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Abstract

Public health laboratories are currently moving to whole-genome sequence (WGS)-

based analyses, and require the rapid prediction of standard reference laboratory

methods based solely on genomic data. Currently, these predictive genomics tasks rely

on workflows that chain together multiple programs for the requisite analyses. While

useful, these systems do not store the analyses in a genome-centric way, meaning the

same analyses are often re-computed for the same genomes. To solve this problem, we

created Spfy, a platform that rapidly performs the common reference laboratory tests,

uses a graph database to store and retrieve the results from the computational workflows

and links data to individual genomes using standardized ontologies. The Spfy platform

facilitates rapid phenotype identification, as well as the efficient storage and downstream

comparative analysis of tens of thousands of genome sequences. Though generally

applicable to bacterial genome sequences, Spfy currently contains 10 243 Escherichia coli

genomes, for which in-silico serotype and Shiga-toxin subtype, as well as the presence of

known virulence factors and antimicrobial resistance determinants have been computed.

Additionally, the presence/absence of the entire E. coli pan-genome was computed and

linked to each genome. Owing to its database of diverse pre-computed results, and

the ability to easily incorporate user data, Spfy facilitates hypothesis testing in fields

ranging from population genomics to epidemiology, while mitigating the re-computation

of analyses. The graph approach of Spfy is flexible, and can accommodate new analysis
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software modules as they are developed, easily linking new results to those already

stored. Spfy provides a database and analyses approach for E. coli that is able to match

the rapid accumulation of WGS data in public databases.

Database URL: https://lfz.corefacility.ca/superphy/spfy/

Introduction

Whole-genome sequencing (WGS) can provide the entire
genetic content of an organism. This unparalleled resolu-
tion and sensitivity has recently transformed public health
surveillance and outbreak response (1, 2). Additionally, the
identification of novel disease mechanisms (3, 4) and rapid
clinical diagnoses and reference laboratory tests are now
possible (5, 6).

The rapid characterization based on WGS relies on
the outputs from multiple software programs that are tar-
geted for specific applications. Examples include the iden-
tification of known antimicrobial resistance (AMR) genes,
through software programs such as the Resistance Gene
Identifier (RGI) (7), ResFinder (8), Antibiotic Resistance
Gene-Annotation (ARG-ANNOT) (9) and Antimicrobial
Resistance Identification By Assembly (ARIBA) (10); or the
identification of known virulence factor (VF) genes through
software programs such as VirulenceFinder (8), SRST2 (11),
and GeneSippr (12).

For subtyping in clinical diagnoses and reference labora-
tory environments, software programs rely on pre-selected
intraspecies genes or genomic regions, which are targeted
through software programs such as Phylotyper (13), Sero-
typeFinder (14), the EcOH dataset applied through SRST2
(15) and V-Typer (16). These methods represent in-silico
analogues of traditional wet-laboratory tests, which allow
new whole-genome sequences to be viewed in the context
of historical tests without the need for the time and labor
of the traditional wet-laboratory tests.

Comprehensive platforms that combine individual
analyses programs into a cohesive whole also exist. These
include free platforms such as the Bacterium Analysis
Pipeline (BAP) (17) and the Pathosystems Resource Integra-
tion Center (PATRIC) (18). Commercial applications, such
as Bionumerics, which is used by PulseNet International
for the analyses of WGS data in outbreak situations also
exist and offer support as well as accredited, standardized
tests (19). These platforms are designed to be applied to
individual projects.

Many of the analyses used in the characterization and
study of bacterial genomes, such as serotyping, VF and
AMR identification, are broadly useful, and therefore they
are often computed multiple times for the same genome
across different studies. An effective method to mitigate

this re-computation is to make the storage and retrieval
of results part of the analyses platform and effectively
link to the genomes of interest through a standardized
ontology. Downstream studies, such as population com-
parisons, can be performed on existing results without re-
computation. Such measures help ensure the rapid response
times required for public health applications and allow
results to be integrated and progressively updated as new
data becomes available.

We have previously developed Superphy (20), an online
predictive genomics platform targeting E. coli. Superphy
integrates pre-computed results with domain-specific
knowledge to provide real-time exploration of publicly
available genomes. While this tool has been useful for
the thousands of pre-computed genomes in its database,
the current pace of genome sequencing requires real-time
predictive genomic analyses of tens-of-thousands, and soon
hundreds-of-thousands of genomes, and the long-term
storage and referencing of these results, which the original
SuperPhy platform was incapable of.

Here, we present a new platform merging the pre-
computed results of SuperPhy, with a novel data storage
and processing architecture, which we call Spfy; Spfy
integrates a graph database with real-time analyses to
avoid re-computing identical results. Additionally, graph-
based result storage allows retrospective comparisons
across stored results as more genomes are sequenced or
populations change. Spfy is flexible, accommodating new
analysis modules as they are developed. The database is
available at https://lfz.corefacility.ca/superphy/spfy/.

Functionality

Spfy provides rapid in-silico versions of common reference
laboratory tests for the analyses of E. coli. It supports
the following in-silico subtyping options: serotyping,
through both O- and H-antigen identification using
ECTyper (https://github.com/phac-nml/ecoli_serotyping) as
well as VF gene determination; Shiga-toxin 1 (Stx1), Shiga-
toxin 2 (Stx2) and Intimin typing using Phylotyper (13); and
AMR annotation using the RGI from the comprehensive
antibiotic resistance database (7). An example of the VF
results is given in Figure 1. Spfy reports the corresponding
percent identity used in each analysis, or in the case of Stx1,

https://lfz.corefacility.ca/superphy/spfy
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Figure 1. Detailed results for the serotyping and virulence factor subtyping task. While data storage in Spfy is graph-based, a familiar tabular structure

is presented to users. The genome file, GCA 001911825.1 ASM191182v1 genome.fna, was analyzed with the determined serotype associated with the

file and virulence factors associated with the contigouous DNA sequences they were found on. The Start/Stop positions on the contig., are provided

along with the Percent Identity (Cutoff) used in the analysis.

Stx2 and Intimin, a generalized probability of a result. Spfy
also performs pan-genome analyses using Panseq (21), with
the entire pan-genome stored in the database and associated
with source genomes.

No account creation is required to use the platform.
A sharable token is automatically created for users upon
entering the website and is embedded into the website
address. Users can share results by copying their URL, and
files submitted from different computers using the same
token will be visible to anyone with the same link. We
recommend using the Chrome web browser to access Spfy;
the website was also tested with Firefox, Safari and Edge.

Spfy handles all of the analyses tasks by dividing them
into subtasks, which are subsequently distributed across a
built-in task queue. Results are converted into individual
graphs and stored within a larger graph database accord-
ing to the previously created ontologies the Genomic Epi-
demiology Ontology (GenEpiO) (22), the Feature Annota-
tion Location Description Ontology (FALDO) (23) and the
Microbial Typing Ontology (TypOn) (24), which includes
metadata for genotypes, location, biomarkers, host and
source, among others.

By integrating task distribution with graph storage, Spfy
enables large-scale analyses, such as epidemiological asso-
ciation studies. Any data type or relation in the graph is
a valid option for analysis. This means that genomes can
be compared on the basis of the presence or absence of
pan-genome regions, serotype, subtyping data or provided
metadata such as location or host source. All results are

displayed to users in real-time, usually within 2–3 minutes.
For example, Spfy can determine if a statistically significant
difference exists, using Fisher’s exact test, among any identi-
fied AMR genes, between E. coli genomes of serotype O157
and genomes of serotype O26, as shown in Figure 2. This
feature is available through the ‘statistical comparisons’
task on the website. Different types can also be joined into
a group through logical connectives AND, OR or negation.
This approach can be used to compare any data regardless
of source software.

Implementation

The server-side code for Spfy, graph generation and anal-
ysis modules were developed in Python, with the front-
end website developed using the React JavaScript library
(https://facebook.github.io/react/). When new data is added
to the database, the following steps are taken:

(i) The upload begins through the website, where user-
defined analyses options are selected. The results of these
analyses are immediately reported to the user, while all other
non-selected analyses are subsequently completed in the
background and stored in the database without interaction
from the user. The public web service accepts uploads of
up to 200 MB (∼50 E. coli genomes uncompressed, or
120 genomes compressed) at a time, though an unlimited
amount of data can be submitted to a local instance.

(ii) User-selected analyses are enqueued with the Redis
Queue (http://python-rq.org/) task queue. Redis Queue con-

https://facebook.github.io/react/
http://python-rq.org/
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Figure 2. E. coli genomes of serotype O157 (904 genomes) compared against genome of serotype O26 (292 genomes) for statistically significant

differences in the carriage of 129 AMR genes. Fisher’s Exact Test is used by Spfy for these comparisons.

sists of a Redis Database (https://redis.io/) and task queue
workers which run as Python processes.

(iii) The workers dequeue the analyses, run them in
parallel and temporarily store results in the Redis database.

(iv) Python functions parse the results and permanently
store them in Blazegraph (https://www.blazegraph.com/),
the graph database used for Spfy.

Data storage

Semantic web technologies describe the relationships bet-
ween data and have been proposed as an open standard
for sharing public information (25), while graph databases
are a flexible means of storing this information (26). Bio-
logical data can be a genome, contiguous DNA sequence or
gene, and these are linked together in a searchable graph
structure using existing ontologies. This system is flexible
and allows novel data to be incorporated into the existing
graph.

The permanent storage of results is as a one-time cost,
which avoids re-computation when the same analysis is
re-run. During analyses, Spfy searches the graph for all
data points annotated with the queried ontology term. This
graph data is then converted into the required structure,
usually numerical arrays, for the given analysis module.

In a graph database, a search can begin at any node
or attribute. This is in contrast to an Structured Query
Language (SQL) database, which requires a predefined
schema, or a NoSQL database, which treats data as doc-
uments with varying structure. For example, the addition
of a new analysis module would typically require a new

table definition in an SQL database or the addition of a
new document type in a NoSQL database. With a graph
database, new nodes or attributes are added and then
connected to existing data, removing the need for explicit
joins or data conversions. Currently, all data associated
with the analyses pipelines (subtyping, pangenome etc) are
stored in the database. The graph database was designed
to store required data in an efficient manner. For example,
Spfy does not store redundant entries; there is only one
instance of any given AMR or VF gene represented as a
node in the database. The platform will create a new edge
between additional genome isolates and existing AMR/VF
nodes. Additionally, data can be added to Spfy in parts,
and the database will infer the correct connections between
the data.

Spfy primarily uses Blazegraph (https://github.com/
blazegraph/database) for storage along with MongoDB
to cache a hash table for duplicate checking. The cache
allows Spfy to more efficiently check for duplicate files in
Blazegraph than would be possible through a search of
the graph structure. MongoDB is also used to support the
synchronized user sessions feature of the website.

Web design

The front-end website is written as a single-page applica-
tion. To ensure a familiar user interface, we followed the
Material Design specification (https://material.io/), pub-
lished by Google, built around a card-based design
(Figure 4). Both the task selection and result displays follow
the same design pattern, where data storage is graph-based,

https://redis.io/
https://www.blazegraph.com/
https://github.com/blazegraph/database
https://material.io/
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Figure 3. Structure of the Spfy graph database. Brackets highlight the source of different data points and the software it was generated from. Data

are added in as the analysis modules complete, at varying times, and the overall connections are inferred by the database. Non-bracketed sections

are sourced from the uploaded genome files or user-supplied metadata. Figure was generated using http://www.visualdataweb.de/webvowl/.

but the results of analysis modules are presented to users in
a familiar tabular structure and available for download as
.csv spreadsheet files.

Service virtualization

Docker (https://www.docker.com/) is a virtualization tech-
nology to simulate self-contained operating systems on the
same host computer, without the overhead of full hard-
ware virtualization (27). The Spfy platform depends on a
series of webservers, databases and task workers, and uses
Docker to compartmentalize these services, which are then
networked together using Docker-Compose (https://docs.
docker.com/compose/) (see Figure 5). Docker integration
ensures that software dependencies, which are typically
manually installed (28, 21, 11, 29), are instead handled
automatically.

One of the key benefits of using common-place technolo-
gies is the compatibility with other infrastructure resources.
Docker containers are widely supported by cloud compu-
ting services: Amazon Web Services (https://aws.amazon.
com/docker/), Google Cloud Platform (https://cloud.google.
com/container-engine/) and Microsoft Azure (https://azure.
microsoft.com/en-us/services/container-service/), and self-
hosted cloud computing technologies such as OpenStack
(https://wiki.openstack.org/wiki/). Spfy packages compute
nodes as reproducible Docker containers and allow the
platform to easily scale to demand.

Results

Spfy was tested with 10 243 public E. coli assembled
genomes from Enterobase, storing every sequence and the
results for all included analysis modules. These included:

http://www.visualdataweb.de/webvowl/
https://www.docker.com/
https://docs.docker.com/compose/
https://aws.amazon.com/docker/
https://cloud.google.com/container-engine/
https://azure.microsoft.com/en-us/services/container-service/
https://wiki.openstack.org/wiki/
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Figure 4. The results interface for submitted tasks. Cards represent individual tasks submitted by the user, such as checking the database status,

subtyping of single genomes, population comparisons or subtyping of multiple genomes.

Figure 5. The Docker containers used in Spfy. Arrows represent the connections between different containers, and the entire platform can be

recreated with a single command using its Docker-Compose definition. Users access the platform using the ReactJS-based website, which makes

requests to the Flask API. Any requested analysis task is distributed to the Redis Task Queue and data files are stored in a Docker volume. MongoDB

stores a hash table for efficient duplicate checking of results in Blazegraph.

serotyping (O-antigen, H-antigen), toxin subtyping (Shiga-
toxin 1, Shiga-toxin 2, and Intimin), the identification of
VF and AMR determinants and determination of the pan-
genome content of E. coli. The resulting database has 17
820 nodes and 3 811 473 leaves, with 1 125 909 074 object
properties. Spfy has been up since May 2017. The server
accepts assembled E. coli genomes with the .fasta or .fna
extensions. Submissions are subjected to quality control
checking for at least 3 of 10 E. coli specific sequences in an

isolate, to ensure the submitted genomes are of the species
E. coli, before subsequent analyses are run. These E. coli
specific markers were identified by our group in a previous
study (20); briefly, these E. coli specific markers were
identified by blast comparisons (90% sequence identity and
90% length) to be exclusive to E. coli, and our validation
work showed that three of these markers were sufficient
to uniquely identify an E. coli genome while tolerating
moderate levels of genome sequence incompleteness.
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Figure 6. Runtimes of Fisher’s Exact Test depending on the number of nodes/attributes involved in the comparison. (A) Runtimes as the number of

genomes increased for a fixed (107) number of targets per genome. (B) Runtimes as the number of targets increased for a fixed (116) number of

genomes per target. (C) Overall runtimes as the total number of targets retrieved increased; the total number of targets was calculated as follows:

(Number Genomes Group A + Number Genomes Group B) x Number Targets per Genome. In all cases, a linear increase in runtime was observed

as the number of targets or genomes increased.

Spfy runs on a virtual machine (VM) with 8 vCPUs emu-
lating single-core Intel Xeon E3-series processors, and with
32 GB of RAM. The VM is running CentOS version 7.3,
with Docker version 17.06.1-ce and Docker-Compose ver-
sion 1.12.0. On comparison tasks, Spfy can retrieve and
compare 1 million nodes/attributes in the graph database in
∼70 seconds. As shown in Figure 6, performance scales lin-
early with the number of genomes involved in the compar-
ison, or the number of target nodes retrieved per genome;
1.5 million nodes/attributes can be compared in ∼90 sec-
onds and 2 million nodes/attributes in ∼110 seconds.

On analysis tasks, Spfy runs all included analyses mod-
ules in an average of 130 seconds per genome. Spfy can
also queue batches of genomes for analysis, decreasing the
average runtime to an average of 54 seconds per file due
to parallelization of analysis runs (Figure 7). In total, the
platform analyzed 50 genomes in 45 minutes and 100
genomes in 89 minutes.

Discussion

Many bioinformatics software programs have been devel-
oped ad hoc, with individual researchers and laboratories
developing software specific to their environment (30). Such
tools were often script-based, with custom data formats
and only suitable for small collections of data (30). Recent
efforts (31, 17) have focused on providing a common
web interface for these programs, while still returning the
same result files. However, many subsets of biology now
require the analyses of big-data, where inputs are taken
from a variety of analysis programs, and involve large-
scale data warehousing (32). The ability to integrate data
from different source technologies, merge submissions from
other laboratories and distribute computations over fault-
tolerant systems is now required (32).

One of the key goals in developing Spfy was to
accommodate and store a variety of result formats, and
then to make the data from these results retrievable and

Figure 7. Total runtimes of Spfy’s analysis modules for batches of files. The blue line indicates the actual time to completion after accounting for

parallelization; 50 files are analyzed in 45 minutes and 100 files in 89 minutes.
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Table 1. Comparison of four bioinformatic pipelines and their underlying database. Functionally, Spfy integrates different

analysis modules as in BAP while also merging large datasets as in PATRIC

Spfy Galaxy BAP PATRIC

Database Blazegraph PostgreSQL MySQL + file system MongoDB + shock
Type Graph SQL SQL + file system NoSQL
Focus Integrated analyses Workflow technology Batch analysis Integrated analysis

usable as inputs for downstream analyses, such as predictive
biomarker discovery.

We have shown how a graph database can accommodate
the results from a variety of bioinformatics programs and
how Spfy is performant for data retrieval of the results
from multiple analyses among over 10 000 genomes. Spfy
provides results from big-data comparisons with the same
efficiency as old analyses on single files.

Impact on public health efforts

The isolation and characterization of bacterial pathogens
are critical for Public Health laboratories to rapidly
respond to outbreaks and to effectively monitor known and
emerging pathogens through surveillance programs. Until
recently, public-health agencies relied on laboratory tests
such as serotyping, pulsed-field gel electrophoresis, PCR-
based amplification of known VFs and disc-diffusion assays
for the characterization of bacterial isolates in outbreak,
surveillance and reference laboratory settings (1). Current
efforts are focused on predictive genomics, where the
relevant phenotypic information can be determined through
examination of the whole-genome sequence without need
for the traditional laboratory tests.

Spfy provides rapid and easy predictive genomic analyses
of E. coli genomes while also addressing the problem of
large-scale comparisons. With the larger datasets involved
in population genomics, it is no longer viable for individual
researchers to download data to perform comparisons.
Instead, efforts have focused on storing biological data
online and enabling analyses of those data (32). By using a
graph database, Spfy integrates results from different tech-
nologies, as well as laboratory results and user-submitted
metadata. In addition, datasets can be built and submitted
from multiple laboratories for joint analyses.

Comparison with other bioinformatics pipeline

technologies

The automated analysis of WGS is currently facilitated by
existing scientific workflow technologies such as Galaxy
(31). Galaxy aims to provide a reproducible, computa-

tional interface that is accessible to individuals without
programming knowledge. Galaxy defines a formal schema
for linking different analysis software together, so the entire
pipeline can be replicated and also extended as new tools
are developed. The Galaxy workflow focuses on running
an individual analysis pipeline. It does not include func-
tionality to store and collate analysis results for large-scale
comparative studies.

The BAP (17) provides an integrated analysis pipeline
for bacterial WGS data as a web service. It provides an
individual per-genome report of the determined species,
multilocus sequence type and VF and AMR genes (17).

Spfy is similar to these technologies in that it automates
workflows for users and uses task queues to distribute
selected analyses. On a per file basis, Spfy performs at a
similar speed to BAP on predictive genomics tasks, though
Spfy does not provide genome assembly services. After
accounting for assembly services, BAP reported (17) an
average runtime of 8–9 minutes per genome over 476 runs
which is in the same scale as Spfy’s average of over
2 minutes. Note, however, that the two platforms are not
directly comparable, due to the differences in analysis tasks
involved. In similar tasks such as AMR determination, the
ResFinder program included in BAP took an average of
3–4 minutes (17) and is similar to the RGI program
included in Spfy, which took an average of 1 minute
30 seconds.

However, unlike these workflow managers, Spfy is
designed to help solve the re-computation of analyses

by storing results in a graph database for downstream
comparative studies (Table 1). This allows Spfy to, for
example, perform population-wide analyses on varied data
from multiple diverse individual software.

PATRIC (18) and Spfy share the same goal of integrated
analyses. PATRIC has support for comparing up to nine
user-submitted genomes against a reference genome, based

on gene annotations; the platform indexes a NoSQL doc-
ument store to compare similar document types. Unlike
PARTIC, Spfy provides the ability to perform statistical
comparisons of any permutation of a population group
based on the chosen data types, and the graph database of
Spfy has no limit on the number of genomes grouped for
comparison.
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Conclusions

The integrated approach taken in the creation of Spfy,
where the analyses, storage and retrieval of results are
combined, provides enormous benefits for the large-scale
analyses of E. coli. The developed analyses modules are also
self-contained and can be used in existing platforms such as
Galaxy. Future work will focus on adding machine learning
modules to improve genotype/phenotype predictions and
supporting bacterial species such as Salmonella and
Campylobacter. The source code for Spfy is hosted at
https://github.com/superphy/backend, and is available for
free under the open-source Apache 2.0 license. A devel-
oper guide is provided at https://superphy.readthedocs.
io/en/latest/.
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