data were obtained from TCGA 
analysis of 485,000 sites generated using Infinium 450K 
Methylation Array, and the following GSE datasets: 
GSE85845, GSE83842, GSE66087, GSE63704, and 
GSE53051. The microarray data (level 3 in TCGA and 
processed matrix files in the GEO database) provided 
the methylation levels of the individual CpG sites. The 
methylation levels for the two cancer subtypes (i.e., LUAD 
and LUSC) and normal lung tissues were extracted. Six 
matched cohorts (cancer, normal, bulk WBCs, and CTCs 
per patient) were obtained by WGBS and analyzed as 
described.

Building the multiclass classifier
For each of the three subtypes of LUAD and LUSC 
cancer and corresponding normal tissue samples from 
TCGA, we randomly split the full TCGA 450K data set 
into training and validation sets at a 2:1 ratio. We first 
performed prescreening to remove excessive noise from 
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the training data using the Dunn test. First, a CpG site 
methylation level was marked as “not available” (NA) if 
methylation measurements were not available for more 
than half of the CpG sites. Second, any samples that had 
missing methylation levels for more than 5 k CpG sites 
were marked as “NA”. Third, for each set of comparisons, 
1 type of sample was compared against the other two types 
of samples. A list of markers with significant methylation 
differences ≥0.2 and P values <0.05 between LUAD and 
LUSC, and significant methylation differences ≥0.1 and P 
values <0.05 between LUAD and normal tissues or LUSC 
and normal tissues were retained for future analysis. The 
Benjamini-Hochberg procedure was used to control the 
false discovery rate at a significance level of 0.05. For the 
multinomial classification, we used logistic regression 
with the L2 regularization model (Ridge), and the tuning 
parameter was determined by the expected generalization 
error estimated from the 5-fold cross-validation. A 
multiclass prediction system was constructed to predict 
a cancer subtype or normal sample in the validation data 
using the selected features. A confusion matrix and receiver 
operating characteristic curves were also produced to 
evaluate sensitivity and specificity in addition to prediction 
accuracy.

All the data analyses were conducted by custom-made 
bash and R and Python scripts (R version =3.4.2, Python 
version =3.7.2) with the dunn.test (R) and sklearn (Python) 
packages.

WGBS processing
After tissue and CTC WGBS sequencing, an initial quality 
assessment of the data was performed using FastQC 
(https://www.bioinformatics.babraham.ac.uk/projects/
fastqc). Adaptor sequences, low-quality ends, and 6 bp 
from both the 5' and 3' ends of reads were removed with 
Trim Galore (v0.4.2, http://www.bioinformatics.babraham.
ac.uk/projects/trim_galore/; parameters: --clip_R1 6 --clip_
R2 6 --three_prime_clip_R1 6 --three_prime_clip_R2 6). 
Trimmed reads were aligned to the hg19/GRCh37 human 
genome using Bismark with the alignment tool Bowtie2 
(v2.2.9) (main parameter: --score-min L, 0, 0.2) (13,14). 
Finally, methylation cells were extracted after deduplication 
using Bismark. Only CpG sites with a depth of coverage 
≥3× were considered for the methylation analysis.

Differential methylation analysis and enrichment 
analysis
Differentially methylated CpGs were assessed using a 

methylKit (R package) (15). Under the sliding linear model 
(SLIM) method, a P value <0.05 indicated differential 
methylenation (16). We selected differentially methylated 
CpG sites (DMCs) detected in 2 of the 6 patients for 
the future functional pathway analysis. Transcription 
factor binding sites (TFBSs) in DMCs were calculated 
using i-cisTarget (https://gbiomed.kuleuven.be/apps/lcb/
i-cisTarget/) with a full motif analysis (17). The Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis with 
a hypergeometric test implemented in the clusterProfiler 
R/bioconductor package was performed using ClueGO 
(Vocci and London, 1997). The annotation used for the 
CpGIslands and RefSeq genes was performed using the 
genomation toolkit in the R/bioconductor package.

KEGG pathway enrichment analysis based on genomic 
features
Individual CpGs were mapped to genes and their promoters 
using the RefSeq gene annotation from the University of 
California Santa Cruz genome browser (https://genome.
ucsc.edu; date: 10/10/2020). Promoters were defined 
as the ±2 kb region around the transcription start site. 
Mapping to superenhancer regions was based on dbSUPER 
(http://asntech.org/dbsuper/), an integrated database of 
superenhancers that provides a list of genes associated 
with each region. Each genomic feature was interrogated 
for differential methylation in the same manner as that for 
genomic tiles. Similar genes corresponding to genomic 
features with a normal P value >0.05 and a methylation 
difference <10% were considered for the enrichment 
analysis between CTCs and matched tumor tissues. 
Differential genes corresponding to genomic features 
with a normal P value <0.05 and an absolute methylation 
difference >0.1 were considered for the enrichment analysis 
between CTCs and matched tumor tissues. The gene set 
enrichment analysis was performed using a hypergeometric 
test implemented in the clusterProfiler R/bioconductor 
package. Gene sets with an adjusted P value <0.05 were 
considered statistically significant.

Results

Identification and validation of cancer-specific differential 
methylation CpG sites

To explore NSCLC-specific DNA methylation markers, 
we first analyzed Infinium 450K methylation profiles 
obtained from TCGA (see Figure 1). We hypothesized that 
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the most appropriate methylation differences (LUSC vs. 
LUAD vs. normal) would lead to the best performance in 
both clustering and classification. Thus, we started with 
5 cutoff parameters of beta differences (greater than the 
cutoff) of 0.10, 0.15, 0.20, 0.25, and 0.30 among LUAD 
versus LUSC versus normal. The same cutoff parameters 
were used for LUAD and LUSC compared to normal 
controls. Four groups of features with each fixed parameter 
set were identified according to whether the difference in 
methylation met the cutoff for: (I) LUAD_LUSC_Normal 
specific; (II) LUAD_specific; (III) LUSC_specific; and (IV) 
Normal_specific. We assessed 4 combinations of specific 
probes [(I); (I) + (II) + (III), (I) + (II) + (III) + (IV), and (I) + 
(IV)] under each fixed parameter set, resulting in 5×5×4=100 
mixed samples. Finally, we obtained the optimal parameters 
for LUAD_LUSC_diff ≥0.20, LUAD_Normal_diff ≥0.10, 
and LUSC_Normal_diff >0.10 (P<0.05). The clustering 
results are shown in Figure 2A.

Under the optimal parameters, we detected 5,426 DMCs, 
including 5,426 LUAD-LUSC cancer-specific DMCs, 1,409 
LUAD-normal specific DMCs, and 2,919 LUSC-normal 
specific DMCs (see https://cdn.amegroups.cn/static/public/
tlcr-22-50-1.xlsx). Based on the differential methylation of 
the CpG sites, we were able to distinguish LUAD, LUSC, 
and normal tissues with diagnostic accuracies of 97.5%, 
95.7%, and 100%, respectively (see Figure 2B and Table S2).

To assess the diagnostic accuracy of the methylation 
marker panel, we then applied the methylation panel to 1/3 
of TCGA validation cohort 1 and GEO validation cohort 
2 (see Figure 2C,2D). The diagnostic accuracy of the panel 
for LUAD, LUSC, and normal tissues was 98.1%, 94.8%, 
and 100%, respectively, in 1/3 of TCGA validation cohort 1 
(see Figure 2C and Table S3), and 86.2%, 87.5%, and 98.6% 
in GEO validation cohort 2 (see Figure 2D and Table S4), 
respectively. These results demonstrate the robust nature 
of the methylation panel in identifying the presence of 

Figure 1 Workflow chart of data generation and analysis. TCGA methylation data was used to cluster and identify 5,426 features. A 
multiclassification model was built based on the selected features. 2/3 of the TCGA data were used for training, and 1/3 of the TCGA and 
the GEO data were used for validation. Patient-WGBS data were used for prediction model testing and the functional analysis. WBC, white 
blood cell; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; WGBS, whole-genome bisulfite sequencing; DMCs, 
differentially methylated CpG sites; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; Normal, normal tissues; CTC, 
circulating tumor cell; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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malignancy and its NSCLC subtype classification.

Cancer-specific methylation signature validation in tissues 
and CTCs

To validate the clinical value of the methylation panel, we 
next performed the WGBS analysis of the tumor tissue 
samples, matched normal lung tissue samples, CTCs, and 
WBCs from 6 NSCLC patients, including 4 LUAD and 
2 LUSC cases (see Table S1). To obtain CTCs, blood 
samples were drawn from the 6 patients who had been 
newly diagnosed with lung cancer and processed using the 
immunostaining-FISH-based CTC technique (18-21), 

a CD45-based immunomagnetic system that combines 
leukocyte common antigen (CD45) immunostaining, and 
FISH using unprocessed blood samples that was specifically 
adapted to achieve a capture rate of >98% for single CTC 
and CTC clusters (18,22). Upon capture, the fixed CTCs 
were stained with antibodies against CD45 to identify 
contaminating leukocytes (see Figure S1). Upon staining 
verification, we identified CTCs in the 6 patients; the 
CTCs from each patient were individually captured and 
deposited in 10 µL of lysis buffer for WGBS (18,22). The 
WGBS sequencing data comprised 30 G raw data (10×) for 
the tissue samples and bulk WBCs, and 90 G raw data (30×) 
for the CTC samples. On average, we achieved 47.3% CpG 

Figure 2 Clustering and receiver operating characteristic analyses of the discovery and validation sets using the 5,426 CpG markers 
identified in TCGA cohort. (A) DNA methylation signatures can identify LUAD, LUSC, and NORMAL in TCGA and GEO cohorts. 
Shown are the unsupervised hierarchical clustering and heat maps associated with the methylation profile of 501 LUAD samples (sky-
blue), 377 LUSC samples (green), and 148 normal samples (brown) in TCGA (red) and GEO (blue) cohorts with a panel of 5,426 CpG 
markers. Each column represents an individual patient, and each row represents an individual CpG marker. The color scale shows the DNA 
methylation level. (B) ROC curve of the diagnostic prediction model with methylation markers in 2/3 of the TCGA training cohort. (C) 
1/3 of the TCGA validation cohort 1; (D) GEO validation cohort 2. LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; 
TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus.
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coverage for CTCs, which is in line with a recent single-cell 
WGBS study (12). For each individual methylation profile, 
only CpG sites ≥3× coverage were used for the clustering 
and functional analyses (see Table S5).

To refine the tumor methylation signature in the 
matched CTCs, we identified similar methylation CpGs 
(SMCs) with methylation differences <10% and P values 
>0.05 between CTCs and the matched tumor tissue for each 
patient and included 450K CpG sites (see Table S6). Thus, 
we identified the CT450K SMCs present in both the CTCs 
and tumor methylation profiles with similar methylation 
levels that were also included in the 450K CpG sites. Next, 
we merged the CT450K SMCs from the 6 patients and used 
these CpG sites as features to cluster matched normal 
and lung cancer tissues, WBCs, and CTCs. After the 
refinement of the CT450K methylation signatures, all 6 pairs 
of CTCs and matched tumor tissues clustered together, 
and the Pearson correlation coefficient of CTCs and tumor 
tissues for each patient was >0.994 (see Figure 3A). These 
results suggest that CTCs inherit most of their methylation 
signatures from the primary tumors.

However, clustering of the CT450K methylation analysis 
did not group the CTCs and tumors together. The high 
Pearson correlation coefficient of CTCs and WBCs/normal 
led us to consider the existence of WBCs and normal tissue 
backgrounds in the CTC methylation pattern. To eliminate 
WBC backgrounds in the CTC methylation profile, we 
identified CTC/WBC/Tumor (CBT)450K DMCs for each 
patient (see Table S6). Next, we merged the CBT450K DMCs 
of the 6 patients together, and used these merged DMCs 
to cluster the lung cancer tissues and matched normal 
tissues/WBCs/CTCs. The Pearson correlation coefficient 
of the CTCs and WBCs for each patient decreased from a 
minimum of 0.831 (see Figure 3B) to a maximum of –0.696 
(see Figure 3C). The results showed that almost all 6 pairs 
of CTCs and matched tumors clustered together, except 
for the clustering of 2T and 2C due to the ineffective 
bisulfite conversion of 2B (conversion ratio 91.46%). 
Figure 3C shows that the WBC background is an important 
component of the CTC methylation pattern.

To further eliminate the normal tissue background from 
the CTC methylation profile, we identified CTC/WBC/
Tumor/Normal (CBTN)450K DMCs in each patient (see 
Table S6), and then merged the CBTN450K DMCs of the 6 
patients together and used these merged DMCs to cluster 
the matched normal and lung cancer tissues, WBCs, and 
CTCs (see Figure 3D). The poor clustering performance 
suggested that a normal tissue background is not an 

effective component of the CTC methylation pattern.
Based on the above methylation profiles, our NSCLC 

tissue cohort showed that the methylation panel for 
all LUAD, LUSC, and normal tissues had a diagnostic 
accuracy of 100% (see Table S7); after removing the 
matched WBC background, the diagnostic accuracy of the 
methylation panel for LUAD and LUSC was also 100% 
based on the CTC cohort (see Table S8) (C&B diff >0.1, 
P<0.05).

Inheritance of CTCs

To explore the characteristics of CTCs, we specifically 
investigated methylation profile distribution according to 
functional genomic features between CTCs and matched 
tumor tissues (see Figure 4). We observed that the number 
of CpG sites in each CTC/Tumor (CT) similar group was 
far larger than that in the matched CT difference group 
(see Figure 4A), which implies that CTCs have a large 
proportion of methylation signatures inherited from the 
primary tumor. In addition, 5-methylcytosine (5-mC) 
was most common in TFBSs and intronic and intergenic 
regions, accounting for 42.8%, 47.3%, and 46.0% of all 
CpG sites in tumors, and 47.4%, 47.6%, and 42.8% of all 
CpG sites in CTCs, respectively (see Figure 4A). 5-mC 
was also commonly found in enhancers, superenhancers, 
promoters, and CpG shores, accounting for 5.6%, 
24.8%, 5.5%, and 6.6% of all CpG sites in tumors, and 
6.1%, 28.6%, 9.1%, and 8.0% of all CpG sites in CTCs, 
respectively (see Figure 4A).

For regulatory elements, the loss of DNA methylation at 
TFBSs can designate active transcription factor networks or 
networks primed for activation at later stages [e.g., during 
processes such as the derivation of induced pluripotent stem 
cells from differentiated cells (23) or cancer progression (9)]. 
We then analyzed SMCs at TFBSs using i-Cistarget (17), 
and used the clusterProfile R package to analyze the KEGG 
pathways of global CTC hypomethylated TFBSs coexisting 
in CTCs and matched tumor tissues with methylation 
differences <10% and P values >0.05 (see Figure 5A). Our 
DNA methylation analysis revealed the mitogen-activated 
protein kinase signaling pathway and pathways regulating 
the pluripotency of stem cells, epithelial growth factor 
receptor (EGFR) tyrosine kinase inhibitor resistance, and 
the cell cycle. These pathways coexisted in both CTCs and 
matched tumor tissues, suggesting that CTC methylation 
originates from primary tumor tissues and is inherited as the 
cells move from the primary tumor tissues to the peripheral 
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blood (see Figure 5A). We also found that binding sites for 
stemness-associated transcription factors are specifically 
hypomethylated in SMCs in both CTCs and matched 
tumor tissues, including binding sites for NANOG and 

SOX2, which in previous reports were associated with CTC 
clusters compared to single CTCs (24).

To explore other subtle changes in DNA methylation 
occurring specifically within promoters, gene bodies, and 
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Figure 3 Unsupervised hierarchical clustering associated with the methylation profile (A) included in the 450K methylation array (according 
to the color scale shown) in cancer tissue (T), normal tissue (N), WBC bulk (B), and CTC (C) data for 6 patients. (B) Included in the CTC/
Tumor (CT) similar methylation markers selected for use in the 24 samples from the 6 patients. (C) Included in the CBT methylation 
markers selected for use in the 24 samples from the 6 patients. (D) Included in the CTC/WBC/Tumor/Normal (CBNT) methylation 
markers selected for use in the 24 samples from the 6 patients. The color scale shows the Pearson correlation coefficients. CTC, circulating 
tumor cell.
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superenhancer regions, we carried out a hypergeometric-
based gene set enrichment analysis of genomic features. 
Consistently, this analysis revealed hypomethylation and cell 
cycle progression (see Figure S2), as previously observed for 
cancer specimens with stem-like and proliferative features.

Evolution of CTCs

The CTCs showed many DMCs differed to those of the 
primary tumor (see Figure 4B). To identify whether the 
characteristic-related transcription factor networks were 
also transcriptionally active in CTCs compared to matched 
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Figure 4 CpG sites with known genomic features in 6 patients. CpG sites with no less than 3× coverage were counted, as shown in this 
figure. Similar CpG sites (CT similar) corresponding to genomic features with a normal P value >0.05 and a methylation difference <10% 
were counted between the CTCs and matched tumor tissues. Differential CpG sites (CT diff) corresponding to genomic features with a 
normal P value <0.05 and an absolute methylation difference >0.1 were counted in the CTCs compared to matched tumor tissues. The 
DMCs that appeared in 2 of the 6 patients are illustrated in this figure. CTC, circulating tumor cell.
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tumors, we performed a single-cell resolution methylation 
sequencing analysis of CTCs and matched tumors isolated 
from the 6 NSCLC patients (see Figure 5). We used the 
cluster Profile R package to analyze the KEGG pathways 
of global hypomethylated TFBSs in CTCs rather than 
matched tumor tissues with an absolute methylation 
difference >0.1 and a P value <0.05 (see Figure 5B). The 

KEGG analysis of TFBS DMCs in patient CTCs compared 
to matched tumors revealed the enrichment of genes 
related to the T cell receptor signaling pathway, Th17 
cell differentiation, transforming growth factor (TGF)-
beta signaling pathway, EGFR tyrosine kinase inhibitor 
resistance, and canonical pathways (RAS/MAPK/PI3K/
AKT) (see Figure 5B).

Figure 5 Pathway enrichment analysis of TFBSs on a genome-wide scale identified using i-cisTarget in hypomethylated regions of CT-
similar (A) and CT-differential (B). CT-similar displayed a <10% methylation difference (P value >0.05) in CTCs compared to matched 
tumor tissues among the 6 patients. CT-differential displayed a >0.1 methylation difference (P value <0.05) in CTCs compared to matched 
tumor tissues among the 6 patients. Gene sets with an adjusted P value <0.01 were considered significant. TFBS, transcription factor binding 
site; CTC, circulating tumor cell.
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B
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In relation to the other subtle changes in DNA 
methylation occurring specifically in promoters, gene 
bodies, and superenhancer regions, the KEGG analysis 
revealed the enrichment of gene groups related to the 
TGF-beta signaling pathway, Th17 cell differentiation, T 
cell receptor signaling pathway, and EGFR tyrosine kinase 
inhibitor resistance (see Figure S3).

These results show that in the processes of dissemination 
from the primary tumor tissue to the peripheral blood, 
CTCs gradually develop their own unique methylation 
signatures with some unique characteristics that differ to 
those of the primary tumor.

Discussion

Our study shows that CTC methylation signatures can 
be used as an alternative non-invasive approach to biopsy 
for the pathological classification of NSCLC patients. We 
found that these methylation signatures can identify LUAD 
and LUSC with extremely high accuracy. The histologic 
definition of NSCLC is of huge importance to drive 
molecular testing and optimize treatment selection, which is 
a non-invasive method for histologic diagnosis. Our results 
raise the possibility that the detection of CTC methylation 
in peripheral blood may be expanded to aid in the diagnosis 
of a much larger number of tumor types. In addition, we 
uncovered 2 CTC methylation patterns of inheritance 
and evolution during the CTC migration process. These 
features of CTCs provide new insights into the mechanism 
of NSCLC metastasis.

In practice, the amount of genomic DNA in CTCs per 
patient is typically limited to a range of 10s of picograms. 
Moreover, the amplification of damaged DNA beginning 
with a fixed CTC cell is even more difficult than the 
amplification of integrated genomic DNA beginning with 
a live cell. In our study, we collected all the CTCs from 
each patient into 1 tube. We then amplified and achieved an 
average of 47.3% CpG coverage for CTCs, which is similar 
to the 50% CpG site coverage in a single cell reported by a 
recent study (12).

Our study suggests that CTCs share several properties 
common to immune escape and in mesenchymal-shifted 
cells compared to matched tumors. For example, the T-cell 
receptor signaling pathway and Th17 cell differentiation 
contributes to tumor immune escape (25-33). The TGF-
beta pathway promotes epithelial-mesenchymal transition 
(EMT) in tumor cells, which plays an important role in 
mediating tumor invasion and metastasis (34,35). EGFR 

tyrosine kinase inhibitor resistance suggests a form of 
acquired drug resistance, which is associated with the 
tumor cell EMT phase (36-38). The canonical RAS/
MAPK/PI3K/AKT signaling pathway is involved in EMT 
progression (39). Previous reports have demonstrated 
that the enhancement of mesenchymal-like features 
epigenetically reprograms epithelial cancer cells to adapt 
well to new microenvironments, and thus may contribute to 
distant metastasis (40). Several reports have focused on the 
relationship between EMT and immune escape (39,41-44),  
especially in NSCLC. However, previous studies have only 
focused on a few genes or proteins in CTCs associated 
with immune escape, such as the upregulation of CD47 
expression as a potential escape mechanism in colorectal 
cancer based on quantitative polymerase chain reaction (45)  
or the downregulation of ULBP1 protein expression as 
a potential CTC evasion mechanism from natural killer 
cells (46). Our study uncovered a CTC immune escape 
mechanism through CTC methylation signatures on a 
genome-wide scale, and we propose that the EMT status 
of CTCs and T-cell receptor signaling ultimately leads to 
tumor immune escape and invasion.

The methylation profiling of circulating tumor DNA 
has been investigated in cancer diagnostics and in the 
assessment of therapeutic outcomes (47-52), but to date, 
few methylation profiles of CTCs have been studied and 
derived a DNA methylation signature in CTCS of patients 
with lung cancer. We used CTC methylation profiles to 
identify LUAD and LUSC with extremely high accuracy 
in 6 NSCLC patients. In our study, CTCs, as 1 of the 3 
liquid biopsy biomarker types, showed strong potential in 
terms of methylation origin and classification. Compared 
to circulating tumor DNA and exosomes, CTCs carry 
a complete genome, which provides an incomparable 
advantage. Our study demonstrated that CTC traceability 
only requires deducing the matched WBCs. Conversely, 
circulating tumor DNA traceability needs a large training 
set and complex algorithm due to its rarity in the blood. 

As an auxiliary diagnosis tool for benign and malignant 
lesions, CTC techniques should be strengthened. However, 
the capture of CTC remains a huge challenge for the widely 
available in the cancer diagnosis and other technologies, 
such as microfluidic technology, may be used to count and 
capture CTCs with both high sensitivity and specificity and 
low damage to the cells. Further, more analytical methods 
and models should be explored to improve coverage or 
change the analysis units from methylated cytosines to 
methylated regions (24,53).
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Conclusions

In summary, our study provides insights into the potential 
of CTCs to replace invasive biopsy for the pathological 
classification of NSCLC patients. Further, we also found 
that CTC primary tumor inheritance and CTC evolution 
affect metastasis and immune escape.
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