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Abstract

A fitness landscape (FL) describes the genotype-fitness relationship in a given environment. To 

explain and predict evolution, it is imperative to measure the FL in multiple environments because 

the natural environment changes frequently. Using a high-throughput method that combines 

precise gene replacement with next-generation sequencing, we determine the in vivo FL of a yeast 

tRNA gene comprising over 23,000 genotypes in four environments. Although genotype-by-

environment interaction (G×E) is abundantly detected, its pattern is so simple that we can 

transform an existing FL to that in a new environment with fitness measures of only a few 

genotypes in the new environment. Under each environment, we observe prevalent, negatively 

biased epistasis between mutations (G×G). Epistasis-by-environment interaction (G×G×E) is also 

prevalent, but trends in epistasis difference between environments are predictable. Our study thus 

reveals simple rules underlying seemingly complex FLs, opening the door to understanding and 

predicting FLs in general.

The fitness landscape (FL) of a gene in a given environment maps each mutational variant of 

the gene to the fitness of the organism carrying the variant. FLs allow explaining as well as 

predicting evolutionary trajectories, and are therefore of fundamental biological 

importance1. Because fitness is expected to vary by environment, which frequently changes 

in nature, characterizing FLs in multiple environments offers not only more relevant and 

accurate evolutionary explanations and predictions but under certain circumstances also 

insights that are otherwise impossible to gain. For example, a gene that seems harmful to an 

organism in one environment is nonetheless retained in its genome, because it is beneficial 

in other environments2. Two alleles at a locus may be respectively favored in two 

environments, resulting in a stable genetic polymorphism if the population switches 

sufficiently frequently between these environments3,4. A population trapped at a suboptimal 

local fitness peak under one environment may escape upon an environmental shift, even if 

the environment later shifts back5,6. Differences in FL between two environments may also 

lead to ecological speciation7. Notwithstanding, due to the huge genotype space (4n 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:https://www.nature.com/authors/editorial_policies/license.html#terms
*Correspondence to: Jianzhi Zhang, Department of Ecology and Evolutionary Biology, University of Michigan, 1075 Natural Science 
Building, 830 North University Avenue, Ann Arbor, MI 48109, Phone: 734-763-0527, Fax: 734-763-0544, jianzhi@umich.edu.
+Present address: Department of Biology, Stanford University, Stanford, CA 94305, USA

Author contributions: J.Z. conceived the project; C.L. and J.Z. designed the experiment; C.L. performed the experiment and analyzed 
the data; C.L. and J.Z. wrote the paper.

Competing interests: The authors declare no competing financial interests.

HHS Public Access
Author manuscript
Nat Ecol Evol. Author manuscript; available in PMC 2018 October 23.

Published in final edited form as:
Nat Ecol Evol. 2018 June ; 2(6): 1025–1032. doi:10.1038/s41559-018-0549-8.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.nature.com/authors/editorial_policies/license.html#terms


genotypes for a gene with n nucleotides), even the characterization of a small fraction of the 

FL of a gene under one environment had been a formidable challenge until recently8-13. As a 

result, past quantifications of FLs typically probe only one environment. Adopting a recently 

developed high-throughput method9 with minor modifications, we map the in vivo FL of a 

tRNA gene in four environments in order to study the environmental impact on FLs. Of 

particular interest are genotype-by-environment interactions (G×E) and epistasis-by-

environment interactions (G×G×E). In humans, G×E has been implicated in numerous 

diseases such as cancer and mental disorders14,15. Epistasis, or interaction between 

mutations (G×G), has multiple important functional and evolutionary implications16 and is 

known to vary among environments17-22. Because the method employed can measure the 

fitness of tens of thousands of genotypes9, the collected data permit the quantification of 

G×E and G×G×E at an unprecedentedly large scale, providing opportunities for identifying 

general principles of these interactions.

Results

Mapping multi-environment FLs of a tRNA gene

tRNACCU
Arg  is a transfer RNA that uses its anticodon 5′-CCU-3′ to bind to the arginine codon 

AGG in translation. It is encoded by a single-copy gene (HSX1) in the budding yeast 

Saccharomyces cerevisiae. Deleting this gene is nonlethal, because tRNAUCU
Arg , another tRNA 

for arginine, can wobble-pair with AGG. We synthesized the 72-nucleotide tRNACCU
Arg  gene 

with a 3% per-site mutation rate (1% to each alternative nucleotide) at 69 sites; the 

remaining three sites were kept invariant for technical reasons9 (Fig. 1; see Methods). This 

mutation rate was chosen to maximize the representation of genotypes carrying two 

mutations for the purpose of studying epistasis between mutations (see Methods). We 

constructed a library of more than 100,000 yeast strains, each carrying a tRNACCU
Arg  gene 

variant at its native genomic location. Three to five parallel competitions of this strain pool 

were conducted in each of four environments: 30°C in the rich medium YPD (hereafter 

Env30), 23°C in YPD (Env23), 37°C in YPD (Env37), and 30°C in YPD with 3% dimethyl 

sulfoxide (DMSO) added (EnvDMSO) (Fig. 1). Among them, Env30 is the optimal growth 

condition for the wild-type yeast strain used, with the other environments imposing cold, 

heat, and oxidative stresses23, respectively. The selection of these four environments was 

based on previous studies showing that tRNA folding and decay are temperature-

dependent24-26 and RNA structure and function are affected by DMSO27.

The wild-type yeast growth rates (GR) in these four environments show GR(Env30) > 

GR(EnvDMSO) > GR(Env37) > GR(Env23), while the gene importance (GI) to growth, 

measured by the fractional reduction in growth rate caused by deleting the tRNA gene, 

shows GI(Env37) > GI(EnvDMSO) > GI(Env30) > GI(Env23) (Supplementary Fig. S1). The 

tRNACCU
Arg  gene is more important to cell growth at higher temperatures probably because the 

probability that tRNAUCU
Arg  is correctly folded decreases with temperature, reducing its ability 

to compensate the loss of the tRNACCU
Arg  gene.
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After the competition, the tRNACCU
Arg  gene amplicons from each replicate competition (T1) 

under each environment, as well as those from the common starting population (T0; with 

two technical repeats), were sequenced with 125-nucleotide paired-end Illumina sequencing 

(Fig. 1). The sequences provide the tRNACCU
Arg  genotype as well as genotype frequency 

information. A total of 881 million read pairs were generated. Read numbers per genotype 

are highly correlated between technical repeats (Pearson's correlation r =0.994; 

Supplementary Fig. S2a) and between biological replicates (r =0.9911-0.9999; 

Supplementary Fig. S2b). The technical repeats are combined in subsequent analysis. The 

fitness of each genotype relative to the wild-type (fitness hereafter) in an environment was 

estimated using the genotype frequencies at T0 and T1 as well as the number of wild-type 

generations in the competition (see Methods). We analyzed 23,284 genotypes with read 

counts ≥100 at T0. Because the tRNACCU
Arg  gene is nonessential, mutations in the gene are 

unlikely to be lethal. When an estimated fitness is < 0.5 (likely due to stochasticity), we set it 

at 0.5, meaning that the genotype has no growth9.

G×E is pervasive

We previously reported the FL of the yeast tRNACCU
Arg  gene in Env37 and its reliability, 

consistency with evolutionary data, and potential mechanistic basis9. With the FL data in 

four environments, we here focus on the impact of the environment on the FL rather than 

describing the FL under each environment. Specifically, we study whether the same 

mutation has different fitness effects in different environments, formally known as genotype-

by-environment interaction28 (G×E) in fitness (Fig. 2a). Under the null hypothesis of no 

G×E, the fitness effect of a mutation is environment-independent, and hence the mutant 

fitness distribution should be identical across environments. In stark contrast to this null 

expectation, the mutant fitness distribution differs drastically among each pair of the four 

environments (P < 10-300, Kolmogorov-Smirnov test; Fig. 2b), suggesting pervasive G×E in 

our data. Mean mutant fitness (F̄) shows F̄(Env23) > F̄(Env30) > F̄(EnvDMSO) > F̄(Env37), 

exactly opposite to the aforementioned order of GI in the four environments. That is, mean 

mutant fitness decreases as gene importance in the environment rises. Although testing G×E 

for individual genotypes has a much-reduced statistical power, a substantial fraction showed 

significantly different fitness values between environments (nominal P < 0.05, t-test; lower 

left triangle in Fig. 2c). This fraction generally increases with the extent of environmental 

difference that can be gauged (e.g., temperature difference). It also increases for genotypes 

carrying a single point mutation (N1 mutants; upper right triangle in Fig. 2c), owing to their 

relatively high genotype frequencies in the strain pool that lead to relatively high numbers of 

sequencing reads, which empower the statistical test. Because only 5% of genotypes are 

expected by chance to show significantly different fitness values between any pair of 

environments under the null hypothesis of no G×E, our findings establish the prevalence of 

G×E. In some studies, G×E is defined by a between-environment variation in the growth rate 

difference between a genotype and the wild-type28-31. Pervasive G×E is also found when 

growth rate difference instead of relative fitness is used in the definition of G×E 

(Supplementary Fig. S3; see Methods).
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Quantitative relationship in genotype fitness between environments

Despite the abundance of G×E, the fitness of a genotype in one environment exhibits a 

strong linear correlation with that in another environment (r = 0.78 - 0.94; lower left triangle 

in Fig. 3a), especially for N1 mutants (r = 0.94 - 0.99; upper right triangle in Fig. 3a), which 

generally have more precise fitness estimates than mutants carrying two or more mutations. 

The correlation is confirmed by individually measuring the fitness of 55 mutants across the 

four environments on the basis of growth curves (r = 0.85 - 0.96; Supplementary Fig. S4).

To more accurately describe the relationship of genotype fitness in two environments, we 

plotted a local regression (LOESS) of the fitness in Env30 (f30) and the fitness in Env23 (f23) 

across all genotypes (Fig. 3b). As expected, the regression goes near the point of (f30 = 1, f23 

= 1) because of a large number of genotypes showing similar fitness as the wild-type. The 

regression suggests that the data can be described approximately by a piecewise linear 

model of f23-1 = k(f30-1), with one slope (ka) for genotypes of f30 < 1 and a different slope 

(kb) for genotypes of f30 >1 (see Supplementary Table S1 for other environment pairs). In 

other words, the fitness effect of a mutation in Env23 (i.e., f23-1) is proportional to that in 

Env30 (i.e., f30-1). We observed a general trend that kb is closer to 1 than is ka (i.e., |kb-1| < |

ka-1|) across all environment pairs (Fig. 3b; Supplementary Table S1). This pattern may 

reflect different properties of deleterious and beneficial mutations other than their effect size 

differences, because the same trend holds even for deleterious and beneficial mutations of 

comparable fitness effect sizes. We also respectively tested a simple linear model with only 

one parameter and a quadratic model in describing the between-environment fitness 

relationships. Although the quadratic model generally outperforms the simple and piecewise 

linear models, the coefficient of the quadratic term is small. Also, the advantage of the 

quadratic model over the piecewise linear model, measured by the difference in the fraction 

of variance explained, is small (Supplementary Table S2). Furthermore, this advantage arises 

from the fact that the vast majority of genotypes are less fit than the wild-type (Fig. 2b) and 

that the quadratic model allows one more parameter than the piecewise linear model to 

describe these genotypes. When equal numbers of genotypes that are fitter and less fit than 

the wild-type are considered, the piecewise linear model generally performs the best 

(Supplementary Table S3). Because of the distinct biological meanings and evolutionary 

roles of deleterious and beneficial mutations, the piecewise linear model, which has equal 

weights for these two types of mutations in fitting, appears more appropriate.

Predicting the FL under new environments

To evaluate how well the piecewise linear model (Fig. 3c) predicts the f23 of a genotype 

from its f30 estimate, we focused on 6319 genotypes that have relatively precise 

experimental estimates of f30 and f23 (with ≥ 500 reads at T0 and ≥ 1 read at T1 in each of 

the five replicates under each of the two environments). Such restriction is necessary 

because of the difficulty in judging whether a prediction is good or not by comparing it with 

an actual measurement that is imprecise. We treated the f23 of a genotype estimated from the 

mean of five biological replicates as the observed value. The predicted and observed f23 

values are highly correlated (Spearman's ρ = 0.908, Pearson's r = 0.915, P < 10-300 in both 

tests). We define prediction error by the absolute difference between the observed and 

predicted f23. By contrast, measurement error is the mean absolute difference between the 
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observed f23 and that estimated from one biological replicate. Remarkably, the prediction 

error is no greater than the measurement error across the entire range of f30 in our data (Fig. 

3d), and this pattern holds for four of the 12 environment pairs (Supplementary Fig. S5). In 

addition, we quantified the prediction bias by the median difference between the predicted 

and observed f23, and found it to be minimal except when f30 < 0.6 (Fig. 3e), which is 

expected (see Methods). For comparison, we respectively tested a linear model with one k 
and a quadratic model (Fig. 3c). These two models have larger biases and errors when f30 > 

1 but are otherwise similar in performance to the piecewise linear regression (Fig. 3d, e). 

These observations hold in all 12 pairwise predictions from one environment to another 

(Supplementary Fig. S5). Another performance indicator of our prediction is the fraction of 

predictions that deviate significantly from the observation. Only 0.51% of the 6319 

predictions of f23 from f30 belong to this category (FDR = 0.05).

In the above exercise, the prediction model is determined by comparing the FLs respectively 

measured in Env30 and Env23. In practice, we would measure the FL in Env30 and then 

predict it in Env23. Because the piecewise linear model involves only two parameters (ka and 

kb), in principle we need to measure the fitness of only two genotypes, respectively fitter and 

less fit than the wild-type, in Env23 to parameterize the model. This is indeed the case, as 

long as the f30 of the genotypes chosen for fitness measurement in Env23 is not too close to 1 

(Fig. 3f). This pattern holds for most of the 12 environment-to-environment fitness 

predictions (Supplementary Fig. S6).

Epistasis between mutations is negatively biased

We estimated epistasis between mutations in the tRNA gene using the fitness estimates of all 

207 N1 mutants and 8,101 double mutants (N2 mutants) (see Methods). In each 

environment, a large fraction of mutation pairs show significant epistasis and the epistasis is 

strongly biased toward negative values (Fig. 4a; Supplementary Fig. S7) except at paired 

sites (Supplementary Fig. S8), similar to observations in other molecules8,12,32. 

Furthermore, the average fitness of all genotypes carrying the same number (≥ 2) of 

mutations is lower than expected under the multiplicative model, again indicating pervasive 

negative epistasis (Fig. 4b).

Epistasis by environment interaction is prevalent

Except for the pair of Env30 and EnvDMSO in which mutant fitness values are similar (Fig. 

2c), a substantial fraction of epistasis varies between environments (Fig. 4c), revealing 

prevalent epistasis-by-environment interactions (G×G×E). G×G×E is also abundantly 

observed under a commonly used alternative definition of epistasis (Supplementary Fig. S9).

Given that the fitness of a genotype in one environment can be predicted from that in another 

environment and that epistasis is estimated from the fitness values of three relevant 

genotypes, it is possible to predict epistasis in one environment from the fitness data in 

another environment (see Methods). Nevertheless, epistasis prediction is expected to be less 

precise than fitness prediction, because each epistasis prediction relies on three fitness 

predictions. Not with standing, predicting the general trend in epistasis changes upon an 

environmental shift may be sufficiently reliable, because errors in individual epistasis 
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predictions are random and do not alter the general trend. Our prediction of epistasis at 

Env23 from the fitness data at Env30 suggests a strong, positive correlation in epistasis 

between the two environments (Supplementary Fig. S10), which is confirmed by a 

comparison of epistasis respectively measured in the two environments (Fig. 4d; 

Supplementary Fig. S11). We also predict that epistasis holds the same direction across 

environments for most albeit not all mutation pairs (Supplementary Fig. S10), as is observed 

(Supplementary Table S4). We further predict that, when the mean fitness effect of mutation 

enlarges upon an environmental shift (e.g., from Env30 to Env37), switches from positive to 

negative epistasis outnumber the opposite switches, which is confirmed by our data 

(Supplementary Table S4). Nevertheless, none of the predicted epistasis sign switches show 

significant epistasis in each of the two environments concerned and exhibit an epistasis sign 

switch, likely due to the relatively large error in predicting the epistasis of specific mutation 

pairs.

Discussion

In summary, we detected widespread G×E in the FLs of the yeast tRNACCU
Arg  gene across four 

environments, echoing accumulating reports of G×E in humans and model 

organisms14,15,29,33 and supporting the importance of mapping FLs in multiple 

environments. Our discovery of a simple rule of G×E provides a convenient and reliable 

computational means to transform the FL from one environment to another with minimal 

additional experiments. Our observation that the fitness effect of a mutation can be linearly 

transformed between environments is equivalent to the statement that the ratio between the 

fitness effects of any two deleterious (or beneficial) mutations (say A and B) in a gene is 

roughly constant irrespective of the specific environment. When mutation B is a null 

mutation, the ratio measures the fraction of the gene's fitness contribution impacted by 

mutation A. The constancy of this ratio among environments leads to the interpretation that, 

while a gene's fitness contribution may vary among environments2,34, a mutation in the gene 

influences the gene's fitness contribution by a fixed proportion that is independent of the 

environment. The above interpretation does not depend on the specific mechanism by which 

a mutation affects fitness. One critical question is whether our discovery in a yeast tRNA 

gene applies to other genes (especially protein-coding genes) and other organisms. To 

address this question, we analyzed the local FLs of a segment of the yeast heat shock protein 

Hsp90 gene in four environments35 and found that the observed patterns (Supplementary 

Fig. S12) resemble those in the tRNA gene. Further verifications, especially in other 

organisms, are needed when more multi-environment FLs become available in the future. 

Note that because the fitness contribution of one gene may rise while that of another may 

decrease upon an environmental shift, the between-environment transformation of FL is 

expected to be gene-specific.

We also detected widespread G×G×E, which were previously reported at much smaller 

scales17-22. Because of the broad functional and evolutionary implications of epistasis, 

between-environment differences in epistasis cannot be ignored, especially in those rare 

cases where an environmental shift reverses the sign of epistasis.
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In previous studies, we and others provided evidence that FLs of RNA genes under a given 

environment can be explained to a significant extent by RNA folding8,9. In the present work, 

our FL mapping across environments suggests that a mutation in the tRNACCU
Arg  gene 

influences the gene's fitness contribution by a fixed proportion that is independent of the 

environment. We also explained mechanistically why the tRNA gene has a larger fitness 

contribution at a higher temperature, at least qualitatively. Together, they suggest that FLs of 

RNA genes can be understood from a molecular mechanistic perspective and hence 

predicted from relevant information without exhaustive or extensive experimental mapping. 

Further endeavors toward this goal for both RNA and protein genes are likely to be highly 

rewarding.

Methods

Measuring genotype fitness in multiple environments

The chemical synthesis of the yeast tRNACCU
Arg  gene with random sequence variation was 

previously described9. Briefly, because IDT (https://www.idtdna.com/site) could not 

synthesize oligonucleotides longer than 100 nucleotides that require manual mixing of 

nucleotides and because there is a need for constant regions at the two ends of the 

oligonucleotides for polymerase chain reaction (PCR), we could only allow 69 variable sites 

in the tRNA gene. Hence, the first nucleotide and last two nucleotides (counting from the 5′ 
end) of the 72-nucleotide tRNA gene were invariant and synthesized according to the wild-

type sequence. At each variable site, the probability of incorporating each of the three non-

wild-type nucleotides was set at 0.01. This “mutation” rate was chosen to maximize the 

fraction of variants carrying two mutations in order to study pairwise epistasis. In the pool of 

tRNA gene variants synthesized, the fractions of molecules with 0, 1, 2, 3, 4 and >4 

mutations are expected to be 12%, 26%, 27%, 19%, 10%, and 6%, respectively, while the 

possible numbers of variants with 0, 1, 2, 3, and 4 mutations are 1, 207, 2.1×104, 1.4×106, 

and 7.0×107, respectively. Hence, the expected genotype frequency for a given genotypes 

with 0, 1, 2, 3, and 4 mutations is 0.12, 1.26×10-3, 1.29×10-5, 1.36×10-7, and 1.43×10-9, 

respectively. Previous sequencing data verified these expectations9.

Strain construction, competition assay, and library preparation were conducted as previously 

described9 except that KAPA HiFi HotStart DNA Polymerase instead of AccuPrime™ Pfx 

DNA polymerase was used for PCR amplification to further increase the accuracy of 

genotyping. In short, we collected over 100,000 BY4742 yeast strains carrying tRNACCU
Arg

gene variants at its native genomic location and mixed them as the starting strain pool. Cells 

derived from the same starting population were cultured in four separate environments and 

were transferred every few hours to grow in log phase for ∼13 generations. The exact 

number of generations for the whole population was computed by tracking optical density at 

660 nm (OD660) over time, and the number of generations for the wild-type was then 

inferred from its frequency change in the population. Five parallel competitions were 

conducted in Env23 and Env30, respectively, whereas three parallel competitions were 

conducted in EnvDMSO and Env37, respectively. Cells were then harvested and lysed to 

extract DNA. Two rounds of PCR amplification were conducted to amplify the tRNACCU
Arg
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gene incorporated at the correct genomic location and to add adaptors for sequencing, 

respectively9. We sequenced the common population before the competition in two technical 

repeats and the population after each competition.

Only perfectly matched fully overlapping paired-end reads were used in estimating genotype 

frequencies. The change in relative genotype frequency during the competition was used to 

estimate the fitness of each genotype relative to the wild-type. The fitness of a genotype is 

calculated by averaging the fitness among biological replicates. To ensure relatively accurate 

fitness estimation, we focused on 23,284 genotypes with read counts ≥ 100 before the 

competition unless otherwise mentioned. The reliability of genotype fitness estimation using 

en masse competition followed by sequencing was previously demonstrated by comparing 

with three other methods9. In the present study, the biological replicates allow the 

assessment of estimation error.

Quantifying growth rates and fitness of selected genotypes

The growth rates of selected yeast strains were measured using Bioscreen C OD reader in 

the specific environment considered. Cells were first grown overnight until saturation, and 

then diluted by a factor of 50 to roughly OD600 = 0.1. OD measurements at the wide band 

(450-580 nm) were taken every 20 minutes for 48 hours. The maximum growth rate was 

calculated following standard procedures36. At least two biological replications in growth 

measurement were performed per genotype per environment. The fitness (f) of a genotype 

relative to the wild-type was calculated by 2
(R/R0 − 1)

, where R and R0 are the maximum 

growth rates of the genotype and wild-type, respectively. The above formula was derived the 

following way. After one generation of exponential growth of a population of wild-type 

cells, we have eR0T = 2, where T is the generation time of the wild-type. Similarly, we have 

eRT = 2f for the genotype concerned. Combining the above two equations, we obtain 

f = 2
(R/R0 − 1)

.

Quantifying G×E and G×G×E

Based on fitness estimates in multiple biological replicates, a t-test is used to examine if the 

fitness of a genotype (relative to the wild-type) is significantly different between two 

environments at a nominal P-value of 0.05, which constitutes G×E. In addition to the G×E 

definition used in the main text (i.e., the fitness of a genotype relative to the wild-type differs 

between environments), we also used an alternative definition of G×E that the growth rate 

difference between a genotype and the wild-type varies between environments28,29.

Epistasis is defined by ε = fAB – fAfB, where fA and fB are the fitness values of two single 

mutants and fAB is the fitness of the corresponding double mutant. We similarly tested 

G×G×E by examining if epistasis is significantly different between two environments, using 

a t-test at a nominal P-value of 0.05. We also tested G×G×E using an alternative definition of 

epistasis: ε′ = ln fAB –ln fA –ln fB
37.
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Piecewise robust linear regression between fitness values in two environments

Local regression (LOESS) with a span of 0.5 was used to visualize the general trend in the 

relationship between mutant fitness measured in two environments. Using the rlm function 

of the MASS package in R, we conducted a piecewise robust linear regression between the 

fitness at one environment and that at another for genotypes with ≥ 500 reads at T0 and ≥ 1 

read at T1 in each biological replicate of the two environments concerned. Compared with 

the ordinary least squares linear regression, the robust linear regression reduces the potential 

impact of outliers. The model is fitted separately for genotypes fitter than the wild-type and 

those less fit than the wild-type. The regression is forced to go through (1, 1), because the 

relative fitness is defined as 1 for the wild-type in each environment. Specifically, our 

regression model is

{
f 2 − 1 = ka( f 1 − 1), if f 1 ≤ 1

f 2 − 1 = kb( f 1 − 1), if f 1 > 1,

where f1 and f2 are the fitness values of a genotype in environment 1 and 2, respectively.

In addition, we tried two alternative models to regress the fitness estimates from two 

environments. The first alternative model is a simple robust linear model that goes through 

(1, 1) without separate slopes for genotypes fitter than the wild-type and those less fit than 

the wild-type. The second alternative model is a quadratic model that goes through (1, 1). 

We calculated adjusted R2 to represent the fraction of variance in fitness explainable by each 

model. None of the above models would be accepted if correlations between observations 

and predictions are weak, prediction errors are large, or genotypes with significant 

prediction errors are numerous.

Evaluating fitness predictions

We can treat the regression line between fitness values in two environments as predictions of 

fitness in environment 2 from those in environment 1. Two metrics were used to evaluate 

these predictions. The first metric is prediction error, which is the absolute difference 

between the predicted and observed fitness in environment 2. Here the observed fitness is the 

mean of the measured fitness across all biological replicates. As a comparison, we compute 

measurement error, which is the absolute difference between the fitness estimated from one 

biological replicate and that averaged across all biological replicates in environment 2. The 

second metric is prediction bias, which is the difference between the predicted and observed 

fitness in environment 2. A LOWESS (local polynomial regression) curve fitting is used to 

acquire a general trend of the prediction error, measurement error, and prediction bias across 

different fitness ranges (with the smoother span =0.2). As shown in Fig. 3e, we observed a 

relatively large positive bias for the prediction of f23 at the low fitness end (f30< 0.6). This 

bias is expected for the following reason. When f30 < 1, f23 is generally higher than f30 (Fig. 

3a). Because here we analyze only those genotypes that have ≥1 read at T1 in both Env23 

and Env30, f30 is more likely to be overestimated than f23, which led to a positive prediction 

bias of f23. In identifying outliers, fitness at Env23 was individually predicted from the 

fitness values of five biological replicates at Env30 using the piecewise linear model. A t-test 
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was then used to compare the five predicted and five observed fitness values at Env23, 

followed by a correction for multiple testing with a cutoff of FDR = 0.05.

To predict the FL in a new environment using FL in an old environment and the fitness 

measures of a few genotypes in the new environment, we randomly picked (without 

replacement) various numbers of N1 mutants whose fitness values in the old environment 

are within designated ranges. We used the fitness measures of these mutants in both 

environments to construct a robust linear model, which was then used to predict the FL in 

the new environment. We repeated this process 1000 times and computed the prediction bias 

and error as aforementioned from each repeat. Note that a mutant may be used in multiple 

replicates.

Expected fitness under no epistasis

Under the assumption of no epistasis, the expected fitness of a genotype carrying n 
mutations is the product of the fitness of the n constituent N1 mutants or 0.5 whichever is 

larger.

Predicting epistasis in a new environment

For two N1 mutants and the corresponding double mutant, we first predict their fitness in 

environment 2 from their measured fitness in environment 1. We then use the definition of 

epistasis to predict the epistasis between the two mutations in environment 2 from the three 

predicted fitness values in environment 2. This predicted epistasis in environment 2 is 

compared with the corresponding epistasis in environment 1.

Let the fitness of two N1 mutants and the corresponding N2 mutant be fA, fB, and fAB in 

environment 1 and f'A, f'B, and f'AB in environment 2, respectively. Because the vast 

majority of N1 and N2 mutants are less fit than the wild-type, we assume that formula (f′-1) 

= k(f-1) holds for all three genotypes considered here. It can be shown that the difference in 

epistasis between the two environments is

ɛ2 − ɛ1 = ( f AB′ − f A′ f B′ ) − ( f AB − f A f B)

= − (k − 1) k(1 − f A)(1 − f B) + k f A f B − ɛ1] .

When the mean fitness effect of mutations enlarges upon an environmental shift, k > 1. 

Thus, when ε1 < 0, which occurs to most pairs of mutations, ε2 – ε1 is negative. This result 

explains why negative epistasis rarely becomes positive upon an environmental shift that 

enlarges the mean fitness effect of mutations.

Analysis of a previously published fitness landscape

For most FL mapping in the past, the exact number of generations in the competition was 

not reported, and hence the data cannot be used to estimate the fitness per generation. Here, 

we focused on a dataset that allowed estimation of fitness per generation. The dataset 

contains 189 mutants, representing all 20 amino acids and a stop codon at each of nine 

examined positions of yeast Hsp90 35. The fitness data were collected in four environments: 
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low salinity in 30°C (30L), high salinity in 30°C (30H), low salinity in 36°C (36L), and high 

salinity in 36°C (36H). Because no mutant showed a fitness > 1.01 at 30L or 36L, we fitted a 

simple linear model with a single slope k for prediction of FL in one environment from that 

in another. If the predicted fitness was < 0.5, the lower bound value of 0.5 was assigned.

Data availability

The NCBI accession number for the sequencing data is GSE111508. Other data are available 

upon request.

Code availability

The computer code is available on github.com/lichuan199010/tRNAMultiEnv.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Determining the fitness landscape of the yeast tRNACCU
Arg  gene in multiple environments

Chemically synthesized tRNACCU
Arg  gene variants are incorporated at the native genomic locus 

of the gene. Transformation is conducted at room temperature to ensure comparatively equal 

representation of mutant strains. The tRNA variant-carrying cells compete for ∼13 

generations in each environment at log phase, and the tRNA gene variants are sequenced 

before and after the competition. The fitness of each tRNACCU
Arg  genotype relative to wild-type 

is calculated from the relative frequency change of paired-end sequencing reads covering the 

tRNA gene variant during competition.
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Figure 2. The yeast tRNACCU
Arg  gene fitness landscape in each of the four environments examined

a, Definition of G×E based on mutant fitness relative to the wild-type in two environments. 

b, Frequency distribution of the fitness of all 23,284 genotypes in each environment. Note 

the different scales on the Y axis for different environments. c, Fraction of mutants 

exhibiting significant G×E. The lower left triangle shows the fraction of all genotypes whose 

fitness values differ significantly between the two environments compared (nominal P < 

0.05, t-test), whereas the upper right triangle shows the corresponding fraction of N1 

mutants.

Li and Zhang Page 14

Nat Ecol Evol. Author manuscript; available in PMC 2018 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. A piecewise linear model predicts fitness landscape in one environment from that in 
another environment
a, Fitness values from two environments are highly correlated among all mutants (lower left 

triangle), especially N1 mutants (upper right triangle). Pearson's correlation coefficient is 

presented for each environment pair. b, LOESS curve (black solid curve) describing the 

relationship between genotype fitness in Env30 and Env23, with 95% confidence intervals 

indicated (black dashed curves). In a and b, each dot is a genotype, and the diagonal is 

indicated by a blue dashed line. c, A piecewise linear model, a simple linear model, and a 

quadratic model are respectively plotted to capture the relationship between genotype fitness 

in Env30 and Env23. The blue dashed lines show Y=X, X=1, and Y=1, respectively. d, 
Prediction error and measurement error of fitness at Env23. The three solid curves 

respectively show prediction errors under three different prediction models when fitness at 

Env23 is predicted from that in Env30, whereas the grey dashed curve shows the 

measurement error based on one measurement at Env23. e, Prediction bias of fitness at 

Env23. The three solid curves respectively show prediction bias under three different models 

when predicting fitness at Env23 from that in Env30. The blue dashed line shows zero bias. f, 
Measuring fitness of only a few mutants in Env23 is sufficient for deriving the (piecewise) 

linear model used in predicting the fitness landscape in Env23 from that in Env30. When 1, 2, 

5, or 10 N1 mutants (indicated by different shades of grey) chosen for fitness measurement 
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at Env23 have fitness in Env30 (f30) < 1, median prediction errors shown are for all mutants 

with f30 < 1. When N1 mutants chosen for fitness measurement at Env23 have f30 > 1, 

median prediction errors shown are for all mutants with f30 > 1. The x-axis shows the f30 

range in which mutants are randomly picked for fitness measurement at Env23. Blue dashed 

lines show median prediction errors when all genotypes are measured for fitness at Env23. 

Red dotted lines show median prediction errors assuming no G×E.
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Figure 4. Epistasis-by-environment interaction is prevalent
a, Frequency distributions of 8,101 epistasis between mutations in four environments. b, 
Observed mean fitness of mutants carrying a given number of mutations (solid dots) is lower 

than expected under no epistasis (open diamonds) in each environment. c, Fractions of 

mutation pairs that exhibit significant G×G×E for each environment pair (nominal P < 0.05, 

t-test). d, Epistasis measured in Env23 and that measured in Env30 are highly correlated. 

Pearson's correlation (r) and Spearman's correlation (ρ) are indicated. The red solid line 

shows the diagonal, whereas the blue dashed line shows the linear regression.
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