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Abstract
Many lacewing species (Insecta: Neuroptera) are important predators of pests with 
great potential in biological control. So far, there is no chromosome-level published 
genome available for Neuroptera. Here we report a high-quality chromosome-
level reference genome for a green lacewing species Chrysopa pallens (Neuroptera: 
Chrysopidae), which is one of the most important insect natural enemies used in pest 
biocontrol. The genome was sequenced using a combination of PacBio and Hi-C tech-
nologies and assembled into seven chromosomes with a total size of 517.21 Mb, occu-
pying 96.07% of the genome sequence. A total of 12,840 protein-coding genes were 
identified and approximately 206.21  Mb of repeated sequences were annotated. 
Phylogenetic analyses indicated that C. pallens diverged from its common ancestor 
with Tribolium castaneum (Coleoptera) approximately 300 million years ago. The gene 
families involved in digestion, detoxification, chemoreception, carbohydrate metabo-
lism, immunity, nerves and development were significantly expanded, revealing the 
potential genomic basis for the polyphagia of C. pallens and its role as an excellent 
biocontrol agent. This high-quality genome of C. pallens will provide an important 
genomic resource for future population genetics, evolutionary and phylogenetic in-
vestigations of Chrysopidae as well as comparative genomic studies of Neuropterida 
and other insects.
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1  |  INTRODUC TION

With the development of new sequencing technologies, the ge-
nomic information of more and more species has been obtained and 
analysed. Deep sequencing data can provide extensive information 
about genomes and gene expression profiles. Since the completion 
of the Human Genome Project, obtaining high-quality reference ge-
nome sequence maps has become the basis for functional gene stud-
ies of various species (Venter et al., 2001). Especially, high-quality 
genomes of many insects have helped us to understand the molecu-
lar mechanisms of their ecological and evolutionary characteristics. 
For example, the analyses of the digestion and detoxification genes 
based on the genome of Hypothenemus hampei revealed the mech-
anism of food seeking and pathogenic bacteria resistance, which 
can help develop insecticides, biological control agents and traps 
(Vega et al., 2015). The relationships between the expansion of the 
gene families of Spodoptera litura (gustatory receptor, cytochrome 
P450, carboxy-lesterase as well as glutathione-S-transferase) and 
the resistance to various insecticides were analysed based on the 
high-quality genome data, providing new insights into the evolu-
tionary mechanism, host plant selection and ecological adaptability 
of Lepidoptera (Cheng et al., 2017). The high-quality draft genome 
of Propylea japonica provides invaluable resource for understanding 
the molecular mechanisms of stress resistance in Coleoptera (Zhang 
et al., 2020). Two gene families associated with environmental adap-
tation (odorant receptor and cytochrome P450) were analysed, and 

a putative biosynthesis pathway of the defence alkaloid harmonine 
was successfully constructed based on the chromosome-level ge-
nome assembly of Harmonia axyridis (Chen et al., 2021).

The fauna of extant Neuropterida comprises nearly 6600 spe-
cies of 20 families from three orders (Neuroptera, Megaloptera and 
Raphidioptera) (Yang et al., 2018), which is the key group connect-
ing Holometabola and Hemimetabola. Many species of this group 
are important predators of pests with great potential in biological 
pest management such as green lacewings, brown lacewings, dusty 
lacewings and so on. Chrysopa pallens (Rambur, 1838) (Neuropterida: 
Neuroptera: Chrysopidae) is one of the most important preda-
tory species widely used in agricultural and forestry ecosystems 
(Figure 1). It is the dominant species widely distributed in China ex-
cept for the Tibet Plateau (Yang et al., 2018) and also distributed in 
Japan, Korea and Europe (Yang et al., 2005). Both larvae and adults 
of this species are predacious, feeding on aphids, coccids, thrips, 
planthoppers, whiteflies and some lepidopteran insects, as well as 
mites in agroforestry ecosystems (Bai et al., 2005; Winterton & de 
Freitas, 2006). In addition, laboratory experiments showed that C. 
pallens demonstrated an effective control capacity on the eggs and 
larvae of S. frugiperda (Xu et al., 2019). The high pest controlling po-
tentials of C. pallens were underlain by its wide diet, high predation, 
strong adaptability and high egg production (about 2000 eggs per 
female) (Miller et al., 2004; Tauber et al., 2000). However, the mo-
lecular mechanisms of why C. pallens serve as such an excellent bio-
control agent remain unclear.

F I G U R E  1  Ecological photos of 
Chrysopa pallens. (a) Egg, (b) larva, (c) pupa, 
(d) adult
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Scholars from all over the world had carried out researches on 
the olfactory tropism, artificial feeding (Ali et al., 2018), mechanisms 
of resistance to chemical pesticides (Liu & Zeng, 2014) and pest-
control abilities of C. pallens (Xu et al., 2019), laying foundations for 
further exploring their potential application in biological control. C. 
pallens had evolved a sophisticated olfactory system to accurately 
sense a large amount of chemical information in order to seek prey, 
locate host plants, find mates and spot dangers (Li et al., 2019). 
Previous studies have shown that using chemicals to guide C. pal-
lens predation on pests could effectively improve their abilities to 
search for prey (Cui et al., 2015; Koczor et al., 2010). It is necessary 
to study the potential mechanism of their olfactory system for ef-
fective biological control (Hesler, 2016). A normalized transcriptome 
of C. pallens was sequenced by Li et al. (2013), and a large number of 
candidate chemosensory genes were identified. A full-length cDNA 
library from the antenna of C. pallens was constructed by Wang 
et al. (2014), and the functions of OBPs (CpalOBPs), the clone of 
olfaction-related genes of antennae as well as the mechanism of 
information recognition of C. pallens were studied. All the results 
mentioned above provided a basis for exploring the mechanisms of 
chemoreception in C. pallens. However, the olfactory mechanism 
of C. pallens at the genetic level is still not clarified. The absence 
of genomic information about C. pallens has limited further study 
into the molecular mechanisms of its ecological and evolutionary 
characteristics.

To date, there are more than 600 insect genomes sequenced 
and available at GenBank (accession date, 15 April 2021). 
However, no chromosome-level genome has been published for 
any species of Neuroptera so far except one of Chrysoperla carnea 
(GCA_905475395.1) uploaded to NCBI during the preparation of this 
manuscript, which remain unpublished. Therefore, we generated a 
high-quality genome assembly of a green lacewing species C. pallens, 
which would provide invaluable information for further study of C. 
pallens and promote large-scale breeding and commercial utilization 
of C. pallens. This study will also facilitate the development of mod-
ern pest control strategies. Besides, it will also serve as a reference 
for further comparative genomic studies of Neuropterida and even 
Insecta.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling and genome sequencing

The specimens used in the present study were reared at Langfang 
station of the Chinese Academy of Agricultural Sciences and in-
bred under laboratory conditions. All samples were selected from 
newly-emerged unfed adults to avoid contamination. There were 
50 female and 10  male adults used for genome sequencing. The 
whole bodies of samples were used for the construction of each 
library. High-quality genomic DNA was extracted with the Qiagen 
DNeasy Blood & Tissue kit. DNA was quantified by 0.75% agarose 
gel electrophoresis, Nanodrop spectrophotometry (Thermo Fisher) 

and Qubit 3.0 fluorometry (Invitrogen). RNA was extracted with the 
TRIzol Reagent kit.

A Single Molecule Real-Time DNA library was prepared for se-
quencing using SMRTbell Template Prep Kit 2.0 with an insert size 
of 40  kb. The genome of C. pallens was sequenced with PacBio 
Sequel II System using 25  male adults. Illumina paired-end library 
(with 350 bp insert size) was prepared with Truseq DNA PCR-free 
kit using five male adults. Illumina paired-end reads were used for 
error checking and as references to Hi-C. The RNA library was con-
structed with Illumina TruSeq RNA v2 Kit according to the manufac-
turer's instructions using 10 female and 10 male adults. Hi-C library 
was constructed using 10 male adults. The construction of a Hi-C 
library included cross-linking of formaldehyde, restriction enzyme 
digestion, ends repair of fragments, DNA cyclization, DNA purifica-
tion and other steps with MboI as the restriction enzyme.

2.2  |  Genome size estimation and assembly

Quality control of the second-generation Illumina data was carried 
out by BBTools v38.67 (qtrim=rl trimq =20  minlen =15 ecco =t 
maxns =5 trimpolya =10 trimpolyg =10 trimpolyc =10) (Khan et al., 
2012). Genome survey was conducted based on K-mer distribution 
analyses using GenomeScope v2.0 (Ranallo-Benavidez et al., 2020) to 
predict the genome size, heterozygosity and proportion of repeat 
content to select appropriate assembly tools and adjust correspond-
ing parameter (-k 21 -p 2 -m 10,000) (Kirkness et al., 2003). The 
k-mer frequency was evaluated using BBTools v38.67 (Khan et al., 
2012) and the length was set to 21 k-mer.

For genomic contig assembly, the long PacBio reads were cor-
rected by NextDenovo v2.3.0 (seed_cutoff =20,000) (https://github.
com/Nexto​mics/NextD​enovo). The corrected PacBio sequences 
were assembled using Raven v1.2.2 (--weaken -p 0) (Vaser & Šikić, 
2021). After the preliminary assembly of the genome, NextPolish 
v1.3.0 (Hu et al., 2019) was used to perform one round of long-read 
polishing and two rounds of short-read polishing to get the corrected 
genome sequence, which further improves the assembly accuracy. 
In this process, Minimap2 v2.17 (Li, 2018) with default parameters 
were used to align the second-generation/third-generation data to 
the third-generation assembled genome. SAMTools v1.9 (samtools 
view) (Li et al., 2009) was used for format conversion (SAM to BAM).

3D-DNA v180922 (Dudchenko et al., 2017; Nene et al., 2007) 
process was used to conduct chromosome anchoring based on the 
Hi-C sequences. The adapter sequences of raw reads were trimmed 
and low-quality PE reads were removed using Juicer v1.6.2 (Durand 
et al., 2016) to obtain clean data. Then, the clean reads were mapped 
to the draft genome using 3D-DNA v180922 (Dudchenko et al., 2017; 
Nene et al., 2007). Contigs in the same chromosome were separated 
by 100 Ns. A heat map was constructed based on the interaction 
signals revealed by the effective mapping read pairs. The sequencing 
depth of each locus and the average depth of chromosomes were 
calculated using SAMtools (Li et al., 2009). Illumina paired-end reads 
of male adults were sequenced separately and then were aligned to 

https://github.com/Nextomics/NextDenovo
https://github.com/Nextomics/NextDenovo
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the C. pallens assembled genome to identify the sex chromosomes (X 
and Y) in C. pallens. The average sequencing depth and length were 
based to identify chromosome X and Y.

Potential contamination sequences were searched and removed 
from the nucleotide sequence database (NT) (Stoesser et al., 2001) 
and UniVec (https://www.ncbi.nlm.nih.gov/tools/​vecsc​reen/unive​
c/) using blast+ (i.e., Blastn) v2.9.1 (Camacho et al., 2009) and up-
loaded to GenBank for reconfirmation. The completeness of the 
final draft genome was assessed using busco v3.0.1 (Simão et al., 
2015) with insecta_odb10 reference, predicting the integrity of the 
genome with the percentage of single-copy orthologues founded in 
the insect orthologues library.

2.3  |  Genome annotation

The repeat sequences were identified by both homology-based and 
de novo prediction methods. Firstly, the LTR search (-LTRStruct) 
was processed under RepeatModeler v2.0.1 (https://github.com/
Dfam-conso​rtium/​Repea​tModeler) and the de novo repeat library 
was built based on the specific structure of repeat sequence and the 
principle of de novo repeat library. A custom library was then formed 
by combining Dfam_3.3 (http://www.dfam.org/) (Storer et al., 2021) 
and RepBase-20181026 databases (https://www.girin​st.org/repba​
se/) under the default parameters (Jurka et al., 2005). Finally, the 
repeat sequences were searched by RepeatMasker v4.0.9 with the 
default commands (http://repea​tmask​er.org/cgi-bin/WEBRe​peatM​
asker) according to the custom library.

The protein coding genes were annotated by integrating the ev-
idences of ab initio, transcriptome-based prediction and homology-
based annotations. Firstly, the protein coding gene structures 
were predicted using maker v3.01.03 with the default commands 
(Cantarel et al., 2008). Different pieces of evidences were weighted 
using EVidenceModeler (EVM) (Haas et al., 2008). Augustus v3.3.4 
(http://augus​tus.gobics.de/) (Stanke et al., 2006) and GeneMark-ES/
ET/EP 4.59_lic (Lomsadze et al., 2014) were automatically trained 

by BRAKER (Tomas et al., 2021) to improve the prediction accu-
racy combined with transcriptome and protein homology. Then, 
the transcriptome information was used to align to the genome 
by hisat2 v2.2.0 (Kim et al., 2015) to generate BAM files. The ar-
thropod protein sequences were extracted from the OrthoDB10 
v1 data (Kriventseva et al., 2018). Transcriptome assembly with 
reference genome was performed using Stringtie v2.1.4 (Kovaka 
et al., 2019). For the homology-based approach, proteins of re-
lated species were downloaded from GenBank, such as Drosophila 
melanogaster (Diptera), Tribolium castaneum (Coleoptera), Apis mel-
lifera (Hymenoptera), Bombyx mori (Lepidoptera) and Rhopalosiphum 
maidis (Hemiptera) (Table 1). Finally, the preparation files obtained 
from the above three approaches were imported into maker v3.01.03 
(Cantarel et al., 2008) for integrated annotations. EVM weights for 
the three types of evidences were set as: transcriptome 8, protein 
homologue 2, and ab initio 1.

Two strategies were used for the annotation of gene functions. 
In the first strategy, the gene functions were predicted by align-
ing with existing databases, that is, Uniprotkb (Swissprot +Trembl) 
(https://www.unipr​ot.org/) (Morgat et al., 2019) and the nonredun-
dant protein sequence database (NR) using the sensitive mode of 
Diamond v0.9.24 (--more -sensitive -e 1e-5) (Buchfink et al., 2015). In 
the second strategy, the gene functions were predicted by aligning 
with a comprehensive database, that is, gene ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and Reactome. Five 
databases including protein families (Pfam) (El-Gebali et al., 2019), 
Smart (http://smart.embl-heide​lberg.de/) (Letunic et al., 2021), 
Gene3D v21.0 (http://gene3d.bioch​em.ucl.ac.uk/) (Lewis et al., 
2018), Superfamily (Wilson et al., 2009) and CDD (Marchler-Bauer 
et al., 2017) were searched by InterProScan 5.41–78.0 (Quevillon 
et al., 2005). At the same time, Eggnog v5.0 (http://eggnog.embl.de) 
database was searched with EggNOG-mapper v2.0.1 (Huerta-Cepas 
et al., 2017). The results of these two strategies were combined to 
get the final prediction of gene functions.

Non-coding RNAs including transfer RNAs (tRNAs), microRNAs 
(miRNAs), ribosome RNAs (rRNAs) and small nuclear RNAs (snRNAs) 

TA B L E  1  Information of species used in this study

Order Species NCBI accession References

Ephemeropterp Cloeon dipterum GCA_902829235.1 Almudi et al. (2020)

Ispptera Coptotermes formosanus GCA_013340265.1 Itakura et al. (2020)

Hemiptera Rhopalosiphum maidis GCA_003676215.3 Chen et al. (2019)

Thysanoptera Thrips palmi GCA_012932325.1 Guo et al. (2020)

Coleptera Tribolium castaneum GCA_000002335.3 Richards et al. (2008)

Diptera Drosophila melanogaster GCA_000001215.4 Adams et al. (2000)

Hymenoptera Apis mellifera GCA_003254395.2 Solignac et al. (2007)

Trichoptera Stenopsyche tienmushanensis GCA_008973525.1 Luo et al. (2018)

Lepidoptera Bombyx mori GCA_014905235.2 International Silkworm Genome 
Consortium (2008)

Siphonaptera Ctenocephalides felis GCA_003426905.1 Driscoll et al. (2020)

Neuroptera Chrysopa pallens this study this study

https://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/
https://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/
https://github.com/Dfam-consortium/RepeatModeler
https://github.com/Dfam-consortium/RepeatModeler
http://www.dfam.org/
https://www.girinst.org/repbase/
https://www.girinst.org/repbase/
http://repeatmasker.org/cgi-bin/WEBRepeatMasker
http://repeatmasker.org/cgi-bin/WEBRepeatMasker
http://augustus.gobics.de/
https://www.uniprot.org/
http://smart.embl-heidelberg.de/
http://gene3d.biochem.ucl.ac.uk/
http://eggnog.embl.de
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were also identified. The rRNAs, snRNAs and miRNAs were de-
tected from the Rfam database (release 13.0) (Kalvari et al., 2018) 
using Infernal v1.1.3 (Nawrocki & Eddy, 2013). The tRNAs were 
predicted using tRNAscan-SE v2.0 with “EukHighConfidenceFilter” 
(Lowe & Eddy, 1997). The rRNAs and subunits were predicted using 
RNAmmer v1.2 (Lagesen et al., 2007).

2.4  |  Orthology, synteny and phylogenetic 
reconstruction

Orthologues from 11 insect species were clustered using the 
OrthoFinder v2.5.2 (Emms & Kelly, 2015) pipelines with default pa-
rameters (Table 1). According to the results of gene family clustering 
obtained from OrthoFinder v2.5.2 (Emms & Kelly, 2015), single-copy 
genes were used for phylogenetic reconstruction. Firstly, mafft 
v7.394 (Katoh & Standley, 2013) was used to align the homologous 
region of the sequences with the L-INS-I strategy. The unreliable ho-
mologous alignments were filtered using bmge v1.12 (-m BLOSUM90 
-h 0.4) (Criscuolo & Gribaldo, 2010). Alignment sequences were 
then combined into a supermatrix using FASconCAT-G v1.04 (Kück 
& Longo, 2014). Phylogenetic reconstruction was performed with 
IQ-TREE v2.0-rc1 (-m MFP --mset LG --msub nuclear --rclusterf 10) 
(Nguyen et al., 2015) based on the supermatrix and support values 
for nodes were assessed by Ultrafast Boostrap (Minh et al., 2013) 
and SH-aLRT algorithm (-B 1000 --alrt 1000) (Guindon et al., 2010). 
Calibration points applied to estimate the divergence time of C. pal-
lens were set based on the fossil records in the pbdb database (https://
paleo​biodb.org/navig​ator/) as well as from Misof et al. (2014) and 
Nel et al. (2013) (Table 2).

Tribolium castaneum was used as the reference to obtain relevant 
information to study the variation of interspecific chromosomes 
due to the lack of published high quality genomes of Neuropterida. 
There are only one chromosome-level genome of Chrysoperla carnea 
(GCA_905475395.1) uploaded to ncbi during the preparation of this 
manuscript, which remain unpublished and another scaffold-level 
genome of Neoneuromus ignobilis (GCA_014529405.1). The pro-
tein sequences of C. pallens and T. castaneum were compared with 
“blastp-like” using MMseq2 v11-E1A1C with default parameters (-s 
7.5 --alignment-mode 3 --num-iterations 4 -e 1e-5 --max-accept 5) 
(Steinegger & Söding, 2017). In addition, the all.blast result file and 
the integrated annotation file (all.gff file) were used as input files to 
obtain the results of collinearity analyses by MCScanX (Wang et al., 
2012). Finally, the diagram was drawn by TBtools v1.0692 (Chen 
et al., 2020).

2.5  |  Gene family expansion and 
contraction analyses

Expansions and contractions of orthologous gene families were de-
termined using computational analysis of family evolution (CAFÉ) v4.2.1 
(Han et al., 2013) with default parameters (p = .01) according to the 

gene families and phylogenetic tree. The random genetic birth and 
death rate was simulated to predict the evolution of gene families 
in different species at various branches of evolution to assess the 
expansion and contraction of gene families at each node on the phy-
logenetic tree. The significantly expanded gene families were clas-
sified through r package clusterProfiler v3.14.3 (Yu, Wang, et al., 
2012) according to the gene annotation database. Then, the redun-
dancy was removed to get final results of the gene enrichment.

The selection of rapidly expanded families were analysed using 
paml 4 (Yang, 2007) based on the CDS with site models to further 
understand the evolution of the expansion of gene families. The 
phylogenetic tree used was reconstructed with iq-tree v2.0-rc1 
(Nguyen et al., 2015) with ambiguity data filtered before the formal 
calculation. The specific model used were M0 (one rate), M1a (neu-
tral) – M2a (selection), M7 (beta) – M8 (beta & w) (i.e., “NSsites=0 
1 2 7 8”). The results of the M1a–M2a and M7–M8 pairs of models 
were compared using the likelihood ratio test (LRT) (p =  .05). The 
gene family was identified as being positively selected only if M2a 
and M8 confirmed that the family had positive selection sites at the 
same time.

3  |  RESULTS AND DISCUSSION

3.1  |  Genome sequencing and assembly

About 78.59  Gb clean reads were generated by Illumina paired-
ended short-read sequencing and 113.72 Gb filtered subreads were 
obtained by PacBio long-read sequencing (Table 3). The average 
length and N50 of PacBio long reads were 32.86 kb and 18.31 kb, 
respectively. Hi-C fragment libraries sequencing resulted in about 
75.48 Gb (Table 3).

The genome of C. pallens was predicted to be about 526.01–
529.11  Mb indicated by the distribution frequency of 21-mers 
(Table 4). The kmer analysis shows that the genome of C. pallens has 
high heterozygosity ranged from (1.48%–1.54%) (Table 4). The ge-
nome size was reduced from 555.40 to 539.70 Mb after the removal 
of heterozygous sequences (Table S1). These characteristics implied 
that the C. pallens genome harboured a high degree of complexity. 
The mitochondrial genome of C. pallens was assembled and removed 
by aligning with the genome. An assembled genome of 538.35 Mb 

TA B L E  2  Information of calibration times used in this study

Placement
Minimum 
age (Ma)

Maximum 
age (Ma)

Diptera 242 252

Pterygota – 443

Paraneoptera 315 323

Holometabola 315 383

Coleoptera +Neuroptera 307 323

Trichoptera +Lepidoptera+ Diptera 
+Siphonaptera

311 323

https://paleobiodb.org/navigator/
https://paleobiodb.org/navigator/
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slightly larger than predicted was finally obtained including 1639 
contigs with contig N50 of 1.32 Mb long and the longest contig of 
12.21 Mb. The average GC content was 27.08% (Table 5). The as-
sembly was further improved with Hi-C data, resulting in 552 scaf-
folds with a scaffold N50 of 89.78 Mb long and the longest scaffold 
of 141.00 Mb (Table 5). The results of each assembly step are shown 
in Table S1. Our genome assembly is highly complete with 98.10% 
BUSCO completeness, whereas only 0.30% and 1.60% BUSCO 

genes are fragmented and missing, respectively. This assembly in-
cludes seven pseudochromosomes which is consistent with the 
chromosome number identified by karyotype analyses (Figure 2a). 
In total, the length of pseudochromosomes was 517.21  Mb and 
contained 96.07% of the genome sequence. The pseudochromo-
somes ranged from 10.14 Mb to 141.00 Mb in length. The average 
sequencing depth of X chromosome (73.16x) was significantly lower 
than other chromosomes (deeper than 100x) and the length of Y 
chromosome was extremely short (10.14 Mb) (Table 6). The GC con-
tent of Y chromosome was the lowest (Figure 2b). The final genome 
sequences were submitted to GenBank under accession number 
JAEMTY000000000.

3.2  |  Gene annotation

A total of 206.21 Mb of repeat sequences were identified constitut-
ing 38.31% of the genome of C. pallens. The three most abundant 
classes of repeat sequences included unclassified (24.65%), DNA el-
ements (3.82%) and simple repeats (2.13%), respectively (Table S2). 
The high proportion of unclassified elements may be due to the lack 
of studies on the repeat sequences of Neuropterida.

In total, 12,840 protein-coding genes were predicted in the 
genome of C. pallens (Table 5). The average lengths of gene, CDS, 
exon, and intron regions were 7555.93 bp, 1625.29 bp, 409.18 bp, 
and 1070.23 bp, respectively. The average exon number per gene 
was 6.03. The completeness of protein-coding gene predictions was 
further evaluated by BUSCO (Simão et al., 2015) (insecta_odb10) 
to be 97.50%, including 93.90% single-copy and 3.60% duplicated 
BUSCO genes (Table 5). 11,583 annotated genes (90.21%) matched 
one or more records in the UniProtKB database, while 10,879 genes 
(84.73%) encode proteins with at least one known domain in the 
InterPro database (Quevillon et al., 2005). Additional functional an-
notations identified 9503 GO terms, 7569 KO terms, 2662 enzyme 
codes, 8503 KEGG and 9580 reactome pathways, and 10,759 COG 
categories.

There were 2361 noncoding RNA sequences annotated totally, 
including 1271 tRNAs, 607 ribosomal RNAs (rRNAs), 182  small 
nucleolar RNAs (snRNAs), 52 microRNAs (miRNAs), 15 small RNA 
(sRNAs) and others (Table S3). SnRNAs included 142  spliceoso-
mal RNAs, four minor spliceosomal RNAs, one (small Cajal body-
specific RNA) scaRNA (SCARNA8) and others (Table S3). The 
numbers of rRNAs and tRNAs are significantly higher than that 
of other insects, which might indicate vigorous protein synthesis 
of C. pallens.

The type of 
libraries

Number of 
reads Raw data (bp)

Read length 
(bp)

N50 contig 
length (bp)

Survey 523,921,116 78,588,167,400 150 –

RNA 112,484,672 16,872,700,800 150 –

PacBio 6,210,590 113,715,446,179 18,309.93 32,855

Hi-C 251,600,926 75,480,277,800 150 –

TA B L E  3  Sequencing data used for the 
Chrysopa pallens genome assembly

TA B L E  4  Statistical results from the genome survey

Property Minimum Maximum

Homozygous (aa) 98.46% 98.52%

Heterozygous (ab) 1.48% 1.54%

Genome haploid length (bp) 526,010,433 529,108,099

Genome repeat length (bp) 87,197,893 87,711,400

Genome unique length (bp) 438,812,540 441,396,699

Model fit 79.74% 92.05%

Read error rate 0.59% 0.59%

TA B L E  5  Genome assembly and annotation statistics of 
Chrysopa pallens

Statistic Value

Genome assembly

Assembly size (Mb) 538.35

Number of scaffolds/contigs 552/1639

Longest scaffold/contig (Mb) 141.00/12.21

N50 scaffold/contig length (Mb) 89.78/1.32

GC (%) 27.08

Gaps (%) 0.02

BUSCO completeness (%) 98.10

Gene annotation

Protein-coding genes 12,840

Mean protein length (aa) 540.79

Mean gene length (bp) 7555.93

Exons/introns per gene 6.03/4.75

Exon (%) 5.89

Mean exon length 409.18

Intron (%) 12.13

Mean intron length 1070.23

BUSCO completeness (%) 97.50
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3.3  |  Orthology, synteny and phylogenetic 
relationships

Comparative genomic analyses were performed between C. pal-
lens and 10 other insects representing major insect orders (i.e., 
Ephemeroptera, Isoptera, Hemiptera, Thysanoptera, Hymenoptera, 
Siphonaptera, Diptera, Trichoptera, Lepidoptera, Coleoptera and 
Neuroptera). In total, 138,491 genes were clustered into 13,857 gene 
families using OrthoFinder (Table S4). Among them, 967 were single-
copy and 3053 were multicopy in all 11 insect genomes (Figure 3a, 
Table S4). In the genome of C. pallens, 11,444 of the 12,840 genes 
were assigned to 8357 families that are also present in other insects, 
whereas the remaining 936 genes (223 gene families) were specific 
for this species (Table S5).

Among the 967  single-copy genes, 879  genes (321,918 amino 
acid sites) passed the symmetry test in IQ-Tree (Nguyen et al., 
2015) and were used for phylogenetic reconstruction. All nodes 
in the estimated ML tree were fully supported (100/100 for UFB/
SH-aLRT). The phylogenetic tree supported Neuropterida being the 
sister group to Coleoptera which was consistent with former studies 
based on different molecular markers, such as 18S rRNA (Kjer, 2004), 
Vitellogenin sequences (Liu et al., 2015), transcriptome (Misof et al., 
2014; Wang et al., 2019) and mitochondrial genomes (Song et al., 
2016) (Figure 3a). Neuropterida and Coleoptera separated from each 
other about 300 million years ago (Figure 3a).

Comparison of the chromosome-level genome assemblies of C. 
pallens and T. cataneum revealed poor collinearity in general, which 
may be due to the relatively long evolutionary distance between 
the two species. Only X chromosome had an obvious large syntenic 
block (Figure 3b). There is one chromosome-level genome of Ch. car-
nea (GCA_905475395.1) uploaded to NCBI during the preparation 
of this manuscript, which remain unpublished. Further analyses will 
be performed in the future.

3.4  |  Gene family expansion and contraction

The analysis of gene family evolution showed that 912 gene fami-
lies were expanded and 3704 gene families were contracted in the 
genome of C. pallens compared to that of T. cataneum (Coleoptera) 

F I G U R E  2 Heatmap of genome-wide Hi-C data and overview of the genomic landscape of Chrysopa pallens. (a) The heatmap shows all-by-
all interactions among seven chromosomes of C. pallens. Resolution: 500 kb. There were strong intrachromosomal interactions (blocks on the 
diagonal line), while interchromosomal interactions were weaker. The frequencies of Hi-C interaction links are represented by the colour, which 
ranges from white (low) to red (high). (b) Blocks on the outmost circle represent all seven chromosomes of C. pallens. Peak plots from outer to inner 
circles represent the length of each chromosome, the GC content of each chromosome, protein coding genes, the density of repeat sequences 
(SINE, short interspersed elements; LINE, long interspersed elements; LTR, long terminal repeat elements; simple repeats), respectively

TA B L E  6  Chromosome length and average sequencing depth

Chromosome Length (bp)
Average sequencing 
depth (x)

Chr1 140,998,244 105.33

Chr2 115,703,577 106.76

Chr3 89,781,665 107.80

Chr4 73,683,371 108.56

Chr5 61,463,935 107.43

ChrX 25,444,600 73.16

ChrY 10,136,392 113.63
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(Figure 4). Among them, 49 orthologous groups were expanded sig-
nificantly (p < .05), including genes encoding C2H2-type zinc finger 
proteins, trypsin, zinc finger Y-chromosomal protein, acyltransferase, 
facilitated trehalose transporter, histone-lysine N-methyltransferase 
PRDM9-like protein, longitudinals lacking protein, ionotropic recep-
tor, cytochrome P450, leucine rich repeat and so on (Figure S1). On 
the other hand, only one orthologous group was contracted signifi-
cantly (p < .05).

GO analyses showed that the expanded gene families were 
enriched for functions related to digestion, immunity and nerves 
(Figure 5a), which might explain why C. pallens could serve as an 
excellent biocontrol agent. For instance, the successful capture 
of prey is attributed to the ability of C. pallens to effectively per-
ceive information in the environment, in which the olfactory sys-
tem on antennae plays a key role (Li et al., 2019). Li et al. (2015) 
cloned five OBP genes and analysed the tissue expression profiles 
of CpalOBPs in five strains of C. pallens using quantitative RT-PCR 
and demonstrated that CpalOBP10 and the OBP7 of aphids have 
close evolutionary relationships and can both mediate the percep-
tion of green leaf volatiles and (E)-β-farnesene later (Li et al., 2017). 
However, the underlying molecular mechanisms were not clarified. 

Further researches on olfactory related genes in C. pallens based on 
the high-quality genome will help to clarify the olfactory recognition 
mechanism of insects at the genetic level and to control the behavior 
of natural enemies.

The reproduction of C. pallens was proven to be closely related 
to the weight of females and the activities of trypsin-like as well as 
chymotrypsine-like enzymes (Liu, Mao, & Zeng, et al., 2015). Han 
et al. (2017) analysed the transcriptome of female adults of C. pal-
lens under starvation as well as feeding conditions and found that 
different expressed genes (DEGs) were mainly involved in ribosome 
biogenesis, protein processing in endoplasmic reticulum, biosynthe-
sis of amino acids, and carbon metabolism. They also annotated four 
vitellogenins, three insulin-like peptides and two insulin receptors 
genes. However, these earlier studies of C. pallens genes mainly re-
lied on the transcriptome data which carry incomplete information. 
The chromosome-level genome of C. pallens will provide more in-
formation, which will contribute to the further study of the molecu-
lar mechanisms of its vitellogenin protein, nutrient metabolism and 
reproduction.

Interestingly, the gene families involved in cold acclimation and 
wax synthesis were also expanded in the genome of C. pallens, which 

F I G U R E  3  Phylogenetic tree, gene orthology, and synteny blocks. The phylogenetic tree was constructed based on 879 single-copy gene 
families with 11 insects using maximum likelihood methods by IQ-TREE (shown in Table 1). The length of branch indicated the divergence 
time. Bootstrap values (UFB/SH-aLRT) were 100 at all nodes. Bars are subdivided to represent different types of orthologues with 
different colours. 1:1:1 (single copy orthologous genes in common gene families); N:N:N (mutiple copy orthologous genes in common gene 
families); Specific (genes from unique gene family from each species); Other (genes that do not belong to any above-mentioned orthologue 
categories); Unassigned (orthologues which cannot be assigned into any orthogroups) (b) Synteny blocks between Chrysopa pallens and 
Tribolium cataneum
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may be related to its overwintering, spinning and cocooning as well 
as the formation of egg stalks. KEGG pathways enriched in expanded 
gene families mainly included insect pheromone synthesis, detoxifi-
cation metabolism, digestion and other related pathways as well as 
wax synthesis (cutin, suberine and wax biosynthesis) (Figure 5b). In 
the long evolutionary process of adaptation, insects have gradually 
developed adaptations to low temperatures. Many insects are able 

to build up their tolerance before cold winter temperatures set in to 
improve the survival of their populations (Bale, 1987; Danks, 2006; 
Lee, 1989). The cold hardiness of the prepupae of C. pallens show 
obvious seasonal characteristics. The prewinter and midwinter pre-
pupae had significantly higher cold tolerance than those in summer 
and post-wintering (Yu, Shi, et al., 2012). C. pallens overwintered by 
adopting a freeze avoidance strategy, and the diapausing prepupae 

F I G U R E  4  Gene family evolutions among genomes of Chrysopa pallens and other species. Red indicates gene family expansions, green 
indicates gene family contractions, and blue indicates gene family rapid evolutions. The length of branch indicated the divergence time

F I G U R E  5  Enrichment analyses of expanded gene families of Chrysopa pallens. (a) GO enrichment map of gene families expanded 
rapidly. The vertical axis represents the path name and the horizontal axis represents gene ratio. The size of the dot indicates the number 
of differentially expressed genes in the pathway and the colour of the point corresponds to different q-value ranges. (b) KEGG enrichment 
map of gene families expanded rapidly. The vertical axis represents the path name and the horizontal axis represents gene ratio. The size of 
the dot indicates the number of differentially expressed genes in the pathway and the colour of the point corresponds to different q-value 
ranges
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increased their cold tolerance by reducing the supercooling point. 
As the short-day diapause type, the prepupae of C. pallens, such as 
Ostrinia furnacalis (Gong et al., 1984) and Chrysoperla sinica (Guo 
et al., 2006), can improve the cold resistance through their own part-
time diapause. The gene families responding to cold acclimation 
were found to be expanded in C. pallens in this study (Figure 5a). 
However, the mechanism of how C. pallens goes through the winter 
still needs more specialized researches in the future.

Chrysopa pallens is a complete metamorphosis insect as its devel-
opmental stages consist of egg, larva, prepupa, pupa and adult (Yang 
et al., 2005). Interestingly, each egg of Chrysopidae is attached to 
the top of a filamentous petiole while the eggs of other neuropteri-
dan insects are not. The mature larvae often cocoon on the wall of 
the back of the leaf. There are filaments attached to the attachment 
outside the cocoon. The expansion of gene families involved in wax 
synthesis in the genome of C. pallens may be related to these biolog-
ical habits mentioned above.

To further understand the evolution of expanded gene families, 
the 49 rapidly expanded gene families were analysed for their se-
lective pressures. Three families related to digestion were found to 
be positively selected, namely trypsin (OG0001146), chymotrypsin 
(OG0001336) and zinc finger MYM-type protein 1 (OG0000501), 
which may be one of the important driving forces for the wide feed-
ing behaviours of C. pallens.

4  |  CONCLUSIONS

In this study, a chromosome-level genome assembly was reported 
for C. pallens, an important predatory biological control agent. The 
key functional genes expanded in C. pallens were identified, including 
those involved in digestion, detoxification and chemoreception, imply-
ing why green lacewings can serve as an excellent biocontrol agent. 
The chromosome-level genome of C. pallens also provides insights 
into the genomics of Neuropterida and would serve as an invaluable 
reference for further comparative genomic studies of Neuropterida 
and even Insecta. In addition, it will support more accurate and reli-
able studies about the habits of C. pallens at the genomic level which 
may help to improve its control efficiency. The high quality genome 
will also provide a solid foundation to promote the development and 
utilization of natural enemies in biological pest control in the future.
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