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Background: Genetics and environment both are critical in autism spectrum disorder

(ASD), but their interaction (G × E) is less understood. Numerous studies have shown

higher incidence of stress exposures during pregnancies with children later diagnosed

with ASD. However, many stress-exposed mothers have unaffected children. The

serotonin transporter (SERT ) gene affects stress reactivity. Two independent samples

have shown that the association between maternal stress exposure and ASD is greatest

with maternal presence of the SERT short (S)-allele (deletion in the promoter region).

MicroRNAs play a regulatory role in the serotonergic pathway and in prenatal stress and

are therefore potential mechanistic targets in this setting.

Design/methods: We profiled microRNA expression in blood from mothers of children

with ASD, with known stress exposure during pregnancy. Samples were divided into

groups based on SERT genotypes (LL/LS/SS) and prenatal stress level (high/low).

Results: Two thousand five hundred mature microRNAs were examined. The ANOVA

analysis showed differential expression (DE) of 119 microRNAs; 90 were DE in high- vs.

low-stress groups (stress-dependent). Two (miR-1224-5p, miR-331-3p) were recently

reported by our group to exhibit stress-dependent expression in rodent brain samples

from embryos exposed to prenatal stress. Another, miR-145-5p, is associated with

maternal stress. Across SERT genotypes, with high stress exposure, 20 significantly

DE microRNAs were detected, five were stress-dependent. These microRNAs may be

candidates for stress×SERT genotype interactions. This is remarkable as these changes

were from mothers several years after stress-exposed pregnancies.

Conclusions: Our study provides evidence for epigenetic alterations in relation to a G

× E model (prenatal maternal stress × SERT gene) in ASD.
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INTRODUCTION

The developmental origins of health and disease (DOHaD)
hypothesis proposes that environment experiences during
development in utero influence health after birth (1). Numerous
studies demonstrate that adverse environmental exposures affect
neurological development, including those which are salient to
autism spectrum disorder (ASD). Genetics is a critical factor in
ASD (2–6). However, importance of environmental factors is
being increasingly recognized (7), with heritability estimated at
0.87 by the latest, more conservative analysis (8). While progress
has been made toward the understanding of genetic factors,
including development of animal models based on these genes
(9–12), environmental factors are less understood.

Psychological stress during pregnancy impacts behavioral
and developmental outcomes in humans (13). Early personality
development in the child, schizophrenia, and emotional
disturbances in offspring are all associated with maternal stress
(14–17). Relationships between maternal stress and a range of
adverse offspring behavioral outcomes are reported in animal
models, including abnormal behavioral fear responses, as well as
abnormal physiological stress reactivity in offspring, which lasts
into adulthood (18, 19). Recent evidence suggests that among
environmental factors, maternal stress exposure is important in
ASD (20–22).

Early studies surveyed for history and timing of prenatal
psychosocial stressors corresponding to major life events on
the Social Readjustment Rating Scale in mothers of children
with ASD, Down syndrome, and typically developing controls.
A higher overall incidence of stressors among the mothers
who had a child with ASD was found compared to other
groups, with a peak in stressors among mothers with a child
with ASD at 25–28 weeks of gestation, but not in the other
groups (21). This has subsequently been supported by other
studies, showing a relationship between the incidence and
severity of tropical storms in the United States in Louisiana
during the 5th to 6th months of gestation and the incidence
of ASD births (22). Larger epidemiological studies support this
relationship between prenatal stress and ASD. One Danish
national registry study suggested against the presence of an
association between maternal bereavement and ASD (23), but
the association between maternal bereavement and ASD was
present when maternal psychological conditions were included
(23). Another Danish national registry study found that maternal
psychological conditions were one of the strongest prenatal risk
factors for ASD (24). A Swedish registry study also confirmed

Abbreviations: ANOVA, analysis of variance; ADHD, attention deficit

hyperactivity disorder; ADI-R, Autism Diagnostic Interview-Revised; ADOS,

Autism Diagnostic Observation Scale; ASD, autism spectrum disorder; DNA,

deoxyribonucleic acid; DOHaD, developmental origins of health and disease; DE,

differentially expressed; G x E, Gene x Environment; GATK, Genome Analysis

Toolkit; IGFBP-1, insulin-like growth factor-binding protein 1; LOWESS,

locally weighted scatterplot smoothing; L, long; miRNA and micro RNA,

micro ribonucleic acid; MAF, minor allele frequency; PPARα, peroxisome

proliferator-activated receptors α; OGT, O-GlcNAc transferase; PCR, polymerase

chain reaction; SERT, serotonin transporter; S, short; SNP, single nucleotide

polymorphisms; SNVs, Single Nucleotide Variants; WES, Whole Exome

Sequencing; wt, wild type.

a relationship between third-trimester prenatal stress and ASD
(25). Furthermore, results from the Nurses’ Health Study,
another large registry study, showed that maternal exposure to
partner abuse during pregnancy is strongly associated with ASD
(26). Children in utero in New York City during the September
11 terrorist attacks were also found to be 7–9% more likely to
be in special education classes (27), although no specific data
was available regarding ASD diagnoses. A recent meta-analysis
has further supported the relationship between prenatal stress
and ASD (28). Finally, a recent study reported that children
with ASD that were exposed to prenatal stress present with a
more severe condition than those with no history of prenatal
stress exposure (29). Therefore, a better understanding of the
relationship between prenatal stressors and gene × environment
(G × E) interaction in ASD would represent a significant
breakthrough, as reviewed recently (30, 31).

A significant proportion of stress-exposed mothers have
unaffected children. Several factors could interact with stress
exposure to increase impact on neurodevelopment. For example,
prenatal exposure to air pollution, which is associated with ASD
(32–35), can impact microglia–neuron interactions in a sex-
specific manner (36), which may interact with prenatal stress
exposure and further impact development. A potential reason
why prenatal stressors might result in neurodevelopmental
effects only in some cases could be a G × E interaction. One
candidate is the serotonin transporter (SERT) gene, which is
well-studied for its role in stress susceptibility. The SERT gene
encodes for the SERT protein, which transports serotonin from
the synaptic cleft back to the presynaptic neuron (37). Variations
in this gene can alter aspects of its function (38–42). The most
widely studied variation is an insertion or deletion of 44 base
pairs within the promoter region of the SERT gene, SLC6A4,
resulting in a long (L) or short (S) allele, respectively (37, 38, 40).
The relationship between the S-allele (SS or LS genotype) and
increased risk of depression after exposure to stress has not
reliably been demonstrated (43–45). However, presence of the
S-allele is also related to suicidality (46), alcoholism (47, 48),
and susceptibility to anxiety (40), and greater activation of the
amygdala, a brain region which is critical for fear reactions
(49). The S-allele of the SERT gene has not been consistently
linked to ASD itself (50–54), but its role as a gene mediating
stress susceptibility remains of interest. It has also been recently
demonstrated that maternal serotonin concentrations affect
core symptoms and cognitive ability in ASD, with the lowest
maternal serotonin levels associated with the greatest severity
(55). Linkage studies have also associated rigid-compulsive
behaviors in patients with ASD with the region of the genome
containing SERT (56). A variation in a single nucleotide on
the gene, Gly56Ala, is also linked to ASD (42). However, the
SERT polymorphisms most reliably associated with ASD result
in overactivity, rather than a loss of function. Therefore, for a
potential role of the S-allele in a G × E interaction in ASD,
the superimposed effect of prenatal stress on the maternal SERT
genotype in this case may be distinct from the mechanism of the
SERT polymorphisms directly associated with ASD.

The clinical salience of a G × E interaction was explored
for SERT and prenatal stress exposure, demonstrating that
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the relationship between prenatal stress exposure and ASD
appears to be mediated by maternal genetic susceptibility to
stress, specifically by maternal presence of the S-allele, which
has been shown in two independent patient populations (57).
Stress surveys were administered to two independent samples of
mothers of children with ASD. The SERT gene was genotyped for
the L-alleles and S-alleles in the mothers. Those individuals that
have the LS or SS genotypes (∼64% of the population) are known
from previous work (43, 45–49) to have increased stress reactivity
and express lower levels of SERT than those individuals that have
the L/L genotype. Thus, mothers were examined for the presence
vs. absence of the S-allele as a genetic marker associated with
stress reactivity and the presence vs. absence of prenatal stress
according to stress surveys (57).

If the S-allele is a maternal risk factor for development of
ASD with exposure to prenatal stress, one might expect that
among mothers of children with ASD, a history of prenatal stress
exposure during pregnancy would be observed more frequently
in presence of the S-allele. In other words, if the association
between prenatal stress and ASD was driven by the need for
additional presence of maternal genetic susceptibility to stress,
then this association between prenatal stress and ASD should
be primarily observed in the pregnancies of mothers with this
genetic susceptibility to stress. In both samples, the presence
of the S-allele and the history of prenatal stress were found
to significantly co-segregate in mothers of children with ASD
within the critical period of pregnancy suggested in our previous
work. To account for the possibility that the S-allele simply
conferred increased recall of stress, or for some other reason
greater exposure to during pregnancy, prenatal stress exposure
history was obtained from the same mothers for the pregnancies
of the proband’s unaffected sibling. There was no increase in
report of prenatal stress exposure regardless of genotype when
these samemothers were queried about pregnancies of unaffected
siblings. This suggests that the S-allele does not cause an overall
increase in recall of stress or stress exposure during pregnancy.
Rather, this provides support that the S-allele might serve as
a genetic risk factor for increased maternal stress response in
association with the development of ASD, and the effect is specific
to exactly the same timeframe as reported by previous research
using self-report measures and also the timeframe suggested by
the Louisiana storms (21, 22, 57).

An animal model was developed to facilitate exploration
of mechanism and experimental manipulations directed at
developing treatment and prevention strategies. Social behavior
was examined in the offspring of female SERT-heterozygous
knockout (SERT-het)mice, whose SERT function is reduced 50%,
comparable to that observed in humans with the S-allele and
are known to have an increased susceptibility to stress (41, 58,
59), which are then exposed to chronic variable stress during
gestation. In a 2 × 2 (stress × genotype) experimental design,
SERT-wild-type (SERT-wt) and SERT-het dams were exposed to
stress during gestation. A control group for each genotype had no
stress exposure. This stress paradigm has previously been shown
effective based on cortisol measurements but does not cause
changes in feeding or body weight (60). Using the three-chamber
social approach task (61), a significantmaternal genotype× stress

interaction was found, with unstressed offspring of wild-type
mice spending significantly more time with the novel stranger
than prenatally stressed offspring of SERT-het dams, supportive
of a maternal gene/stress interaction in offspring behavior in the
mouse model. These offspring of stressed heterozygous mothers
did not demonstrate more general anxiety as assessed by elevated
plus maze, suggesting specificity of this avoidance effect to the
social domain (62).

To explore the mechanism of these effects, epigenetic
markers were explored. Recent research revealed numerous
gene expression changes associated with stress exposure. With
maternal stress exposure in rodents, placental tissue showed
increased expression in peroxisome proliferator-activated
receptors α (PPARα), insulin-like growth factor-binding protein
1 (IGFBP-1), GLUT4, and HIF3α, specifically observed in
placentas associated with male offspring (63), in addition
to O-GlcNAc transferase (OGT) (64), of particular interest
given the high percentage males with ASD. MicroRNAs
(miRNAs) also play a significant regulatory role in serotonergic
pathways (65, 66), immunity (67), and prenatal stress (68–70).
Dysregulation of miR-103, miR-145, miR-219, miR-323, and
miR-98 is associated with maternal stress (71). Inflammatory
responses in the brain may be altered by miR-323 and miR-98
(71). MiR-135 regulates response to chronic stress through
interaction with serotonergic activity (72). Furthermore, roles of
specific miRNAs have been reported in regulating serotonergic
genes (Let-7a) (66), SERT (miR-16 and miR-15a) (73, 74), and
SLC6A4 (miR-325) (75). Recent work has shown that parental
stress effects on offspring are also mediated by miRNA changes
(76, 77).

Previous work explored the miRNA gene profile, expression,
and methylation profile in the brains of the offspring of this
SERT-het/stress model in mice, revealing a striking attenuation
of the gene expression and miRNA changes in response to stress
in the brains of the SERT-het/stress offspring mice in contrast
to response to prenatal stress in the brains of SERT-wt mice (78).
Significantly increased global methylation was observed in SERT-
het/stress offspring brains, and there were more upregulated
miRNA in stressed control mice as compared to wt, but not
for SERT-het/stress compared to SERT-wt. Similarly, there were
fewer upregulated genes when SERT-het/stress was compared
to SERT-wt than when stressed control mice were compared to
wt. Therefore, with increased methylation (generally suppressing
gene expression), and decreased miRNA and overall expression,
it appears that the typical epigenetic response to stress in
offspring brains is blunted in the presence of maternal SERT-
het (78).

Given the findings in the G × E mouse model, we began
to explore the potential for detecting epigenetic changes in the
clinical G× E setting. As an initial investigation in this direction,
we examined the miRNA profile in the samples from the mothers
in the previously described clinical G × E study to determine if
significant changes were detectable in those mothers of children
with ASD exposed to stress during pregnancy and whether
these were further impacted by the maternal SERT genotype.
Additionally, we performed exome sequencing of the maternal
samples in an exploratory manner to determine whether there
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are other maternal factors that might be of interest for potential
future exploration.

METHODS

Samples
Thirty-four maternal blood samples from one of the sites in the
previous G × E study were examined in this study. We did
not have any samples with LS genotype in the low-stress group.
Therefore, the samples were divided into five groups based on
SERT genotypes and prenatal stress level, as shown in Table 1.
Families with a child diagnosed with ASD under the age of 10
years were contacted from the University of Missouri Thompson
Center for Autism & Neurodevelopmental Disorders database.
All participants with ASDwere below 10 years of age (average age
= 6.8± 1.8) to maximize the parents’ ability to recall information
from the prenatal period. Families were invited to provide
samples for genetic analysis and complete a questionnaire
regarding the prenatal period. All ASD diagnoses were confirmed
via Autism Diagnostic Interview-Revised (ADI-R) (79) and/or
Autism Diagnostic Observation Scale (ADOS) (80) scores.
Experimental procedures were approved and conducted in
accordance with the University of Missouri Health Sciences
Institutional Review Board. Blood was drawn via a standard
venipuncture from the median cubital vein of the arm. Genomic
DNA was obtained from the subjects’ whole blood (FlexiGene
Kit; Qiagen, Hilden, Germany) according to the manufacturer’s
instructions. PCR was performed as previously described (81).
Briefly, the promoter region of the serotonin transporter gene
was amplified using the Qiagen PCR kit from 25 ng genomic
DNA to determine the SERT genotype, as described in a previous
study (57), with 35% of mothers revealing the SS genotype, 32%
the SL genotype, and 32% the LL genotype from the sample in the
present study, where samples from mothers with at least three
stressors were selected for the high-stress group, and samples
from mothers with 0 or 1 stressor were selected for the low-stress
group. At the time of the appointment with the experimenter,
mothers completed questionnaires regarding their child with
ASD as well as the gestational period in which the stressors
occurred for that child. Details of the stress surveys to which the
mothers replied are previously described (57). Survey questions
obtained information on the child’s birth date, pregnancy length,
and the occurrence and subjective severity of major stressful
events during the pregnancy. A list of common stressors was
provided to the subjects to facilitate recall of events that may
have occurred during the pregnancy. Severity of each stressor
was also recorded using an established ranked scale of typical
stressor intensities (21, 57).

miRNA Expression Profiling
Lymphocytes from all mothers, varying in SERT genotype
and degree of stress exposure, were assessed for miRNA
expression. Total RNAs were isolated using the mirVana kit
(Ambion, Foster City, CA, USA) to capture small RNAs.
miRNA profiling was conducted using a previously used service
provider (LC Sciences, Houston, TX, USA), which applies
an in-house-developed µParaflo R© technology platform. Each

TABLE 1 | Comparison groups.

Prenatal stress SERT genotype N Group

High SS 6 G1a

LS 11 G1b

LL 5 G2a

Low SS 6 G2b

LL 6 G3

Samples were divided into five groups based on SERT genotypes and prenatal stress level.

region of chips used consists of miRNA probes, which detect
miRNA transcripts listed in Sanger miRBase Release 21 (http://
www.mirbase.org/). Multiple control probes were included on
each chip for quality controls of chip production, sample
labeling, and assay conditions. Image digitization was done
using “Array-Pro Analyzer” (Media Cybernetics, Rockville, MD,
USA). Normalization was carried out using LOWESS (locally
weighted scatterplot smoothing), a pair-wise regression method,
on background-subtracted data. The purpose of the experiment
was to identify miRNAs that differ in expression levels (DE
miRNAs) among the comparison groups. ANOVA was applied
to detect DE miRNAs (p < 0.05), considering the variability of
the expression levels across all samples (within and among the
groups). miRDB was used to identify miRNA predicted target
genes (82). Pathway analysis was conducted using the DAVID
tool (83).

Exome Sequencing
To explore other effects of maternal genotype, the same
service provider was used to run whole-exome sequencing
(WES). The Illumina HiSeq 2500/4000 platform was used
with 50× coverage depth. Data were analyzed using GATK
(Genome Analysis Toolkit) and applying an analytical pipeline
that included removing low-complexity sequences, aligning of
sequence against reference human genome, excluding duplicate
reads, sorting nucleotide sequence alignment, and base quality
score and variant calling [INDEL and single-nucleotide variants
(SNVs)]. Annotation and filtering of variants included minor
allele frequency filtration (MAF < 0.05 using databases
such as dbSNP, 1000 Genome, TopMed, and ExAC). False-
positive variants commonly seen in WES were sorted out and
removed, using recommendation by Fuentes Fajardo et al.
(84). The functional effect of variants was assessed using
prediction programs (SIFT and PolyPhen2), for retained variants
with MAF < 5% and residing within the coding regions
or 10 bases upstream/downstream from splicing junctions.
Variants were divided into three categories based on their
predicted effect on the protein function, with the following
description: high-impact effects (splice site acceptor, splice
site donor, start lost, exon deleted, frame shift, stop gained,
stop lost), moderate-impact effects (non-synonymous coding,
codon change/insertion/deletion, UTR 5′/UTR 3′ deletion), and
low-impact effects (synonymous/non-synonymous start/stop,
start gained, synonymous coding). We focused on high-
impact variants.
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TABLE 2 | Eight DE microRNAs candidate for stress × SERT interactions (stress upregulated = red, downregulated = bluec).

SERT genotypes

High stress Low stress

microRNA P-value SS LS LL SS LL

hsa-miR-6125 0.000009 3,952 7,249 5,973 1,854 2,854

hsa-miR-4787-5p 0.00002 3,086 5,952 6,561 1,601 2,325

hsa-miR-663a 0.00002 100 242 177 38 70

hsa-miR-7704 0.0001 6,175 11,183 7,739 2,281 4,289

hsa-miR-1224-5pa 0.001 1,491 1,814 1,663 309 485

hsa-miR-664b-5p 0.002 308 548 787 115 80

hsa-miR-331-3pa 0.002 363 457 398 976 1,018

hsa-miR-145-5pb 0.01 209 387 471 675 660

See Table 1 for grouping and sample sizesc.
aExhibited a stress-dependent expression pattern in rodent brain samples from embryos exposed to prenatal stress (78).
bHas been reported in association with maternal stress (71, 85).
cNumbers represent normalized average expression level (signal intensity on the array).

TABLE 3 | Functional annotation of the predicted target genes for eight DE microRNAs listed in Table 2.

Term Count P-value Fold enrichment Bonferroni Benjamini FDR

Dopaminergic synapse 22 5.46E-06 3.1 0.001 0.001 0.007

Amphetamine addiction 14 3.82E-05 3.9 0.010 0.003 0.050

Cocaine addiction 11 3.32E-04 4.0 0.081 0.012 0.432

Glutamatergic synapse 16 1.22E-03 2.6 0.267 0.026 1.582

Circadian entrainment 14 2.04E-03 2.7 0.404 0.036 2.619

Cholinergic synapse 15 3.40E-03 2.4 0.579 0.053 4.337

Alcoholism 16 6.76E-03 2.2 0.821 0.069 8.455

Serotonergic synapse 14 7.52E-03 2.3 0.853 0.071 9.368

GABAergic synapse 12 7.94E-03 2.5 0.868 0.072 9.861

Using miRDB a total of 1,074 target genes were predicted for the DE microRNAs and DAVID was used for functional annotation of these genes. Count refers to the number of genes

from the input list (i.e., predicted targets for the eight DE miRNAs) annotated with a given term.

RESULTS

MicroRNA expression in blood samples (n = 34) from mothers
of children with ASD, with known pregnancy stress history, was
profiled. Comparisons were conducted based on SERT genotypes
(LL, LS, and SS) and prenatal stress level (high vs. low). Among
the 2,500 mature miRNAs examined in all five groups, 119
miRNAs were found to be differentially expressed (DE). Ninety of
the DE miRNAs (76%) showed a different pattern of expression
in high vs. low stress-exposed groups (suggestive of being stress-
dependent miRNAs); 77 (86%) of them were upregulated by
stress and 13 (14%) were downregulated in the high- vs. low-
stress groups, as shown in Supplementary Table 1A. Out of these
DE miRNAs, the following three have been previously reported
in association with stress: miR-1224-5p and miR-331-3p were
found to be stress-dependent in offspring mouse brains by our
group (78), and miR-145-5p has been reported in association
with maternal stress (71, 85). Our previous work had suggested
that prenatal stress exposure interacts with maternal stress
susceptibility associated with the SERT genotype. To further

explore this interaction, miRNA profiles were also assessed in the
three groups exposed to a high level of prenatal stress, stratified
by SERT genotypes. This analysis detected a smaller number of
DE miRNAs (n = 20), as shown in Supplementary Table 1B.
Moreover, five out of 20 (miR-663a, miR-664b-5p, miR-4787-
5p, miR-6125, and miR-7704) were shared with the stress-
dependent miRNAs, making them potential candidates for the
SERT/stress mechanism.

For target predictions, we prioritized those DE miRNAs that
aremost likely to be associated with this G× E interactionmodel.
To do so, we compiled a list of eight DE miRNAs (Table 2),
including the five candidates for stress × SERT genotype
interactions and the three that have been previously associated
with stress, discussed above. A total of 1,074 genes were predicted
for these eight DE miRNAs. Two hundred thirteen of them were
annotated in the OMIM database. The leading functional target
for these genes was the dopaminergic synapse, congruent with
our effects on dopamine in the striatum described below in the
gene × stress model (86), in addition to pathways associated
with addiction and other neurotransmitter systems including
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TABLE 4 | High-impact recurrent SNVs identified in each group.

Prenatal stress level Gene Variant Chromosome Group Subject ID Annotation HGVS.c HGVS.p SERT genotype

High AMY1C rs140363602 chr1 G1a 10M, 51M stop_gained c.1054C>T p.Arg352* SS

CPA4 rs145012020 chr7 G1a 10M, 25M stop_gained c.777G>A p.Trp259*

GC rs76781122 chr4 G1a 10M, 51M start_lost c.3G>T p.Met1?

NOTCH2NL rs140871032 chr1 G1a 10M, 44M stop_gained c.220C>T p.Arg74*

NOTCH2NL rs374113588 chr1 G1a 10M stop_gained c.154C>T p.Arg52*

KIAA1919 rs117505745 chr6 G1b 32M, 53M stop_gained c.545T>A p.Leu182* LS

LILRA1 rs150508449 chr19 G1b 23M, 31M stop_gained c.781G>T p.Gly261*

LRRC9 rs368587449 chr14 G1b 32M, 48M stop_gained c.3781C>T p.Arg1261*

LRRC9 rs35427175 chr14 G1b 45M stop_gained c.3113G>A p.Trp1038*

NOMO2 rs200294351 chr16 G1b 28M, 31M, 53M stop_gained c.2122G>T p.Glu708*

NOTCH2NL rs140871032 chr1 G1b 22M, 46M stop_gained c.220C>T p.Arg74*

OLFM4 rs34067666 chr13 G1b 12M, 22M stop_gained c.640C>T p.Arg214*

RHBDD3 rs138870856 chr22 G1b 23M, 48M stop_gained c.867G>A p.Trp289*

SULT1C3 rs112050262 chr2 G1b 46M, 53M stop_gained c.108G>A p.Trp36*

VCX3B rs5978242 chrX G1b 23M, 46M splice_donor_variant c.387+1G>C NA

AMY1C rs140363602 chr1 G2a 27M, 43M stop_gained c.1054C>T p.Arg352* LL

PRSS1 rs147366981 chr7 G2a 13M, 27M stop_gained c.166C>T p.Gln56*

SULT1C3 rs112050262 chr2 G2a 27M, 43M stop_gained c.108G>A p.Trp36*

Low NIT1 rs76502631 chr1 G2b 04M, 21M splice_donor_variant n.96+1G>A NA SS

CBWD1 rs199631831 chr9 G3 29M splice_acceptor_variant c.2961C>G p.Tyr987* LL

CBWD1 rs199901774 chr9 G3 15M splice_donor_variant c.816+1G>T NA

Functional effect of variants was assessed using SIFT and PolyPhen2 programs.
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glutamate, GABA, the serotonergic system, and the cholinergic
system (Table 3). Additionally, DYRK1A was a predicted target
for three of these miRNAs (miR-1224-5p, miR-145-5p, and miR-
663a).

Furthermore, we found that high-stress groups exhibited
a notably elevated level of high-impact SNVs compared with
the low-stress groups, as shown in Supplementary Table 2.
When comparing groups in the two extreme ends (G1a
vs. G3), total number of SNVs per subjects were 4.9 times
more in high-stress-exposure mothers with the SS genotype
than those with low-stress-exposure and the LL genotype.
SNVs seen in more than one subject in each group are listed
in Table 4. In this list, we prioritized SNVs identified in
G1a, the high-risk genotype (SS) group. Recurrent variants
in four genes, AMY1C, CPA4, GC, and NOTCH2NL, were
observed in this group. The NOTCH2NL and AMY1C
variants were also detected in the LS and LL genotype
groups, respectively.

DISCUSSION

Our previous work supported a specific gene and stress
interaction in the development of ASD (57). The present study
provides evidence for epigenetic alterations in relation to a
promising G × E model (prenatal maternal stress × SERT gene)
in ASD detected in maternal blood samples. These findings are
remarkable as these changes were detected in samples from
mothers several years after stress-exposed pregnancies. Previous
work has demonstrated an altered miRNA expression in the
brains of offspring mice exposed to maternal stress and altered
maternal serotonin transporter genotype (heterozygous KO)
(78), with some of the same miRNA differentially expressed
in the present study with human maternal blood. Additionally,
DAVID revealed that the leading functional target of the miRNA
differentially expressed by G× E in the maternal clinical samples
was the dopaminergic synapse. This is of particular interest with
the growing interest in the role of dopamine in social behavior
(87), and the potential role for this as a treatment target in
this subset of cases with ASD. The effects on dopaminergic
synapse targets are also of particular interest given our recent
finding that prenatal stress exposure in SERT-het mice resulted in
increased striatal DA in offspring brains (86). Furthermore, these
dopaminergic changes were reversed with DHA (86). The effects
on glutamatergic and GABAergic targets are of particular interest
in autism, given the importance of the excitatory/inhibitory
imbalance in ASD (88), and the effects on serotonergic targets
would be anticipated given the inclusion of maternal SERT
genotype in the G× E interaction.

Persistent miRNA changes have been observed previously
in other conditions, such as after cessation of smoking (89).
Thus, the maternal miRNA changes observed after prenatal stress
exposure associated with ASD appear to be long-lasting. This
is an important step forward in our understanding of ASD,
whose incidence appears to continue to rise, by identifying
potential markers for an etiological subtype. Future work
should explore these markers in children as well. Regulation

of miRNA stability is currently an underappreciated area of
research, but better understanding of its mechanism is likely
to contribute to a broader range of regulation that can
impact gene expression. New areas of investigation into how
gene expression can be controlled by miRNA stability may
provide novel advancements in therapeutic applications related
to the fluctuations of gene expression associated with human
disorders (90).

The finding that DYRK1A was targeted by three different
DE miRNAs is of interest. DYRK1A was identified as a
strong risk candidate gene for ASD based on a combination
of recurrent de novo likely gene-disruptive mutations in
affected individuals and their absence/very low frequency
in controls (91). De novo dominant mutations in DYRK1A
substantially reduce kinase function and account for ≈0.5%
of severe developmental disorders (92). DYRK1A was found
to be downregulated in samples from women exposed to
Superstorm Sandy during pregnancy, across all trimesters (93).
Overexpression of Dyrk1a causes a major deficit in the level
of serotonin in the brain, as well as deficit of dopamine and
adrenaline neurotransmitters in a transgenic mouse model for
Down syndrome (94).

The exploratory exome sequencing revealed some findings
of potential interest. First, the finding of NOTCH2NL variants
in four individuals with high stress exposure is of particular
interest due to its critical role in cortical development and radial
glial stem cell proliferation, as well its association with the
1q21.1 distal deletion/duplication syndrome, where duplications
are associated with autism (95). Additionally, the finding of
AMY1C variants in four individuals with high stress exposure
is of interest since salivary amylase is significantly correlated
with repetitive behaviors in individuals with developmental
disorders (96). Among the other SNVs, one variant, rs76781122
in GC, detected in two subjects from the high-stress-exposure
group, in particular, caught our attention. This variant alters
the start codon and creates a stop codon. The GC gene
encodes a vitamin D-binding protein (VDBP), the major
plasma carrier of vitamin D metabolites. A non-synonymous
variant, R21L, in this gene has been reported in association
with migraine, a condition often triggered by stress factors
(97). Several SNPs in GC have been shown to effect vitamin
D levels (98). The VDBP has also been associated with
inflammatory-mediated conditions (99). Notably, vitamin D
receptors are highly abundant in brain and involved in several key
biological processes, including the serotonin-mediated pathways
(100). One possible implication is that pregnant mothers,
carriers of rs76781122, may have had decreased levels of
VDBP, which further places them at risk for a compromised
immune system in a stressful environment. When comparing
the results from miRNAs profiling and WES, it was noted
that six out of 1,047 predicted target genes (MADD, EPS15,
PCDHGA10, WWOX, PGPEP1L, and NDUFA10) for the DE
miRNAs (miR-1224-5p, miR-145-5p, miR-7704, miR-663a, miR-
664b-5p, and miR-6125, respectively), also harbor SNVs in
the high-stress groups. Further investigations are warranted to
assess potential functional relation between these genes and
the miRNAs.
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Stress precipitates a systemic physiological response that
involves inflammatory, cellular, and metabolic processes
and their epigenetic regulation. Epidemiological studies
have found increased susceptibility to schizophrenia,
ASD, or ADHD to be associated with prenatal stress
exposure. While exact pathophysiological mechanisms are
still unknown, maternal immune activation, alteration of
the hypothalamic–pituitary–adrenal axis, and epigenetic
modifications regulating gene expression were proposed as
potential causes of neuronal proliferation and migration
disturbances in the developing fetus, which may lead to the
increased susceptibility to these disorders (101, 102). Multiple
studies using human whole blood reported that stress may
cause shifts in the concentration levels of specific miRNAs
and suggest their potential use as biomarkers in human whole
blood (103–105).

While maternal exposure to stress during pregnancy
is an elusive risk factor contributing to a wide range
of ASD-like traits in offspring, a recent study involving
children with ASD revealed that exposure to gestational
stress can be used as a strong predictor of severity of
ASD symptoms (p = 0.048) and communication abilities
(p = 0.004), even after controlling for other variables.
Moreover, significant increases in symptom severity were
seen with multiple (two or more) prenatal stressful life
events (29).

Recent research evidence suggests that miRNAs are both
responsive and susceptible to significant environmental
insults such as gestational stress and may increase the
offspring vulnerability to stress-related psychopathological
conditions (85).

The exact route through which maternal stress affects
gene expression in the offspring’s brain are not yet known,
but involvement of epigenetic changes may be one such
mechanism (106). Epigenetic processes such as microRNAs
are among gene regulatory mechanisms that are influenced
by environmental factors such as stress, and identifying their
potential mis-regulation will contribute to narrowing the existing
gap in our understanding of the mechanism of maternal stress
and ASD.

The findings from the exome sequencing, while exploratory
in nature, deserve further investigation. It will be critical
to determine whether aspects of vitamin D metabolism,
known to have a range of effects on offspring during
development (107), might also contribute to developmental
susceptibility to the effects of prenatal stress, or if the other
SNVs might have critical salience, such as the potential
for altered stress reactivity among mothers with AMY1C
variants (96).

To our knowledge, this study is the first to examine a potential
mechanism for this specific interaction between genetics and
stressors during a specific prenatal period. These findings may
serve as evidence of a biomarker for this mechanism, or possibly a
common biomarker for several etiologies, which warrants further
investigation. As numerous genes as well as SERT can affect
stress reactivity, exploring epigenetic pathways by which this

occurs more broadly will help to identify pathways of action
regardless of the specific gene associated with stress exposure.
Additionally, it will be critical for subsequent studies to examine
the impact of other SERT variants, including the L(A) allele
(108, 109), as well as others (110, 111). It will also be critical
to better understand the time course of development of these
markers, from at the time of initial stress exposure through
birth, to determine other such markers that might be present
earlier in the course. While the apparent persistence of these
stress-associated miRNA changes is remarkable, and there is
precedent for persistent miRNA changes in other settings (89),
one cannot be certain as to the relationship here, and future
studies will need to reevaluate these findings at an earlier time
point, and eventually during pregnancy in a longitudinal study.
However, this would not appear to be due to changes simply
resulting from raising a child with ASD, since all samples were
collected from mothers of children with ASD, and the miRNA
findings herein are due to the effects of the G × E interaction
within the population of mothers of children with ASD. We
cannot exclude, though, the possibility that other maternal
factors, may have contributed such as those identified in the
exome sequencing, or it might be due to stress resulting from
phenotypical differences in the G × E-associated cases, since
previous work suggests that prenatal stress-associated autism
can be more severe (29). Thus, future work will be needed
to determine whether these miRNA findings might serve as a
biomarker that could be targeted in approaches to mitigate the
effects of prenatal stress.
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