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Abstract

Background: Leptin and nitric oxide (NO) on their own participate in the control of non-shivering thermogenesis. However,
the functional interplay between both factors in this process has not been explored so far. Therefore, the aim of the present
study was to analyze the impact of the absence of the inducible NO synthase (iNOS) gene in the regulation of energy
balance in ob/ob mice.

Methods and Findings: Double knockout (DBKO) mice simultaneously lacking the ob and iNOS genes were generated, and
the expression of molecules involved in the control of brown fat cell function was analyzed by real-time PCR, western-blot
and immunohistochemistry. Twelve week-old DBKO mice exhibited reduced body weight (p,0.05), decreased amounts of
total fat pads (p,0.05), lower food efficiency rates (p,0.05) and higher rectal temperature (p,0.05) than ob/ob mice.
Ablation of iNOS also improved the carbohydrate and lipid metabolism of ob/ob mice. DBKO showed a marked reduction in
the size of brown adipocytes compared to ob/ob mutants. In this sense, in comparison to ob/ob mice, DBKO rodents showed
an increase in the expression of PR domain containing 16 (Prdm16), a transcriptional regulator of brown adipogenesis.
Moreover, iNOS deletion enhanced the expression of mitochondria-related proteins, such as peroxisome proliferator-
activated receptor c coactivator-1 a (Pgc-1a), sirtuin-1 (Sirt-1) and sirtuin-3 (Sirt-3). Accordingly, mitochondrial uncoupling
proteins 1 and 3 (Ucp-1 and Ucp-3) were upregulated in brown adipose tissue (BAT) of DBKO mice as compared to ob/ob
rodents.

Conclusion: Ablation of iNOS improved the energy balance of ob/ob mice by decreasing food efficiency through an increase
in thermogenesis. These effects may be mediated, in part, through the recovery of the BAT phenotype and brown fat cell
function improvement.
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Introduction

Energy homeostasis is a highly regulated process that requires a

tight balance between caloric intake and energy expenditure [1].

The latter is a key determinant of energy balance and includes

three components: basal metabolic rate, physical activity, and

adaptive thermogenesis [2,3]. In this sense, brown adipose tissue

(BAT) constitutes a highly active metabolic organ that plays a

crucial role in non-shivering thermogenesis, defined as the heat

production in response to cold or overfeeding [4]. Until recently,

BAT was thought to be important only in small mammals and

newborn humans. However, functional BAT was recently

identified in adults, suggesting a role in human metabolism

[5,6]. In brown adipocytes, thermogenesis is mainly mediated by

sympathetically innervated b3-adrenergic receptors, leading to the

activation of the BAT-specific uncoupling protein-1 (Ucp-1). This

protein is a proton transporter located in the inner mitochondrial

membrane that diverts the energy from the mitochondrial

respiratory chain from ATP synthesis to heat production [7].

The Ucp-1 promoter is regulated by several transcriptional

coactivators, including the peroxisome proliferator-activated

receptor c (PPARc) coactivator-1 a (Pgc-1a), being also involved

in the regulation of crucial aspects of energy metabolism [8,9].

Pgc-1a is strongly induced in murine BAT during cold exposure

activating the thermogenic gene program of brown fat through the

control of the gene expression levels of Ucp-1 and Pgc-1a itself. In

this regard, it has been recently described that during BAT

differentiation PR domain containing 16 (Prdm16) directly binds

to Pgc-1a, allowing the activation of Ucp-1 and other brown fat-

specific genes [10,11]. Moreover, it has been demonstrated that

the NAD-dependent deacetylase sirtuin-1 (Sirt-1) deacetylates and

activates Pgc-1a in the liver and BAT [12,13], allowing its union
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to target genes and increasing the rate of gene transcription. The

key role of the correpresor of nuclear receptor-interacting protein

1 (Nrip), also known as receptor-interacting protein 140 (Rip140), in

energy homeostasis by suppressing the transcription of Ucp-1 and

other metabolic genes has been also reported [14,15].

Leptin, the product of the ob gene, plays a key role in the control

of body weight by suppressing food intake through actions on

hypothalamic receptors and by increasing energy expenditure via

the activation of the sympathetic nerve activity and the turnover of

norepinephrine in BAT [16,17]. Leptin induces the gene

expression of Pgc-1a and Ucp-1 through the stimulation of b3-

adrenergic receptors, thereby leading to an increased thermogen-

esis [18–21]. In this sense, it has been shown that leptin-deficient

ob/ob mice are obese, hyperphagic and exhibit reduced non-

shivering thermogenesis as well as low UCP-1 levels in BAT [22].

Previous studies showed that norepinephrine increases the blood

flow in BAT by stimulating the production of nitric oxide (NO), a

potent vasodilator [23]. NO is produced by NO synthase (NOS),

and three isoforms have been identified: the endothelial (eNOS)

and neuronal (nNOS), which are constitutively expressed, together

with the inducible NOS (iNOS), which is primarily transcription-

ally regulated by immunologic as well as inflammatory stimuli

[24]. Both eNOS and iNOS isoforms have been shown to be

expressed in brown adipocytes [25], providing evidence for the

involvement of NO in BAT function regulation.

The deletion of the iNOS gene reportedly prevents high-fat diet-

induced insulin resistance [26]. Furthermore, leptin and iNOS on

their own participate in multiple common physiological processes,

with a functional relationship between both factors having been

described earlier by our group [27–29] and others [30,31]. In

order to explore the functional interplay between both factors and

to better understand the regulatory pathways that govern energy

metabolism, we examined the effects of iNOS gene disruption in

genetically obese ob/ob mice on the diverse elements of energy

balance focusing particularly on the expression of non-shivering

thermogenesis-related molecules. Our study shows that deletion of

the iNOS gene decreases food efficiency through an increase in

thermogenesis, thus improving the energy balance of ob/ob mice.

Materials and Methods

Generation of double-knockout mice lacking the ob and
iNOS genes

A double knockout (DBKO) mouse simultaneously lacking the

ob and the iNOS genes was generated by intercrossing male ob/ob

mice with female iNOS knockout mice (iNOS2/2) on a C57BL/6J

background (Jackson Laboratories, Bar Harbor, ME, USA).

Noteworthy, ob/ob male mice were placed under caloric restriction

(2 g standard chow diet/day) and were daily injected with

recombinant leptin (2 g/kg body weight) (Bachem, Bubendorf,

Switzerland) in order to overcome the infertility problems of the

leptin-deficient rodents [32]. Genotyping for ob and iNOS was

performed as previously described [32,33]. Briefly, genomic DNA

was extracted from ear clips by using the DNeasy Mini kit

(Qiagen, Valencia, CA, USA) according to the manufacturer’s

instructions. The genotyping strategy utilized the Dde I restriction

site generated by the ob mutation. To identify the presence of the

wild type or the disrupted iNOS allele, three different primers were

used. One primer complementary to both the genomic and

disrupted alleles that amplified a 108-bp fragment with the second

primer specific for the genomic sequence and a 275-bp fragment

with the third primer complementary to a region of the neomycin

resistance insert specific to the disrupted iNOS allele [34]. The

PCR was performed as described elsewhere [33] and the PCR

products were separated on a 1.5% agarose gel and visualized with

ethidium bromide staining.

Male mice were weaned at 21 days of age, genotyped, and

maintained at a room temperature of 2262uC on a 12:12 light-

dark cycle (lights on at 08:00 am) with a relative humidity of

50610% and under pathogen-free conditions. Animals had free

access to tap water and were fed ad libitum with a normal chow diet

(2014S Teklad Global 14% Protein Rodent Maintenance Diet,

Harlan, Barcelona, Spain). Body weight and food intake were

registered twice weekly. The food efficiency was determined as

body weight gained per week divided by total energy (kilocalories)

consumed over this period [35]. Body temperature was assessed by

measuring rectal temperature using a rectal thermoprobe (YSI

4600 Series Precision Thermometers, YSI Temperature, Dayton,

OH, USA). The diameter of adipocytes was determined by direct

microscopy, and the cell size was obtained using digital

photographs with the Axiovision 4.6 program (Zeiss). Mice were

injected in the tail vein with 18F-fluorodeoxyglucose (18F-FDG)

(200 mCi) after a short isoflurane (4%) anesthesia period. The

uptake of 18F-FDG was analyzed by a Mosaic (Philips Electronics,

Amsterdam, The Netherland) small-animal dedicated imaging

tomograph as previously described [36].

Blood and tissue collection
Twelve-week-old mice were fasted for 6 hours and sacrificed by

CO2 inhalation. Blood samples were obtained by cardiac

puncture, and sera collected after cold centrifugation (4uC) at

700 g for 15 min and stored at 220uC. Epididymal, subcutaneous

and perirenal white adipose tissue together with brown fat from

the interscapular depots were carefully excised. Tissue samples

were immediately frozen at 280uC. Biopsies of BAT were also

formalin-fixed for immunohistochemical analyses. All experimen-

tal procedures conformed to the European Guidelines for the Care

and Use of Laboratory Animals (Directive 86/609) and the study

was approved by the Ethical Committee for Animal Experimen-

tation of the University of Navarra (042/03, 041/08).

Blood measurements
An intraperitoneal glucose tolerance test was performed after an

overnight fasting period (12 h). Mice were injected intraperitoneally

with glucose (2 g/kg of body weight). Glucose concentrations were

measured before and 15, 30, 60, 90 and 120 min after the glucose

challenge. Glucose was determined by an automatic glucose sensor

(Ascensia Elite, Bayer, Barcelona, Spain) from whole blood obtained

from the tail vein. Serum glucose was measured by a glucometer

(Ascensia Elite). Serum concentrations of triglycerides, total cholesterol

(Infinity, Thermo Electron Corporation, Melbourne, Australia), free

fatty acids (FFA) (Wako Chemicals, GmbH, Neuss, Germany) and

glycerol (Sigma, St. Louis, MO, USA) were measured by enzymatic

methods using commercially available kits. Insulin and adiponectin

were determined by ELISA (Crystal Chem, Inc., Chicago, IL, USA

and BioVendor Laboratory Medicine, Inc., Modrice, Czech

Republic, respectively). Intra- and inter-assay coefficients of variation

for measurements of insulin and adiponectin were 3.5% and 6.3%,

respectively, for the former, and 5.6% and 7.2%, for the latter.

Western blot studies
Tissues were homogenized and protein content was measured

as described earlier [37]. Equal amounts of protein (30 mg) were

run in 8% SDS-PAGE, subsequently transferred to nitrocellulose

membranes (Bio-Rad Laboratories, Inc., Hercules, CA, USA), and

blocked in Tris-buffered saline (TBS) with Tween 20 containing

5% non-fat dry milk for 1 h at room temperature (RT). Blots were

then incubated overnight at 4uC with primary antibodies against

ob/ob-iNOS2/2 & BAT Function

PLoS ONE | www.plosone.org 2 June 2010 | Volume 5 | Issue 6 | e10962



Ucp-1 and Ucp-3 (Abcam) at 1:10,000 and 1:8,000, respectively;

Pgc-1a (Cell Signalling Technology, Inc., Danvers, MA, USA) at

1:1,000; Sirt-1 (Abcam Ltd., Cambridge, UK) at 1:1,000; Sirt-3

(Cell Signalling Technology, Inc) at 1:1,000; or b-actin (Sigma) at

1:5,000. The antigen-antibody complexes were visualized using

peroxidase-conjugated anti-rabbit or anti-mouse IgG antibodies

(1:5,000) and the enhanced chemiluminescence ECL detection

system (Amersham Biosciences, Buckinghamshire, UK). The

intensity of the bands was determined by densitometric analysis

with the Gel DocTM gel documentation system and the Quantity One

4.5.0 software (Bio-Rad) and normalized with b-actin densitomet-

ric values. All assays were performed in duplicate.

Immunohistochemistry of Ucp-1 and Ucp-3
The immunohistochemistry was carried out using the indirect

immunoperoxidase method. Sections (6 mm) of formalin-fixed

paraffin-embedded BAT were dewaxed in xylene, rehydrated in

decreasing concentrations of ethanol and treated with 3% H2O2

(Sigma) in absolute methanol for 10 min at RT to quench

endogenous peroxidase activity. Then, sections were immersed in

10 mmol/l citrate buffer (pH 6.00) and heated using a microwave

oven at 800 W for 15 min to enhance antigen retrieval. After

cooling, slides were blocked during 1 h with 1% murine serum

(Sigma) diluted in Tris-buffer saline (TBS) (50 mmol/l Tris,

0.5 mol/l NaCl; pH 7.36) for preventing non-specific adsorption.

Sections were incubated overnight at 4uC with rabbit monoclonal

anti-Ucp-1 or Ucp-3 antibodies (Abcam) diluted 1:100 in TBS. After

three washes (5 min each) with TBS, sections were incubated with

horseradish peroxidase-conjugated anti-rabbit IgG antibody (Amer-

sham Biosciences) diluted 1:200 in TBS for 30 min at RT. After

washing in TBS, the peroxidase reaction was visualized with a 3,39-

diaminobenzidine (DAB, Amersham Biosciences)/H2O2 solution

(0.5 mg/ml DAB, 0.03% H2O2 diluted in 50 mmol/l Tris-HCl,

pH 7.36) as chromogen, and Harris hematoxylin solution (Sigma) as

counterstaining. Sections were dehydrated, coverslipped and

observed under a Zeiss Axiovert 40 CFL optic microscope (Zeiss,

Göttingen, Germany). Negative control slides without primary

antibody were included for the assessment of non-specific staining.

RNA extraction and Real-Time PCR
Total RNA was extracted from BAT samples by homogeniza-

tion with an ULTRA-TURRAXH T 25 basic (IKAH Werke

GmbH, Staufen, Germany) using TRIzolH Reagent (Invitrogen,

Barcelona, Spain). Samples were purified with the RNeasy Mini

kit (Qiagen) according to the manufacturer’s instructions and

treated with DNase I (RNase-free DNase Set, Qiagen). For first

strand cDNA synthesis constant amounts of 2 mg of total RNA

were reverse transcribed in a 40 ml final volume using random

hexamers (Roche Molecular Biochemicals, Mannheim, Germany)

as primers and 400 units of M-MLV reverse transcriptase

(Invitrogen) as described earlier [38].

The transcript levels for genes involved in brown fat cell

differentiation and function (Prdm16, Rip140, Bmp7, Sirt-1, Sirt-3,

Pgc-1a, Ucp-1 and Ucp-3) were quantified by Real-Time PCR (7300

Real Time PCR System, Applied Biosystems, Foster City, CA,

USA). Primers and probes were designed using the software Primer

Express 2.0 (Applied Biosystems) (Table 1) and purchased from

Genosys (Sigma). TaqManH probes encompassing fragments of

areas from the extremes of two exons were designed to ensure the

detection of the corresponding transcript avoiding genomic DNA

amplification. The cDNA was amplified at the following conditions:

95uC for 10 min, followed by 45 cycles of 15 s at 95uC and 1 min at

59uC, using the TaqManH Universal PCR Master Mix (Applied

Biosystems). The primer and probe concentrations for gene

amplification were 300 nmol/l and 200 nmol/l, respectively. All

results were normalized to the levels of 18S rRNA (Applied

Biosystems) and relative quantification was calculated using the

DDCt formula [38]. Relative mRNA expression was expressed as

fold expression over the calibrator sample (average of gene

expression corresponding to the wild type group) [39]. All samples

were run in triplicate and the average values were calculated.

Statistical analysis
Data are presented as the mean 6 SEM. Differences between

groups were assessed by two-way ANOVA. In case of interaction

between factors (lack of iNOS or ob genes), one-way ANOVA

followed by Tukey’s post hoc tests were applied. Statistics were

calculated by the SPSS/Windows version 15.0 software (SPSS,

Inc., Chicago, IL, USA). A P value less than 0.05 was considered

statistically significant.

Results

Ablation of iNOS reduces the positive energy balance of
ob/ob mice

As expected, leptin deficiency was associated with increased

(p,0.001) body weight, higher fat depots, hyperphagia and

hypothermia, whereas iNOS deficiency resulted in reduced

(p,0.01) body weight and lower fat content as well as increased

(p,0.01) body temperature as compared to control mice (Fig. 1).

The ob/ob mice lacking the iNOS gene (DBKO) exhibited a

decreased (p,0.01) body weight accompanied by significantly

(p,0.01) smaller epididymal, subcutaneous and total fat depots as

compared to ob/ob mice. The weight gain of DBKO mice during

the study was significantly reduced (p,0.0001) as compared to ob/

ob mice (25.160.6 g vs 30.860.7 g). Twelve week-old DBKO mice

showed a reduced (p,0.01) food intake (Fig 1C) exhibiting a lower

food efficiency as compared to ob/ob mice (Fig 1D). Basal rectal

temperature was analyzed showing that iNOS deficiency improved

the reduced rectal temperature of ob/ob mice (p,0.05) (Fig 1E). In

a subset of mice, a glucose tolerance test was performed. The

glucose areas under the curves (AUC) were measured using the

trapezoidal method. The glucose AUC in ob/ob mice was

significantly higher (p,0.001) than that of wild type mice.

Moreover, deletion of the iNOS gene significantly decreased the

glucose AUC (p,0.05) in wild type and ob/ob mice (wild type

540627, iNOS2/2 474629, ob/ob 706671, DBKO 618690). As

can be observed in Table 2, absence of leptin was associated with

insulin resistance as evidenced by the increased concentrations of

glucose, insulin, glucose AUC and HOMA index as well as by low

adiponectin levels (p,0.01). iNOS deletion significantly reduced

FFA and cholesterol concentrations in wild type and ob/ob mice

(p,0.01). DBKO mice exhibited a tendency towards an improved

insulin sensitivity as compared to ob/ob mice as evidenced by the

reductions in insulin, HOMA index (p = 0.071 and p = 0.069,

respectively) and glucose AUC.

Brown adipose tissue phenotype of ob/ob mice lacking
the iNOS gene

The weight of interscapular BAT was increased (p,0.001) in

leptin-deficient mice (wild type 0.3160.02, ob/ob 0.8060.04 g/

100 g body weight). Deletion of iNOS slightly decreased the weight

of BAT in wild type (wild type 0.3160.02, iNOS2/2 0.2960.01 g/

100 g body weight) and ob/ob mice (ob/ob 0.8060.04, DBKO

0.7560.04 g/100 g body weight) although the differences did not

reach statistical significance (Fig. 2B). However, the cross-sectional

area of brown adipocytes of experimental animals was determined

and as expected showed small and multilocular lipid droplets in

ob/ob-iNOS2/2 & BAT Function
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control mice, whereas ob/ob mutants exhibited large and

unilocular lipid droplets (Fig. 2A). The deletion of the iNOS gene

in ob/ob mice dramatically reduced the size of brown adipocytes.

In this sense, DBKO mice displayed a higher proportion of small

multilocular adipocytes together with a lower proportion of larger

unilocular ‘‘white-like’’ adipocytes as corroborated by the cell

surface area (p,0.001) (Fig. 2C). As seen in Fig. 2D, microPET

scans revealed a markedly enhanced 18F-FDG uptake in the

interscapular BAT of DBKO mice compared to ob/ob animals.

Up-regulation of brown adipocyte function markers in
ob/ob mice lacking the iNOS gene

The mRNA and protein expression levels of molecules involved

in the regulation of thermogenesis and mitochondrial function

were analyzed in BAT of the experimental animals. As shown in

Fig. 3, the gene and protein expression levels of Ucp-1 and Ucp-3

were down-regulated in ob/ob mice and up-regulated in iNOS-

deficient mice as compared to those of wild type mice.

Noteworthy, DBKO mice simultaneously lacking the ob and iNOS

genes showed a statistically significant increase in Ucp-1 (p,0.05)

and Ucp-3 (p,0.05) transcripts and proteins compared to ob/ob

mice. Immunohistological analyses showed a high expression of

Ucp-1 and Ucp-3 in BAT in all experimental groups. Nonetheless,

the immunostaining of both proteins was markedly increased in

iNOS knockout and DBKO mice, and decreased in ob/ob animals

as compared to wild types.

ob/ob mice lacking iNOS display changes in gene
expression levels of molecules involved in brown fat cell
differentiation

To gain further insight into the mechanisms underlying the

improved energy expenditure of DBKO mice, the gene expression

levels of key molecules involved in brown fat cell differentiation

were examined (Fig. 4). The gene expression levels of Prdm16, a

zinc-finger protein that stimulates brown fat-selective gene

expression, was significantly down-regulated (p,0.001) in ob/ob

mice, while the deletion of iNOS increased mRNA expression

levels although only a marginal statistical significance was found

(p = 0.056). No changes in the mRNA expression levels of Bmp7, a

protein involved in the activation of the program of brown

adipogenesis, was observed. Nevertheless, protein expression levels

of Bmp7 were increased in mice lacking the iNOS gene. Moreover,

gene expression levels of Rip140, a nuclear receptor involved in the

differentiation of white adipocytes, was significantly decreased

(p,0.01) in iNOS-deficient mice.

The mRNA and protein expression levels of molecules involved

in the regulation of mitochondrial function and thermogenesis

were also analyzed. Leptin deficiency was associated with a

reduction of Pgc-1a transcript levels, together with a tendency

towards a decrease in Sirt-1 transcript levels, without changes in

the gene expression levels of Sirt-3 (Fig. 5). On the contrary, iNOS

knockout mice showed an increase in mRNA levels of Pgc-1 a at

the same time as an increase in Sirt-1 and Sirt-3 transcript levels,

although only a marginal statistical significance was found. The

DBKO mice showed an up-regulation of Pgc-1 a (p,0.01) and a

marginal increase in Sirt-1 and Sirt-3 as compared to the ob/ob

group, although in the case of the sirtuins differences were not

statistically significant. The protein expression of Pgc-1a, Sirt-1

and Sirt-3 in BAT exhibited a similar pattern to that observed in

the gene expression analyses.

Discussion

The involvement of leptin and iNOS in the control of energy

balance through actions on food intake, body weight and energy

expenditure has been previously reported [16,33,40]. Leptin-

deficient mice exhibit marked obesity, hyperphagia, insulin

resistance, hypothermia and increased food efficiency [40], whereas

iNOS knockout mice are resistant to diet-induced obesity, showing

reduced epididymal fat pads and increased body temperature

[26,33]. Although the iNOS deficiency did not completely restore

the phenotype of the absence of leptin, our results show that deletion

of the iNOS gene exerts a significant impact on energy homeostasis

via increasing energy expenditure and decreasing food intake. We

observed that the absence of leptin leads to obesity even in the

context of iNOS deficiency. The DBKO mice showed a modest, but

consistent lower body weight than that of ob/ob mice at the end of

the study. The data shows that from the eleventh week of the study

Table 1. Sequences of the primers and TaqManH probes.

Gene (GenBank
accession number) Oligonucleotide sequence (59-39)

Prdm16 (NM_027504)

Forward GATGGGAGATGCTGACGGATAC

Reverse CTCGCTACCCAAGTCTTCAGAGAT

TaqManH Probe FAM- CATCCCAGGAGAGCTGATCAAAAAGC-TAMRA

Rip140 (NM_173440)

Forward TCAGCTTCCTTTCCCACATAGC

Reverse TCATCTTTCGTTGCTCACCAAA

TaqManH Probe FAM-AGGCTCAGGCTGAGGCAGACGATACT-TAMRA

Bmp7 (NM_07557)

Forward CAAGACGCCAAAGAACCAAGAG

Reverse GGTCTCGGAAGCTGACGTACAG

TaqManH Probe FAM-ATGGCCAGTGTGGCAGAAAACAGCA-TAMRA

Sirt-1 (NM_019812)

Forward AGCAGGTTGCAGGAATCCAA

Reverse CACGAACAGCTTCACAATCAACTT

TaqManH Probe FAM-CCTTCAGTGTCATGGTTCCTTTG-TAMRA

Sirt-3 (NM_001127351)

Forward CTGACTTCGCTTTGGCAGATCT

Reverse CCCCACCAAGTCTCGATTGAT

TaqManH Probe FAM-CTGGAGGTGGAGCCTTTTGCCAGCT-TAMRA

Pgc-1a (NM_008904)

Forward TGAACGCACCTTAAGTGTGGAA

Reverse GGGTTATCTTGGTTGGCTTTATGA

TaqManH Probe FAM-ATCGCAGGCCTAACTCCACCCACCA -TAMRA

Ucp1 (NM_009463)

Forward CGATGTCCATGTACACCAAGGA

Reverse ACCCGAGTCGCAGAAAAGAAG

TaqManH Probe FAM-ACCGACGGCCTTTTTCAAAGGGTTTG-TAMRA

Ucp3 (NM_001030877)

Forward GACCTACGACATCATCAAGGAGAAGT

Reverse CTCCAAAGGCAGAGACAAAGTGA

TaqManH Probe FAM-6TCTCACCTGTTTACTGACAACTTCCC-TAMRA

Prdm16, PR domain containing 16; Rip140, receptor-interacting protein 140;
Bmp7, bone morphogenetic protein 7; Sirt-1, sirtuin-1, Sirt-3, sirtuin-3; Pgc-1a,
peroxisome proliferative activated receptor c coactivator 1 a; Ucp-1, uncoupling
protein 1, Ucp-3, uncoupling protein 3.
doi:10.1371/journal.pone.0010962.t001
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Figure 1. Growth and metabolic variables of mice of the four experimental groups. Growth curves of 4–12 week-old-mice (A) together
with epididymal (EWAT), subcutaneous (SCWAT) and whole-body fat content (B) of the experimental animals. Cumulative food intake (C), food
efficiency (D) and rectal temperature (E) are also shown. Representative images illustrating the differences in size between 12-week-old ob/ob and
DBKO mice (F). Values are the mean 6 SEM (n = 10 per group). Differences between groups were analyzed by two-way ANOVA. ***p,0.001, effect of
the absence of the ob gene. +p,0.05, ++p,0.01, effect of the absence of the iNOS gene. One-way ANOVA followed by Tukey’s post hoc test was
applied for variables with interaction between factors. """p,0.001 vs wild type, #p,0.05 vs ob/ob mice. EWAT, epididymal white adipose tissue;
SCWAT, subcutaneous white adipose tissue; WAT, white adipose tissue; bw, body weight.
doi:10.1371/journal.pone.0010962.g001

ob/ob-iNOS2/2 & BAT Function

PLoS ONE | www.plosone.org 5 June 2010 | Volume 5 | Issue 6 | e10962



onwards DBKO mice weigh significantly less than ob/ob mutants.

Moreover, these differences were maintained and increased from

this time point throughout longer experimental periods (32 weeks,

data not shown). The possibility that DBKO mice weigh less at the

initial weeks of the study and therefore, the increase in body weight

may be similar to that of ob/ob mice at the end of the experimental

period is ruled out since from the beginning the DBKO exhibited a

slightly higher body weight than ob/ob animals. Thereafter, the

growth curve of ob/ob mice continues to increase steadily while that

of DBKO slows down. Body weights of both experimental groups

are superimposed from 8–10 weeks. During that period the growth

curves of both groups intercross with ob/ob mice becoming heavier

than DBKO mutants. This leads towards the end of the study to a

more evident reduction in body weight meaning that the lack of

iNOS is exerting an impact on body weight in ob/ob mice. The

differences in body weight were attributable in part to a reduction in

food intake. We describe, for the first time, that the disruption of the

iNOS gene reduces the elevated food intake and food efficiency,

partially ameliorating the obesity of ob/ob mice. It has been

proposed that leptin-deficient mice show higher food efficiency rates

at least in part due to an impaired capacity of BAT to produce heat

[2,41]. In this sense, our data confirm this observation and further

show that iNOS-deficient and DBKO mice exhibit an increase in

rectal temperature. Taken together, ablation of iNOS improves the

energy balance of ob/ob mice by decreasing energy intake (reduced

food intake), and by increasing energy expenditure (increased rectal

temperature). It is well known that ob/ob mice have an increased

respiratory quotient (RQ) due to a reduced fat oxidation with leptin

replacement normalizing the metabolic rate in these animals. iNOS

knockout mice probably exhibit a reduced RQ due to their

increased b-oxidation in brown adipose tissue, as reflected by their

reduction in circulating free fatty acids. It seems reasonable that the

absence of iNOS may be associated to an increase in energy

expenditure given that iNOS and DBKO mice exhibit a reduced

body weight and fat mass as compared to their respective controls.

This is supported by published studies [42,43] evidencing that nitric

oxide inhibits cytochrome c oxidase, thus inhibiting the mitochon-

drial respiratory chain. The participation of NO in thermoregula-

tion is based on its vasodilator properties and its regulatory role in

non-shivering thermogenesis. Previous studies were focused on the

existence of two isoforms of NOS in BAT: eNOS and iNOS. A role

for iNOS in the regulation of sympathetically-mediated blood flow

in brown adipose tissue has been described, arguing against an

increased energy expenditure in this tissue in iNOS knockout mice

[23]. Furthermore, eNOS-deficient mice show a reduced energy

expenditure and an increased body weight [44]. On the other hand,

it has been reported that NO downregulates the expression of UCPs

in adipocytes [45] with UCPs being heavily involved in energy

expenditure regulation. The lack of iNOS may decrease NO

production in adipose tissue in an autocrine/paracrine way, thereby

increasing the expression of UCPs and hence energy expenditure.

The observed increase in the expression of Ucp-1 and Ucp-3 in

BAT of iNOS-deficient mice in the present study supports this

mechanism. However, NO involvement in the regulation of energy

expenditure is complex and may exhibit NOS-specific differences.

On the other hand, ob/ob mice exhibit a reduced locomotor activity,

which is normalized after leptin administration. The fact that the

proposed rise in energy expenditure in iNOS-deficient mice is due to

an increased locomotor activity may be excluded given the fact that

NO has been reported to induce locomotor activity in mice [46]

while eNOS-deficient mice show normal locomotor activity [44].

Regular observation of the DBKO and iNOS2/2 mice during the

whole experimental period of our study did not identify qualitive or

semiquantitative changes in locomotor activity and behaviour

between the different rodents. In this sense, the preponderance of an

effect on body temperature in the absence of changes in locomotor

activity may be put forward. Undoubtedly, the detailed analysis of

the potential impact on both energy expenditure and locomotor

activity with sophisticated equipment to pick up slight differences

would merit a study on its own to clarify the exact contribution of

each component.

The activation of BAT has been evidenced to play an important

role in energy expenditure [47]. Previous studies have reported a

‘‘white-like’’ appearance of BAT in ob/ob mice, suggesting a

crucial role of leptin in the development of brown adipocytes [22].

In the histological analyses, large unilocular lipid droplets were

observed in BAT of leptin-deficient mice. We also showed that in

the DBKO mice the characteristic features of BAT tissue (both

macro and microscopically as well as molecularly) are partially

restored. To gain further insight into the mechanisms underlying

the change in the phenotype of BAT of the experimental models,

we focused on the transcriptional control of the metabolic

pathways, achieved by the coordinated actions of numerous

transcription factors and associated coregulators or corepressors.

In this sense, an increase in the gene expression levels of the

recently identified transcription factor PRDM16, a positive

transcriptional regulator of the brown fat cell gene program [10]

was observed in iNOS-deficient mice. We also studied the

expression of a member of the family of the bone morphogenetic

proteins (BMPs), Bmp7, that reportedly regulates energy homeo-

stasis by activating a full program of brown adipogenesis [48].

iNOS deficiency enhanced Bmp7 protein expression. Moreover,

the corepressor Rip140, that plays a key role in energy homeostasis

by repressing metabolic gene networks [49], was dramatically

reduced in iNOS knockout and ob/ob mice. These data are in line

with previous studies in humans [50], supporting the notion that

downregulation of Rip140 may be a compensatory mechanism in

Table 2. Metabolic characteristics of 12-week-old
experimental animals.

Wild type iNOS2/2 ob/ob DBKO

Glucose
(mg/dl) a

7564 7962 10567 9964

Glycerol
(mg/dl) a

0.02260.002 0.02360.003 0.03460.001 0.03260.002

FFA
(mmol/l) a, b

0.7060.06 0.5860.03 1.1360.10 0.8560.04

TG (mg/dl) a 7064 7764 9768 9667

Cholesterol
(mg/dl) a, b

8367 7164 177615 158611

Insulin (ng/ml) a, c 0.3960.01 0.3360.04d 11.2061.54e 8.7560.81e,f

HOMA a 1.7860.22 1.5560.18 79.45613.93 47.2763.14

Adiponectin
(mg/ml) a

2363 2663 1462 2064

Data are means 6 SEM of 8–10 animals. P values obtained by two-way ANOVA
are shown. One way ANOVA followed by Tukey’s post hoc tests were applied for
variables with interaction between factors.
aeffect of the absence of the ob gene (p,0.01);
beffect of the absence of the iNOS gene (p,0.01);
cinteraction between factors (p,0.05);
dp,0.05 vs wild type;
ep,0.001 vs wild type;
fp = 0.071 vs ob/ob. FFA: free fatty acids, HOMA: homeostasis model assessment,
TG: triglycerides. DBKO: double knockout mice simultaneously lacking the ob
and iNOS genes.

doi:10.1371/journal.pone.0010962.t002
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Figure 2. Phenotype of BAT of the experimental groups. (A) Representative histological sections of BAT stained with hematoxylin-eosin. Magnification
X100 (scale bar = 50 mm). BAT weight, general cell surface area (B), and mean values (C) of the cell surface area in relation to the percentage of brown
adipocytes contributing to the final cell size in each of the experimental groups. Values are the mean 6 SEM (n = 6 per group). (D) MicroPET scans depicting
interscapular BAT uptake of experimental animals using 18F-FDG as a probe; signals are shown in %ID/g at the region of interest over the background.
Differences between groups were analyzed by one-way ANOVA followed by Tukey’s post hoc test. """p,0.001 vs wild type, ###p,0.001 vs ob/ob mice.
doi:10.1371/journal.pone.0010962.g002
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Figure 3. Gene and protein expression levels of genes involved in thermogenesis. Expression levels of UCP-1 (A) and UCP-3 (B) in BAT.
mRNA and protein data were normalized for the expression of 18S rRNA and b-actin, respectively. The expression in wild type mice was assumed to
be 1. Representative blots are shown on top of the histograms. Immunohistochemistry of UCP-1 and UCP-3 in BAT corresponding to each
experimental groups is shown at the bottom of the histograms. Magnification X100 (scale bar = 50 mm). Values are the mean6SEM (n = 6 per group).
Differences between groups were analyzed by two-way ANOVA. *p,0.05, **p,0.01, effect of the absence of the ob gene. +p,0.05, ++p,0.01, effect
of the absence of the iNOS gene.
doi:10.1371/journal.pone.0010962.g003
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order to favour energy expenditure and fat accumulation

reduction in already established obese states.

The expression of key markers of brown fat cell function was

also investigated. Pgc-1a is an important factor in mitochondrial

function and energy homeostasis, and controls several aspects of

mitochondrial biogenesis. It plays an essential role in brown fat

thermogenesis, trough activation of UCP-1 [51–53]. Sirt-1

positively acts on the activation of metabolic genes through a

Figure 4. Expression of genes involved in brown fat differentiation. Gene expression levels of Prdm16 (A), Bmp7 (B) and Rip140 (C). Data
were normalized for the expression of 18S rRNA and gene expression levels in wild type mice were assumed to be 1. Values are the mean 6 SEM
(n = 6 per group). Protein levels of Bmp7 are also shown (B). Protein data were normalized for the expression of b-actin. Differences between groups
were analyzed by two-way ANOVA. *p,0.05, effect of the absence of the ob gene. Ø p = 0.056, effect of the absence of the iNOS gene. One way
ANOVA followed by Tukey’s post hoc test was applied for variables with interaction between factors. ""p,0.01 vs wild type.
doi:10.1371/journal.pone.0010962.g004
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direct deacetylation of the transcriptional coactivator Pgc-1a.

Moreover, growing evidence supports a novel role of Sirt-3 in

enhancing the expression levels of mitochondria-related genes,

participating in adaptive thermogenesis [54]. An upregulation of

these factors that control brown fat cell function in BAT of DBKO

as compared to ob/ob mice was detected. These results were

concomitant with a significant increase in the expression of the

brown adipocyte-specific gene Ucp-1 in iNOS-deficient mice. It is

well known that Pgc-1a is intimately involved in adaptive

thermogenesis via the induction of the mitochondrial inner

membrane uncoupling protein Ucp-1 [55]. Ucp-3 is another

member of the uncoupling proteins family located in BAT [56]. It

Figure 5. Effect of the lack of both genes on molecules involved in the regulation of thermogenesis. Bar graphs show the transcript and
protein levels of peroxisome proliferator-activated c coactivator-1 a (PGC-1a) (A), sirtuin-1 (SIRT1) (B), and sirtuin-3 (SIRT3) (C) in BAT of experimental
animals. mRNA and protein data were normalized for the expression of 18S rRNA and b-actin, respectively. The expression in wild type mice was
assumed to be 1. Representative blots are shown on the top of the histograms. Values are the mean6SEM (n = 6 per group). Differences between
groups were analyzed by two-way ANOVA. *p,0.05, effect of the absence of the ob gene. +p,0.05, ++p,0.01, effect of the absence of the iNOS
gene. Ø p = 0.089, effect of the absence of the iNOS gene; X p = 0.084, effect of the absence of the iNOS gene.
doi:10.1371/journal.pone.0010962.g005
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has been recently shown that, in addition to participating in lipid

metabolism and defense against reactive oxygen species, Ucp-3 is

also implicated in thermogenesis, and its absence is associated with

impaired cold tolerance and decreases expression of metabolic

genes [57]. In this sense, levels of UCP-3 were reduced in the

absence of leptin and were significantly upregulated by the

deficiency of the iNOS gene. Further in vitro studies would help to

confirm the effect of iNOS on brown adipocyte differentiation.

Our data reveals that iNOS ablation improves the brown-like

phenotype and the molecular function of brown fat in ob/ob mice,

thus improving the energy balance and increasing the thermogenic

activity of these animals. Interestingly, mitochondrial NOS

(mtNOS) has been shown to modulate bioenergetics regulating

oxygen uptake by reversible inhibition of cytochrome oxidase [58].

Thus, NO produced by mtNOS is involved in setting the oxygen

uptake level in the cell as a metabolic adaptation. In the setting of

iNOS deficiency a potential compensatory upregulation of the

mtNOS isoform may take place. From a teleological point of view

the coupling of thermogenesis with the metabolic response during

infection via the different NOS isoforms is justified to warrant an

adequate immunologic response at the same time as avoiding an

exaggerated thermogenic effect in a catabolic setting. An iNOS-

induced NO production after an infection has been shown to be

an important mediator of the febrile response. Previous studies

[59] have reported that iNOS knockout mice respond with lower

fever after LPS administration. However, the febrile response and

non-shivering thermogenesis are mechanistically different. The

present study does not allow to conclude whether the observed

effects are due to an independent effect of leptin and NO via the

sympathetic nervous system or due to an interaction between the

signalling cascades of both molecules. Noteworthy, several

interactions in different physiological systems have been further

described. NO is involved in the effects of leptin and neuropeptide

Y on food intake, as well as in other biological actions, such as

glucose [26] and lipid [28] homeostasis, vascular tone regulation

[29,60,61], reproduction [62] or immune response [33,63].

Consistent with its pleiotropic role, leptin interacts with many

signalling pathways including those involving NO [64]. A

functional relation between leptin and NO in many cell types

and biological processes has been established. In this context, our

group was the first one to identify that NO represents the key

molecule for the depressor response induced by leptin in the

control of blood pressure [27] via iNOS-mediated signalling [29].

Interestingly, leptin was shown to play a dual role on blood

pressure, whereby it increased arterial pressure through its

sympathoexcitatory activity at the same time as exerting a

depressor response attributable to NO release. Therefore, it is

foreseeable that the inhibition of NOS leads to a predominant

effect on the sympathetic activation.

Obesity is characterized by a low-grade chronic inflammatory

state; it causes the activation of an inflammatory process in

metabolically active sites such as adipose tissue, liver or immune

cells and the altered production of immunomodulators and pro-

inflammatory molecules that contribute to the induction of iNOS

[26,65]. This enzyme plays a crucial role against microbial

pathogens and tumor cells, immunopathologies and in immune

regulation, since NO contributes to local immune defence during

inflammatory processes. In this sense, it has been reported that

mice lacking iNOS are more susceptible to viral infections [66].

Moreover, the obese state is associated with alterations in immune

function since obesity interferes with the ability of the immune

system to appropriately respond to infections [67]. Furthermore,

several studies suggest that iNOS induction is involved in cytokine-

induced insulin resistance, given that increased iNOS expression is

related to an impaired insulin-stimulated glucose uptake [68]

revealing a profound involvement of iNOS in both immunologic

and metabolic systems. In this line, the present study shows that

ablation of the iNOS gene in ob/ob mice improves the impaired

carbohydrate metabolism, as previously described [69,70], de-

creasing glycemia and insulinemia as well as increasing adipo-

nectinemia, at the same time as it ameliorates lipid homeostasis

through a decrease in serum triglycerides and total cholesterol

levels.

Taken together, deletion of the iNOS gene improves the brown-

like phenotype and the molecular function of brown fat in ob/ob

mice. iNOS deficiency results in decreased body weight and

reduced white fat pads, not only in wild type but also in leptin-

deficient obese mice. The anti-obesity effect of the absence of iNOS

is probably due to changes in pathways promoting the differen-

tiation of brown fat cells, and changes in genes involved in brown

fat function, such as Sirt1, Sirt-3 and Pgc-1a. Moreover, ablation

of iNOS increases Ucp-1 and Ucp-3 expression, which, in turn,

may increase the rate of b-oxidation, leading to the increased

consumption of FFA in BAT as fuel for adaptive thermogenesis.

These data suggest that attenuated adiposity and improved energy

expenditure in iNOS-deficient wild type and ob/ob mice are

functionally related to increased thermogenesis in BAT.
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28. Frühbeck G, Gómez-Ambrosi J (2001) Modulation of the leptin-induced white

adipose tissue lipolysis by nitric oxide. Cell Signal 13: 827–833.
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62. White V, González E, Pustovrh C, Capobianco E, Martı́nez N, et al. (2007)

Leptin in embryos from control and diabetic rats during organogenesis: a
modulator of nitric oxide production and lipid homeostasis. Diabetes Metab Res

Rev 23: 580–588.
63. Raso GM, Pacilio M, Esposito E, Coppola A, Di Carlo R, et al. (2002) Leptin

potentiates IFN-c-induced expression of nitric oxide synthase and cyclo-

oxygenase-2 in murine macrophage J774A.1. Br J Pharmacol 137: 799–804.
64. Frühbeck G (2006) Intracellular signalling pathways activated by leptin.

Biochem J 393: 7–20.
65. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, et al. (2003)

Obesity is associated with macrophage accumulation in adipose tissue. J Clin
Invest 112: 1796–1808.

66. MacLean A, Wei XQ, Huang FP, Al-Alem UA, Chan WL, et al. (1998) Mice

lacking inducible nitric-oxide synthase are more susceptible to herpes simplex
virus infection despite enhanced Th1 cell responses. J Gen Virol 79 (Pt 4):

825–830.
67. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:

860–867.

68. Sugita H, Kaneki M, Tokunaga E, Sugita M, Koike C, et al. (2002) Inducible
nitric oxide synthase plays a role in LPS-induced hyperglycemia and insulin

resistance. Am J Physiol Endocrinol Metab 282: E386–394.
69. Sugita H, Fujimoto M, Yasukawa T, Shimizu N, Sugita M, et al. (2005)

Inducible nitric-oxide synthase and NO donor induce insulin receptor substrate-
1 degradation in skeletal muscle cells. J Biol Chem 280: 14203–14211.

70. Fujimoto M, Shimizu N, Kunii K, Martyn JA, Ueki K, et al. (2005) A role for

iNOS in fasting hyperglycemia and impaired insulin signaling in the liver of
obese diabetic mice. Diabetes 54: 1340–1348.

ob/ob-iNOS2/2 & BAT Function

PLoS ONE | www.plosone.org 12 June 2010 | Volume 5 | Issue 6 | e10962


