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ABSTRACT: Numerous biomolecules and biomolecular complexes, including
transmembrane proteins (TMPs), are symmetric or at least have approximate
symmetries. Highly coarse-grained models of such biomolecules, aiming at
capturing the essential structural and dynamical properties on resolution levels
coarser than the residue scale, must preserve the underlying symmetry.
However, making these models obey the correct physics is in general not
straightforward, especially at the highly coarse-grained resolution where multiple
(∼3−30 in the current study) amino acid residues are represented by a single
coarse-grained site. In this paper, we propose a simple and fast method of
coarse-graining TMPs obeying this condition. The procedure involves
partitioning transmembrane domains into contiguous segments of equal length
along the primary sequence. For the coarsest (lowest-resolution) mappings, it turns out to be most important to satisfy the
symmetry in a coarse-grained model. As the resolution is increased to capture more detail, however, it becomes gradually more
important to match modular repeats in the secondary structure (such as helix-loop repeats) instead. A set of eight TMPs of
various complexity, functionality, structural topology, and internal symmetry, representing different classes of TMPs (ion
channels, transporters, receptors, adhesion, and invasion proteins), has been examined. The present approach can be generalized
to other systems possessing exact or approximate symmetry, allowing for reliable and fast creation of multiscale, highly coarse-
grained mappings of large biomolecular assemblies.

I. INTRODUCTION

The symmetry of biomolecules originating from gene
duplication and consolidated by evolution,1−3 while often
only approximate, is intimately linked to functionality.4 For
transmembrane proteins (TMPs) in particular, symmetry is one
of the common properties shared in their functional states,5,6

and it has been related to dynamics,7 fast folding kinetics,8 high
stability,2 and allosteric regulation.9−11 In addition, engineering
of proteins with internal symmetry has become an emerging
field with a growing body of reported success.12−14

TMPs, such as G protein-coupled receptors and ion
channels, are crucial targets in drug discovery due to their
physiological roles as direct rectors for drug-like solutes;15,16 it
has been suggested that for receptors of neurotransmitters, for
instance,17−19 an indirect and less specific mechanism whereby
solutes absorbed into the lipid bilayer20−24 can affect the
receptor. With around half of current drug targets being these
TMPs25 and most of those drugs targeting only a few
members,26 it is hardly surprising that the study of TMPs has
become an active field of research with an increasing amount of
experimental and computational efforts for potential pharma-
ceutical applications.
Despite advances in both hardware and software for atomistic

molecular simulations,27−30 there is still a large gap between the
duration of all-atom molecular dynamics (MD) trajectories
produced on a routine basis (typically, microseconds) and time
scales of biologically relevant events observed in experiments
involving TMPs (usually milliseconds to seconds31,32). One
fruitful strategy to overcome this gap and better bridge

experiments and simulations is to apply a coarse-graining
approach. The structure-based coarse-grained (CG) represen-
tation encompasses a reduced level of detail of the system, as
atoms are grouped into “effective” particles also termed CG
sites, and many of the biofunctionally irrelevant degrees of
freedom are integrated out. One level of coarse-graining is the
“high resolution” level in which each amino acid is represented
by several CG sites or “beads”. Another level of coarse-graining
is the “low resolution” highly CG level, where each CG site or
bead represents some number of amino acids (e.g., tens or
more). This paper concerns the latter limit of CG models.
A variety of modern coarse-graining approaches have been

developed to define highly CG protein models, including
essential dynamics coarse-graining,33−36 topology representing
network,37 and rigid unit recognition.38 At the highly coarse-
grained level, constructing CG models that satisfy the correct
underlying physics is by no means a trivial task and often the
resulting models are neither unique nor transferable.39,40 To
simulate TMPs at very large spatial and temporal scales relevant
for most biological processes, it is both useful and necessary to
resort to models of the lowest, such as ultracoarse-grained
(UCG) models,41,42 where one CG site represents many amino
acid residues and may also have internal “states” to represent
the various conformations, chemical forms, etc., of those
eliminated amino acids from each CG site. The UCG
methodology, often motivated in the context of modeling of
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the actin filament,41 has only recently been applied to other
families of proteins43 but not yet to TMPs.
This work therefore describes our most recent efforts to

construct highly CG models for TMPs based on the essential
dynamics coarse-graining (ED-CG) method.33−36 The ED-CG
method (or a similar approach44) is a systematic variational way
of creating CG models that capture the most essential
functional motions of biomolecules by a direct mapping of
their atomistic motions. In this context, the essential
dynamics45 from the atomistic simulations is used as a proxy
for the functionally relevant motions. The ED-CG method
determines the assignment of atoms to CG sites (the CG
mapping) such that the essential dynamics subspace is best
preserved at a given resolution.33 The ED-CG method has been
applied to a variety of globular proteins and protein complexes,
including a ribosome,46 actin filaments,47 and a hydrogenase.48

However, two limitations of the ED-CG method should be
taken into consideration. First, the ED-CG approach does not
by itself automatically determine the optimal resolution level of
a CG model. The total number of CG sites is an externally set
parameter by the user. (We note that this issue has been
partially resolved in our previous work where we developed a
set of criteria to choose optimal numbers of CG sites in
different parts of a large biomolecular complex in a self-
consistent way.35) Second, there is no guarantee that the ED-
CG technique will create the same CG model for a protein in
two or more discrete functional states. A previous study from
our group shows that the ED-CG models of globular proteins
like G-actin only share 60−80% of similarity between the ATP-
and ADP-bound states.47 This creates a difficulty in using a CG
representation, especially when it is desirable to study effects of
transitions between distinct topological conformations. In this
work, we have focused on addressing these issues for an
important class of proteins, namely, TMPs.
As pointed out in prior work,41 it is important to understand

the biomolecular features and peculiarities of the systems in
order to construct meaningful CG models. It is generally
appreciated in the field of coarse-graining that even small
“inadequacies” in the CG mapping can manifest as damage
beyond repair when the usual pairwise interaction potentials are
used; two-site methanol is a classic example of a problematic
CG mapping for a molecular liquid.49,50 For TMPs, the
membrane environment imposes particular constraints onto the
structure and dynamics of the transmembrane domains inserted
into the lipid bilayer51 and differentiates them from extra- or
intracellular domains of TMPs or their soluble counterparts.
Such constraints give rise to many intriguing structural and
dynamic properties of TMPs to account for their functions,
such as symmetry. Although TMPs often exist in multimeric
symmetric complexes of several repeating subunits with similar
tertiary structures (even though the primary sequences of these
subunits may be diverse),6 they also frequently possess
approximate internal symmetry.
This work is primarily focused on TMPs with approximate

internal symmetry, but the findings have the potential to be
extended to cases with generalized symmetry; a comparison is
made between CG models built using ED-CG methods and
ones built on a simple and intuitive heuristic that exploits the
molecular symmetry. It is shown that, by exploiting symmetry,
we are able to construct CG mappings of TMPs for highly CG
simulations consistent with the mappings resulting from the
systematic “bottom-up” ED-CG method without the need for

fine-grained MD trajectories and complex numerical optimiza-
tion schemes.

II. MODELS, THEORY, AND METHODS

In principle, the ED-CG method could be applied to all the
atoms in a given protein structure. However, as a matter of
practice, we use a residue-based strategy instead, wherein the
position of each residue is represented solely by its Cα atom.
Given a protein of Nres amino acid residues and NCG CG sites to
assign (Nres ≫ NCG), we can calculate the ED-CG variational
residual χ2 and use it as a measure of the accuracy of a CG
mapping to an underlying atomistic MD trajectory with nt
frames. As defined in prior work,33 the residual is given by
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where ΔriED(t) is the fluctuation of the Cα atom of residue i in
the essential subspace at time t, calculated from principal
component analysis52 of the atomistic MD simulation. If the Cα

atom of another residue j exhibits motion (in the essential
subspace) similar to that of the Cα atom of residue i, then it is
reasonable to assign residues i and j to the same CG site I. This
idea is mirrored in the definition of the χ2 (a “cost function”) by
summing terms of fluctuation differences |ΔriED(t) − ΔrjED(t)|2
over pairs of atoms belonging to the same CG site. In this
scheme, the ED-CG method samples a variety of possible ways
to group atoms/residues and selects the one with the minimum
residual χ2 as the optimal CG model.35

Sequence-Based and Space-Based ED-CG Methods.
The ED-CG approach comes in two main variations, namely,
sequence-based33 and space-based36 ED-CG. Both methods
group the atoms into CG sites based on minimizing intrasite
correlated fluctuations, but the different variants of the method
applies different rules in sampling to locate the global minimum
of χ2. The sequence-based ED-CG method divides the primary
sequence of the protein into contiguous CG domains, while the
spaced-based ED-CG method favors CG site definitions with
atoms/residues close in the three-dimensional space. Provided
the contiguous sequence constraint, the sequence-based ED-
CG method is less demanding in sampling, but it does not
permit nonadjacent domains in the same CG site, even if they
are correlated in fluctuation but separated in the sequence (for
example, in the case of a disulfide bond). Because of the much
greater number of CG mappings allowed by space-based ED-
CG, a brute-force search for the global minimum of χ2 would
require looking through an exponentially greater number of
combinations in comparison to sequence-based ED-CG. The
use of simulated annealing and steepest descent techniques
significantly decreases the number of combinations to be
considered.33 Nevertheless, the amount of computations
required to achieve a reasonably low value of χ2 is still greater
in the case of the space-based ED-CG, and this gap increases
with the number of atoms or residues in the biomolecule under
investigation.

Power Law Scaling of the ED-CG Residual χ2. In our
prior work,35 it was demonstrated that the ED-CG residual χ2

for the optimal CG map with a given number of CG sites can
be approximated by a simple function of the protein size and
the number of CG sites,
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where the anomalous dimension γ is a protein-specific
parameter, δ is a protein-independent coefficient, and C′(T)
is a temperature-dependent prefactor. For a wide class of
proteins, the value of γ was found35 to range from 0.00 to 0.91
(however, TMPs were not included into the studied set of
proteins), while δ ≈ 0.35.
Internal Symmetry, Protein Fluctuation, and Sym-

metric CG Models. Internal symmetry will provide additional
restraints in the coarse-graining of TMPs. In the context of
biomolecules, we use the term internal symmetry for symmetry
operations obeyed by the three-dimensional structure of the
primary polypeptide chain sequence. On the basis of normal-
mode analysis of MD simulations and group theory, Matsunaga
and co-workers revealed that structural symmetry of homo-
oligomers is a principal determinant of the entire protein
complex’s symmetric fluctuation.7 In the same way, TMPs with
internal symmetry should also have symmetric thermal
fluctuation, which can be captured by ED-CG methods.

Mapped onto the CG model, the symmetric domains of a
TMP should result in identical CG domains. Directly, this
suggests that the CG model should better describe symmetric
fluctuation of the target TMP if it is consistent with the protein
symmetry. In the simplest case of building a two-site CG model
for a protein with perfect S-fold symmetry, we can always
obtain the lowest ED-CG residual χ2 when either CG site
contains half of the residues.
Our direct method (without ED-CG) of systematically

constructing directly comparable CG mappings (of adjustable
resolution) that satisfy the three-dimensional structural
symmetry of the molecule that it represents is as follows. The
contiguous protein sequence is evenly divided into NCG
domains, which gives rise to a CG model that has an identical
number of residues in each CG site (setting aside rounding
errors); we shall refer to this construction as a symmetric model
in this present work because these mappings satisfy a modular
symmetry in the sense that each CG site is of equal size and
separation in sequence space (N.B. only a subset of these
mappings will be consistent with the structural symmetry of the
molecule). We have collected a representative benchmark data
set of eight important TMPs from Protein Data Bank (PDB)53

Table 1. Transmembrane Proteins Analyzed in This Work Belong to Different Structural Types and Approximate Symmetry
Groups

protein
PDB ID
code residues

approximate symmetry
point group

number of
modular repeats structure type

human integral membrane protein (hIMP) TMEM14A 2LOP75 25−99 C3 3 α-helical
bundle

transmembrane domain of N-acetylcholine receptor (nAChR)
β2 subunit

2KSR76 25−164 C4 4 α-helical
bundle

human water channel aquaporin-1 (AQP1) 1H6I77 9−233 S2 (=Ci) 8 α-helical
bundle

mitochondrial ADP/ATP carrier 1OKC78 2−293 C3 9 α-helical
bundle

ammonia transporter (AMT1) 2B2F79 1−391 S2 (=Ci) 11 α-helical
bundle

cytochrome c oxidase subunit 1 (COX1)-β 1QLE80 17−554 C3 12 α-helical
bundle

outer membrane protein X (OmpX) 1Q9F81 1−148 C4 8 β-barrel
outer membrane protein A (OmpA) 2GE482 0−176 C4 8 β-barrel

Figure 1. Cartoon representations of eight transmembrane proteins studied in this work. Different colors are used to show symmetric units. PDB ID
codes are indicated in parentheses.
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(Table 1) that all exhibit approximate internal symmetry in
order to compare the CG models built by the ED-CG method
to these symmetric CG models and thereby elaborate on the
necessity of preserving symmetries, exact or approximate, when
constructing highly CG mappings for biomolecular systems.
Modeling and Simulations of Transmembrane Pro-

teins. We selected a set of test cases by choosing TMPs with
internal symmetry and no missing residues in the sequence.
Our set of eight proteins represents TMPs of different size,
structure, symmetry, function, and complexity and includes
structures of either α-helical bundles or β-barrels (see Table 1
and Figure 1). We note that all of these proteins are folded and
fluctuate around the stable equilibrium structure with no large-
scale conformational rearrangements.
These protein models were set up in a membrane-bound

environment before performing the atomistic MD simulations.
With Maestro (Schrödinger, Inc.), each PDB structure was
prepared using Protein Preparation Wizard and embedded in a
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bi-
layer by the System Builder. The TMP-membrane assemblies
were placed in the simulation boxes, which were filled with
explicit water (TIP3P water model54) and physiological salt
(0.15 M NaCl) on both sides of the membrane. The distance
between protein atoms and the box boundaries was at least 12
Å in all directions. CHARMM22/CMAP protein55,56 and
CHARMM36 lipid57 force fields were used to assign
parameters with the tool Viparr.58 After a 9-step standard
relaxation protocol, which has been successfully applied in
previous studies,59−61 each atomistic MD simulation was run
for 30 ns in the isothermal−isobaric ensemble with constant
temperature, T = 310 K, and constant pressure, P = 1 atm,
using the Martyna-Tobias-Klein coupling scheme.62 Electro-
static forces were calculated using the particle mesh Ewald
technique.63,64 van der Waals and short-range electrostatics
were cut off at 9 Å. Long-range electrostatics were updated
every third time step. All MD simulations were performed in
the Desmond 3.0 simulation package65 with an integration time
step of 2 fs. Hereafter, we applied the ED-CG method33 to
build the CG models from the simulated all-atom MD
trajectories.

Data Analysis. Structure visualization was performed with
VMD66 and PyMOL.67 Plots were prepared using Grace
(xmgrace; http://plasma-gate.weizmann.ac.il/Grace) and
NumPy68/matplotlib.69 For the different sets of CG models
for each TMP with the same CG resolution level, we computed
and analyzed the naıv̈e model similarity defined as the fraction
of residues assigned to the same CG sites in the two compared
models,

∑ δ=
N

similarity
1

res i

N

M i N i( ), ( )

res

where Nres is the number of residues and δM(i),N(i) is the
Kronecker delta function adding to the similarity whenever
residue i is mapped to the same CG site by the two mappings
of equal resolution, M and N.

III. RESULTS AND DISCUSSION

ED-CG and Symmetric Models of Transmembrane
Proteins. Initial tests were performed to compare the CG
models built with space- and sequence-based ED-CG methods.
We decided to proceed with the sequence-based variant as a
suitable representative approach; results were almost identical
for the systems and resolutions studied in this paper (in
general, though, they will not be), as the space-based method
exhibited much slower convergence rates.
To compare the highly CG models built with the ED-CG

method to the symmetric CG models, we calculated the value
of the residual χ2 (Figure 2) over a range of different numbers
of CG sites (i.e., the CG resolution), corresponding to the
highly CG mapping regime where multiple amino acid residues
are represented by a single CG site. It is seen that the residuals
for the symmetric models tend to exhibit an oscillatory
behavior compared to ED-CG models and that the period of
this oscillation depends on the CG resolution. These oscillatory
“footprints” indicate that the collective dynamics, which
encompasses symmetric modes for structurally symmetric
molecules, is better captured by CG mappings that preserve
the dominant symmetries. Since the calculated ED-CG χ2

residuals are a good proxy for the lower bound of the residual

Figure 2. Plots of the χ2 residuals for the symmetric mappings (squares, green) and the ED-CG method resulting mappings (circles, red) for the
eight transmembrane proteins plotted against numbers of CG sites (NCG). The panel with blue dots below each major plot shows the difference in χ2

between the symmetric model and the ED-CG model. Note the logarithmic scale for the y axis in the plotted χ2 residuals.
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χ2 at a certain mapping resolution, we can identify a subset of
the symmetric models that is optimal in the sense that the
symmetric residual χ2 is almost identical to its lower bound for
these models. The error of the symmetric model can be
estimated by comparing its residual χ2 to the ED-CG χ2-
residual-minimized mapping. While this error tends to be small,
it increases systematically whenever the CG mapping does not
preserve the structural symmetry of the TMPs, giving rise to
what we shall call a symmetry mismatch that appears as an
oscillatory difference in χ2 between the symmetric model and
the ED-CG model (Figure 2). It can therefore be eliminated to
the point where the residual χSym

2 ≅ χEDCG
2 by appropriately

choosing the symmetric model that optimally aligns with the
topological features of the TMP. The penalty for a symmetry
mismatch follows the same power law relation as the ED-CG χ2

residual, and the relative error is therefore strongly dampened
as the resolution of the mapping is increased.
Optimal Symmetric Models in the CG Regime with

∼10−20 Amino Acid Residues per CG Site Satisfy
Symmetry. For all the test cases (Table 1 and Figure 1), it
is observed that, for low values of NCG (highly CG models), the
optimal subset of symmetric models always contains models for
which the number of CG sites complies with the symmetry
point group in the sense that = ∈ +N Sn,nCG for the TMP
with approximate S-fold internal symmetry. When this rule is
not obeyed, there will in general be a penalty in the χ2 residual.
Our results also show a number of differences between small
and large TMPs. For small proteins, such as TMEM14A (75
residues), we observe excellent agreement between the two CG
models when the NCG is a multiple of 3, which can be visually
understood looking at the CG map with 6 sites (Figure 3). The
relatively large symmetry-mismatch penalty observed in the χ2

residual for TMEM14A is attributed to two factors: (1) the
small size of the protein and (2) the fact that the protein has
three modular repeats (α-helices in this case), which coincides
with the approximate 3-fold axis of symmetry (C3). For the

larger TMPs in our set of test cases, this effect is weaker (Figure
2). Model similarity between the ED-CG mapping and the
symmetric mapping at this level of resolution was very high
(∼80−90%) in all tested cases.

Optimal Symmetric Models in the CG Regime with
∼5−10 Amino Acid Residues per CG Site Satisfy
Modular Repeats in the Secondary Structure. The
symmetry mismatch penalty for the higher resolution models
is negligible. While model similarity between the ED-CG
mapping and the symmetric mapping at this level of resolution
for the tested cases varied somewhat (∼45−75%), the absolute
difference in the values of the residual χ2 is subtle (Figure 2,
lower panels). This makes physical sense because, at a certain
threshold resolution (here, ∼10 amino acids per CG site), there
will be enough CG sites in the asymmetric subunit to
adequately represent the dynamics of the unit in the essential
subspace. However, it turns out that longer-period oscillations
appear instead. These oscillations can be interpreted as
mismatches (albeit numerically very small compared with the
previously described symmetry mismatches) to the modular
repeats in the secondary structure of the TMP. For α-helical
bundles (β-barrels), the modular repeats are the individual
helix-loop (strand-loop) motifs.

Physical Significance of the Anomalous Dimension γ.
On the basis of the data plotted in Figure 2, we calculated the
values of the anomalous dimension γ and the temperature-
dependent prefactor C(T,Nres), as defined by eq 2. As shown in
Table 2, γ falls in a small range around 1.0 for α-helical bundles

and in another small range around 1.5 for β-barrels. These
values are generally higher than the values previously reported
for globular proteins like ubiquitin (γ = 0.50) or G-actin (γ =
0.33), implying that χ2 decreases faster for TMPs than for other
proteins when the resolution of the CG mapping is increased.
Our results also show that the anomalous dimension γ falls
within a very well-defined range for specific TMPs with similar
topology. In addition, the similar γ values between the
sequence-based ED-CG models and the symmetric CG models
indicate good agreement with respect to scaling behavior
through the whole range of mapping resolutions.
To explain why the values of γ in the case of TMPs are

typically higher than in the case of globular proteins studied
earlier, we studied two simplified models: one of a solid ball and
the other of a straight rod. The anomalous dimensions for these
two extreme case model systems are demonstrated to be 0 and

Figure 3. An example of a symmetric CG map for the protein
TMEM14A. The backbone of the atomistic X-ray crystal structure is
shown as translucent ribbons. The corresponding CG sites of the
mapped structure are shown as solid spheres. The approximate C3
symmetry axis is indicated by a vertical solid line. The geometric
planes that flank the molecule in the long (transmembrane) dimension
are indicated by dashed-line triangles.

Table 2. Anomalous Dimensions γ of TMPs Are Close to 1,
Unlike Those of Globular Proteinsa

protein Nres ED-CG γ sym. γ

human integral membrane protein
(hIMP) TMEM14A

75 1.10 (0.02) 0.95 (0.04)

transmembrane domain of N-
acetylcholine receptor (nAChR) β2
subunit

140 0.96 (0.01) 0.99 (0.03)

human water channel aquaporin-1
(AQP1)

225 0.96 (0.03) 0.98 (0.01)

mitochondrial ADP/ATP carrier 292 1.06 (0.04) 1.08 (0.05)
ammonia transporter (AMT1) 391 1.01 (0.01) 1.03 (0.02)
cytochrome c oxidase subunit 1
(COX1)-β

538 1.15 (0.02) 1.18 (0.03)

outer membrane protein X (OmpX) 148 1.54 (0.05) 1.57 (0.04)
outer membrane protein A (OmpA) 177 1.44 (0.05) 1.49 (0.03)
aStandard deviations of our estimates of γ are shown in parentheses.
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1, respectively (see Appendix A for details). Most proteins
considered in the previous work35 are globular; hence, it is
reasonable that their anomalous dimensions are typically closer
to 0. On the other hand, most TMPs considered in this work
are formed by sets of transmembrane α-helices. A set of straight
rods, in the approximation of weak interactions between the
rods, has the same anomalous dimension as a single rod does
(for details, see Appendix B). This analytical result explains why
the anomalous dimensions of TMPs are closer to 1 and,
therefore, greater than those for globular proteins.
The difference in the anomalous dimensions of the two

groups of proteins (or, in general, any biomolecules) leads to
an interesting consequence for a multimolecular complex
formed by weakly interacting nrod “rod-shaped” components
(such as α-helices embedded into a lipid bilayer) and nball “ball-
shaped” molecules (such as extra- or intracellular parts of
membrane-associated proteins). In this case, an increase in the
average resolution level of the CG model of the complex leads
to a higher resolution representation of the “ball-shaped” parts
in comparison to the “rod-shaped” parts or, in other words, the
new CG sites added to the complex upon increasing resolution
mainly end up in “ball-shaped” (e.g., extra- or intracellular)
components of the complex. In mathematical terms, if the total
number of CG sites in the multimolecular complex is denoted
NCG

total, then the ratio of the optimal number of CG sites per each
“rod-shaped” component NCG per rod to the optimal number of
CG sites per each “ball-shaped” component NCG per ball has the
following asymptotic behavior as NCG

total → ∞:

= →−N

N
O N(( ) ) 0CG per rod

CG per ball
CG
total 1/3

(3)

or, equivalently, the fraction of CG sites within “rod-shaped”
components decreases with the increase of the resolution level
of a CG model of the complex

= →−n N

N
O N(( ) ) 0rod CG per rod

CG
total CG

total 1/3

(4)

Inversely, in coarser CG models, for example, UCG models,41

the optimal distribution of the CG sites implies a more detailed
description of “rod-shaped” components (e.g., filamentous
proteins or α-helices in a protein).
The oscillatory behavior of the χ2(NCG) curves for TMPs

with nsymm-fold rotational or rotoreflection symmetry can be
explained on the basis of the universal scaling behavior for χ2

provided by eq 2 and the fact that the anomalous dimension for
straight rods equals 1 (see details in Appendix B). The
dependence of χ2 on NCG predicted by this simple model is
shown in Figure 4 in black solid lines. The behavior of these
χ2(NCG) curves is qualitatively similar to those in Figure 2
(especially, TMEM14A, AMT1, and COX1-β) despite the fact
that the model of weakly interacting rods provides a simplified
representation of dynamical behavior of TMPs.
Connection to Information Content in the CG Model.

Very recently, Foley et al.70 investigated the connection
between the entropic component of the potential of mean
force (PMF) and the CG representation both in general terms
and for concrete models, notably the Gaussian linear chain
model where an exact explicit PMF could be derived. Their
analysis suggests that there are bounds on the resolution range
wherein information-efficient CG mappings can found. Our
results presented herein add a new perspective by emphasizing
that careful consideration of structural symmetries and local

modularities in approximately symmetric transmembrane
proteins may help to choose between CG mappings that
preserve a comparable fraction of nontrivial information.

IV. CONCLUSIONS

In this work, we have demonstrated that accurate and precise
CG mappings can be generated for a diverse class of TMPs
without the use of computationally expensive MD simulations
and subsequent global residual χ2 minimization. To investigate
the design principle in a general sense, we have studied CG
mappings that partition transmembrane domains into con-
tiguous segments of equal length along the primary sequence.
The relative error in χ2 resulting from the use of the proposed
heuristic rule is oscillatory and strongly damped, which has two
practical consequences. First, symmetry mismatch generally
decreases for an increasing number of CG sites. Second, it is
possible for the heuristic to produce CG mappings with
negligible relative difference in χ2 values to ED-CG methods
even in the UCG regime, as long as the number of CG sites
agrees with the overall symmetry group of the system (most
important for low-resolution CG models) and conforms with
the modular repeats (most important for medium-resolution
CG models). It is likely that this heuristic will be especially
useful when used in conjugation with other procedures to select
optimal CG mappings on a case-by-case basis. Moreover, from
the analysis of simple models, we predict that low resolution
UCG models generated with the ED-CG approach should
contain more CG sites in “rod-shaped” parts of proteins and
protein complexes, such as α-helices immersed into a lipid
bilayer, while higher-resolution CG models with more CG sites
contain a larger fraction of CG sites in “ball-shaped” parts of the
system, such as extra- or intracellular parts. In summary, our
study provides new insight into highly CG modeling of TMPs
and facilitates CG simulations by demonstrating that simple
symmetry-preserving CG mappings are fast and reliable
constructions, which have potential applications to future
highly CG (or UCG) simulations of large TMPs and TMP
assemblies on long time scales.

Figure 4. A model of nsymm = 3 (left panels) and nsymm = 7 (right
panels) weakly interacting straight rods demonstrates an oscillatory
behavior of the χ2(NCG) curves (shown with solid lines and circles; the
corresponding χlower

2(NCG) curves are shown with dashed lines).
Therefore, the damped oscillatory behavior of the χ2(NCG) curves for
TMPs analyzed in this Article (see Figure 2) is qualitatively captured
by the simple model approximating TMPs by several interaction rods.
Note the logarithmic scale for the y axis in the top panels.
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■ APPENDIX A
Two simple models are analyzed in this appendix: a solid ball
and a straight rod. The solid ball was approximated by a set of
Nres points (pseudoatoms) placed at random positions within a
sphere of a constant radius with a uniform density distribution.
The potential energy V of the system was approximated using
an elastic network model (ENM),71−73 namely,

∑ ∑= Δ
= = +

V
k

r
2i

N

j i

N
ij

ij
1 1

2
res res

(5)

where Δrij = rij − rij
0 is the fluctuation of the distance between

pseudoatoms i and j, rij
0 is the equilibrium distance between

these pseudoatoms, and the spring constants kij were chosen
according to the following formula to make the model
parameter-free:74

=k
c

r( )ij
ij
0 6

(6)

where c is a constant. For various values of Nres, the Hessian
matrix and the covariance matrix for the potential energy
defined by eq 5 were computed as described by Zhang et al.,34

followed by building CG models for various values of NCG with
the use of the space-based ED-CG method.36,72 The space-
based version of ED-CG was employed since the primary
sequence of pseudoatoms is not defined in this model. The
values of the anomalous dimension γ, as well as R2 values
characterizing the accuracy of eq 2, were computed by the
method of least-squares for the resulting χ2 (NCG) depend-
encies in the log−log coordinates. Our numerical results
indicate (see Table 3) that the value of the anomalous

dimension monotonically decreases when the number of
pseudoatoms Nres increases. The rate of the decrease in the
anomalous dimension suggests that, in the limit of a continuous
solid ball, γ = 0.
The second simple model is a straight rod formed by Nres

pseudoatoms equidistantly positioned along the z-axis in three-
dimensional space. The potential energy V of this system was
defined in the following way:

∑= Δ
=

−

+V
k

r
2i

N

i i
1

1

, 1
2

res

(7)

where k is a constant, and the summation is performed only
over all pairs of neighboring pseudoatoms. Expanding the right-
hand side of eq 7 in a Taylor series in terms of the fluctuations
in the Cartesian coordinates of each pseudoatom dxi, dyi, and

dzi and omitting the terms containing the third or higher
powers of dxi, dyi, or dzi, one arrives at the expression
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−

+V
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z z
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i i
1

1

1
2

res

(8)

suggesting that the problem of a straight rod in a three-
dimensional space effectively reduces to the problem in a one-
dimensional space. The Hessian matrix for the 1D problem is

=

−
− −

− ⋱ ⋱
⋱ ⋱ −

− −
−

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

H k

1 1 0 0 0 0
1 2 1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1 2 1
0 0 0 0 1 1 (9)

(Note that omitting the third order terms in eq 8 does not
affect the accuracy of eq 9, since these terms lead to zero
contributions to the second derivatives at the reference
geometry with zero displacements.) Using this Hessian, the
covariance matrix and, subsequently, the χ2(NCG) dependence
can be obtained as described by Zhang et al.34,36 The space-
based and the sequence-based variants of the ED-CG method
are effectively equivalent in the case of a straight rod, since sets
of pseudoatoms located in space in the most compact way
correspond to contiguous fragments of the sequence naturally
defined in this model.
The values of the anomalous dimension, γ, as well as R2

values, characterizing the goodness-of-fit of eq 2 for the model
under consideration, are given in Table 3. They suggest that, in
the limit of an infinitely large number of pseudoatoms Nres or,
equivalently, for a continuous rod, the value of the anomalous
dimension reaches γ = 1.
The two simple models analyzed here can be considered as

two extreme cases of possible protein shapes. Globular proteins
have shapes closer to a solid ball, and therefore, the values of
the anomalous dimension γ are closer to 0, while rod-shaped
proteins, as well as α-helices within a single protein in the
approximation of weak interhelical interactions, are closer to
the simple model of a straight rod, and therefore, their typical
values of the anomalous dimension γ are closer to 1.

■ APPENDIX B
A symmetric TMP can be approximately represented as a set of
nsymm weakly interacting straight rods. The term “weakly
interacting” here implies the following. In the absence of
interactions between the rods, the potential energy of the
system is the sum of the potential energies of all rods, and the
Hessian and covariance matrices acquire a block-diagonal form.
Since each of these blocks is a positively defined matrix, the
minimum of χ2 defined by eq 1 is achieved for a CG mapping
with atoms from different rods belonging to different CG
domains. In other words, no CG domain in an optimal CG
mapping includes atoms from different rods. Now, in the case
of interacting rods, the lowest-order nontrivial terms in the
expression for the potential energy are linear in terms of
deviations of atoms from their reference positions. These terms,
however, do not affect the Hessian since it is a matrix of the
second order derivatives of the potential energy, and therefore,
the linear terms accounting for inter-rod interactions do not
change the values of the residual χ2. In physical terms, this

Table 3. Anomalous Dimensions γ of a Solid Ball and a
Straight Rod Converge to 0 and 1, Respectively, in the
Continuous Limit of the Number of Pseudo-Atoms Nres →
∞, Confirming the Validity of eq 2a

Nres 500 1000 5000

solid ball γ 0.063 0.041 0.020
R2 0.99992 0.99998 0.99999

straight rod γ 1.00005 1.00001 1.00000
R2 1.00000 1.00000 1.00000

aCalculations were performed using the χ2(NCG) values at NCG = 1, 2,
..., 9, 10. The coefficients of determination (R2) are very close to 1,
showing the applicability of eq 2.
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means that some attractive or repulsive forces may act between
the rods and possibly distort their shapes, but these interactions
between the rods and these distortions of the rods do not affect
the stiffness of the rods. This approximation of “weak
interactions” seems reasonable (at least some of TMPs),
since it is well-known that the transmembrane α-helices and β-
barrels in TMPs are structurally stable.
Due to the block-diagonal structure of the covariance matrix

and therefore separability of the sum of squares of atomistic
fluctuations into contributions from individual rods, the total
residual χ2 for the whole system of nsymm rods, according to eq
1, can be written as a function of the set of numbers of CG sites
placed in the i-th rod NCG,i in the following form:

∑χ χ=
∑

·
= =

N
N

N N({ })
1

( )CG i
i
n

CG i i

n

CG i i CG i
2

,
1 , 1

,
2

,symm

symm

(10)

where χi
2 (NCG,i) is the value of the variational residue χ

2 for the
i-th rod when the number of CG sites placed in that rod equals
NCG,i. Taking into consideration the universal scaling law for χ2

provided by eq 2 and the fact that for straight rods the
anomalous dimension is 1, eq 10 can be rewritten as
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Minimization of χ2({NCG,i}) under the constraints that the
total number of CG sites in the system equals NCG

∑ =
=
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n

CG i CG
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,

symm

(12)

and that each NCG,i is an integer leads to the desired result for χ
2

of the system of nsymm rods as a function of the total number of
CG sites NCG:
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We now define the function χlower
2(NCG) in the following

way:
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This definition differs from eq 13 in that NCG,i′ values are not
limited to integers. Since the right-hand sides of both eqs 13
and 14 involve minimization but the latter case is less restricted,
the following inequality must be satisfied:

χ χ≥N N( ) ( )CG lower CG
2 2

(15)

The equality in this expression is achieved only when all NCG,i′
values from eq 14 are integers; otherwise, χ2 > χlower

2. The
values of NCG,i′ and χlower

2 (NCG) in eq 14 can be found using the
technique of Lagrangian multipliers, leading to

χ = ∀ ′ =N
Cn

N
iN

N
n

( ) ,lower CG
symm

CG
CG i

CG

symm

2
3

3 ,
(16)

Therefore, χlower
2 (as a function of NCG) possesses the same

power law behavior with γ = 1 as χ2 for each rod. Note that
{NCG,i′ } values are integers if and only if the total number of CG
sites NCG is a multiple of the order of the symmetry axis nsymm. If
this condition is not satisfied, then χ2(NCG) > χlower

2(NCG). This
explains why the χ2(NCG) curve oscillates above χlower

2(NCG),
only touching it when the CG mapping is consistent with the
structural symmetry of the system (Figure 4). The χlower

2(NCG)
curves in this figure were plotted using eq 16, while the χ2(NCG)
values were obtained by numerically solving the minimization
problem in eq 13.

■ AUTHOR INFORMATION
Corresponding Author
*Phone: +1 773-702-9092. Fax: +1 773-795-9106. E-mail:
gavoth@uchicago.edu.
ORCID
Jesper J. Madsen: 0000-0003-1411-9080
Jianing Li: 0000-0002-0143-8894
Gregory A. Voth: 0000-0002-3267-6748
Present Addresses
§A.V.S.: Department of Chemistry, Stanford University,
Stanford, CA 94305, United States.
#J.L.: Department of Chemistry, The University of Vermont,
Burlington, VT 05405, United States.
Author Contributions
‡J.J.M., A.V.S., and J.L.: Authors contributed equally.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This research was supported by the National Institutes of
Health (NIH Grant R01-GM053148) and the National Science
Foundation (NSF Grant CHE-1465248). J.J.M. is grateful for
support from the Carlsberg Foundation in the form of a
postdoctoral fellowship. The authors thank Drs. Jun Fan and
Severin T. Schneebeli for helpful discussions. Computation
resources were provided by the Texas Advanced Computing
Center through the Extreme Science and Engineering
Discovery Environment (XSEDE) network (Ranger and
Stampede machines) and the Research Computing Center
(RCC) at The University of Chicago.

■ REFERENCES
(1) Saier, M. H. Tracing pathways of transport protein evolution.
Mol. Microbiol. 2003, 48 (5), 1145−1156.
(2) Goodsell, D. S.; Olson, A. J. Structural symmetry and protein
function. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 105−153.
(3) Hennerdal, A.; Falk, J.; Lindahl, E.; Elofsson, A. Internal
duplications in alpha-helical membrane protein topologies are
common but the nonduplicated forms are rare. Protein Sci. 2010, 19
(12), 2305−2318.
(4) Blundell, T. L.; Srinivasan, N. Symmetry, stability, and dynamics
of multidomain and multicomponent protein systems. Proc. Natl. Acad.
Sci. U. S. A. 1996, 93 (25), 14243−14248.
(5) von Heijne, G. Membrane-protein topology. Nat. Rev. Mol. Cell
Biol. 2006, 7 (12), 909−918.
(6) Choi, S.; Jeon, J.; Yang, J.-S.; Kim, S. Common occurrence of
internal repeat symmetry in membrane proteins. Proteins: Struct.,
Funct., Genet. 2008, 71 (1), 68−80.
(7) Matsunaga, Y.; Koike, R.; Ota, M.; Tame, J. R. H.; Kidera, A.
Influence of Structural Symmetry on Protein Dynamics. PLoS One
2012, 7 (11), e50011.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b01076
J. Chem. Theory Comput. 2017, 13, 935−944

942

mailto:gavoth@uchicago.edu
http://orcid.org/0000-0003-1411-9080
http://orcid.org/0000-0002-0143-8894
http://orcid.org/0000-0002-3267-6748
http://dx.doi.org/10.1021/acs.jctc.6b01076


(8) Levy, Y.; Cho, S. S.; Shen, T.; Onuchic, J. N.; Wolynes, P. G.
Symmetry and frustration in protein energy landscapes: A near
degeneracy resolves the Rop dimer-folding mystery. Proc. Natl. Acad.
Sci. U. S. A. 2005, 102 (7), 2373−2378.
(9) Monod, J.; Wyman, J.; Changeux, J. P. On the Nature of
Allosteric Transitions: A Plausible Model. J. Mol. Biol. 1965, 12, 88−
118.
(10) Changeux, J. P.; Edelstein, S. J. Allosteric mechanisms of signal
transduction. Science 2005, 308 (5727), 1424−1428.
(11) Changeux, J. P. Allostery and the Monod-Wyman-Changeux
model after 50 years. Annu. Rev. Biophys. 2012, 41, 103−133.
(12) Fortenberry, C.; Bowman, E. A.; Proffitt, W.; Dorr, B.; Combs,
S.; Harp, J.; Mizoue, L.; Meiler, J. Exploring Symmetry as an Avenue to
the Computational Design of Large Protein Domains. J. Am. Chem.
Soc. 2011, 133 (45), 18026−18029.
(13) Sinclair, J. C.; Davies, K. M.; Venien-Bryan, C.; Noble, M. E. M.
Generation of protein lattices by fusing proteins with matching
rotational symmetry. Nat. Nanotechnol. 2011, 6 (9), 558−562.
(14) Worsdorfer, B.; Henning, L. M.; Obexer, R.; Hilvert, D.
Harnessing Protein Symmetry for Enzyme Design. ACS Catal. 2012, 2
(6), 982−985.
(15) Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L. Opinion - How
many drug targets are there? Nat. Rev. Drug Discovery 2006, 5 (12),
993−996.
(16) Rask-Andersen, M.; Almen, M. S.; Schioth, H. B. Trends in the
exploitation of novel drug targets. Nat. Rev. Drug Discovery 2011, 10
(8), 579−90.
(17) Cantor, R. S. The lateral pressure profile in membranes: a
physical mechanism of general anesthesia. Biochemistry 1997, 36 (9),
2339−2344.
(18) Cantor, R. S. Receptor desensitization by neurotransmitters in
membranes: are neurotransmitters the endogenous anesthetics?
Biochemistry 2003, 42 (41), 11891−11897.
(19) Cantor, R. S. The evolutionary origin of the need to sleep: an
inevitable consequence of synaptic neurotransmission? Front. Synaptic
Neurosci. 2015, 7, 15.
(20) Wang, C.; Ye, F.; Velardez, G. F.; Peters, G. H.; Westh, P.
Affinity of four polar neurotransmitters for lipid bilayer membranes. J.
Phys. Chem. B 2011, 115 (1), 196−203.
(21) Orlowski, A.; Grzybek, M.; Bunker, A.; Pasenkiewicz-Gierula,
M.; Vattulainen, I.; Mannisto, P. T.; Rog, T. Strong preferences of
dopamine and l-dopa towards lipid head group: importance of lipid
composition and implication for neurotransmitter metabolism. J.
Neurochem. 2012, 122 (4), 681−90.
(22) Peters, G. H.; Wang, C.; Cruys-Bagger, N.; Velardez, G. F.;
Madsen, J. J.; Westh, P. Binding of serotonin to lipid membranes. J.
Am. Chem. Soc. 2013, 135 (6), 2164−2171.
(23) Peters, G. H.; Werge, M.; Elf-Lind, M. N.; Madsen, J. J.;
Velardez, G. F.; Westh, P. Interaction of neurotransmitters with a
phospholipid bilayer: a molecular dynamics study. Chem. Phys. Lipids
2014, 184, 7−17.
(24) Postila, P. A.; Vattulainen, I.; Rog, T. Selective effect of cell
membrane on synaptic neurotransmission. Sci. Rep. 2016, 6, 19345.
(25) Lundstrom. An overview on GPCRs and drug discovery:
structure-based drug design and structural biology on GPCRs. Methods
Mol. Biol. 2009, 552, 51−66.
(26) Lappano, R.; Maggiolini, M. G protein-coupled receptors: novel
targets for drug discovery in cancer. Nat. Rev. Drug Discovery 2011, 10
(1), 47−60.
(27) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid,
E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. Scalable
molecular dynamics with NAMD. J. Comput. Chem. 2005, 26 (16),
1781−1802.
(28) Kumar, S.; Huang, C.; Zheng, G.; Bohm, E.; Bhatele, A.;
Phillips, J. C.; Yu, H.; Kale, L. V. Scalable molecular dynamics with
NAMD on the IBM Blue Gene/L system. IBM J. Res. Dev. 2008, 52
(1−2), 177−188.

(29) Dror, R. O.; Dirks, R. M.; Grossman, J. P.; Xu, H. F.; Shaw, D.
E. Biomolecular Simulation: A Computational Microscope for
Molecular Biology. Annu. Rev. Biophys. 2012, 41, 429−452.
(30) Pronk, S.; Pall, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.;
Apostolov, R.; Shirts, M. R.; Smith, J. C.; Kasson, P. M.; van der Spoel,
D.; Hess, B.; Lindahl, E. GROMACS 4.5: a high-throughput and
highly parallel open source molecular simulation toolkit. Bioinformatics
2013, 29 (7), 845−854.
(31) Jiang, Y. X.; Ruta, V.; Chen, J. Y.; Lee, A.; MacKinnon, R. The
principle of gating charge movement in a voltage-dependent K+
channel. Nature 2003, 423 (6935), 42−48.
(32) Vilardaga, J.-P. Theme and variations on kinetics of GPCR
activation/deactivation. J. Recept. Signal Transduction Res. 2010, 30 (5),
304−312.
(33) Zhang, Z.; Lu, L.; Noid, W. G.; Krishna, V.; Pfaendtner, J.; Voth,
G. A. A systematic methodology for defining coarse-grained sites in
large biomolecules. Biophys. J. 2008, 95 (11), 5073−5083.
(34) Zhang, Z.; Pfaendtner, J.; Grafmüller, A.; Voth, G. A. Defining
coarse-grained representations of large biomolecules and biomolecular
complexes from elastic network models. Biophys. J. 2009, 97 (8),
2327−2337.
(35) Sinitskiy, A. V.; Saunders, M. G.; Voth, G. A. Optimal Number
of Coarse-Grained Sites in Different Components of Large
Biomolecular Complexes. J. Phys. Chem. B 2012, 116 (29), 8363−
8374.
(36) Zhang, Z. Y.; Voth, G. A. Coarse-Grained Representations of
Large Biomolecular Complexes from Low-Resolution Structural Data.
J. Chem. Theory Comput. 2010, 6 (9), 2990−3002.
(37) Martinetz, T.; Schulten, K. Topology Representing Networks.
Neural Networks 1994, 7 (3), 507−522.
(38) Hespenheide, B. M.; Jacobs, D. J.; Thorpe, M. F. Structural
rigidity in the capsid assembly of cowpea chlorotic mottle virus. J.
Phys.: Condens. Matter 2004, 16 (44), S5055−S5064.
(39) Krishna, V.; Noid, W. G.; Voth, G. A. The multiscale coarse-
graining method. IV. Transferring coarse-grained potentials between
temperatures. J. Chem. Phys. 2009, 131 (2), 024103.
(40) Vorobyov, I.; Kim, I.; Chu, Z. T.; Warshel, A. Refining the
treatment of membrane proteins by coarse-grained models. Proteins:
Struct., Funct., Genet. 2016, 84 (1), 92−117.
(41) Dama, J. F.; Sinitskiy, A. V.; McCullagh, M.; Weare, J.; Roux, B.;
Dinner, A. R.; Voth, G. A. The Theory of Ultra-Coarse-Graining. 1.
General Principles. J. Chem. Theory Comput. 2013, 9 (5), 2466−2480.
(42) Davtyan, A.; Dama, J. F.; Sinitskiy, A. V.; Voth, G. A. The
Theory of Ultra-Coarse-Graining. 2. Numerical Implementation. J.
Chem. Theory Comput. 2014, 10 (12), 5265−5275.
(43) Grime, J. M. A.; Dama, J. F.; Ganser-Pornillos, B. K.;
Woodward, C. L.; Jensen, G. J.; Yeager, M.; Voth, G. A. Coarse-
grained simulation reveals key features of HIV-1 capsid self-assembly.
Nat. Commun. 2016, 7, 11568.
(44) Li, M.; Zhang, J. Z.; Xia, F. Constructing Optimal Coarse-
Grained Sites of Huge Biomolecules by Fluctuation Maximization. J.
Chem. Theory Comput. 2016, 12 (4), 2091−100.
(45) Amadei, A.; Linssen, A. B.; Berendsen, H. J. Essential dynamics
of proteins. Proteins: Struct., Funct., Genet. 1993, 17 (4), 412−425.
(46) Zhang, Z.; Sanbonmatsu, K. Y.; Voth, G. A. Key Intermolecular
Interactions in the E. coli 70S Ribosome Revealed by Coarse-Grained
Analysis. J. Am. Chem. Soc. 2011, 133 (42), 16828−16838.
(47) Fan, J.; Saunders, M. G.; Voth, G. A. Coarse-Graining Provides
Insights on the Essential Nature of Heterogeneity in Actin Filaments.
Biophys. J. 2012, 103 (6), 1334−1342.
(48) McCullagh, M.; Voth, G. A. Unraveling the Role of the Protein
Environment for [FeFe]-Hydrogenase: A New Application of Coarse-
Graining. J. Phys. Chem. B 2013, 117 (15), 4062−4071.
(49) Izvekov, S.; Voth, G. A. Modeling real dynamics in the coarse-
grained representation of condensed phase systems. J. Chem. Phys.
2006, 125 (15), 151101.
(50) Davtyan, A.; Dama, J. F.; Voth, G. A.; Andersen, H. C. Dynamic
force matching: A method for constructing dynamical coarse-grained

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b01076
J. Chem. Theory Comput. 2017, 13, 935−944

943

http://dx.doi.org/10.1021/acs.jctc.6b01076


models with realistic time dependence. J. Chem. Phys. 2015, 142 (15),
154104.
(51) Popot, J. L.; Engelman, D. M. Membranes Do Not Tell Proteins
How To Fold. Biochemistry 2016, 55 (1), 5−18.
(52) Jolliffe, I. T. Principal component analysis, 2nd ed.; Springer: New
York, 2002.
(53) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.
N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data
Bank. Nucleic Acids Res. 2000, 28, 235−242.
(54) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R.
W.; Klein, M. L. Comparison of Simple Potential Functions for
Simulating Liquid Water. J. Chem. Phys. 1983, 79 (2), 926−935.
(55) MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.;
Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.;
Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T.; Mattos, C.;
Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.;
Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe,
M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-atom empirical
potential for molecular modeling and dynamics studies of proteins. J.
Phys. Chem. B 1998, 102 (18), 3586−3616.
(56) MacKerell, A. D.; Feig, M.; Brooks, C. L. Extending the
treatment of backbone energetics in protein force fields: limitations of
gas-phase quantum mechanics in reproducing protein conforma- tional
distributions in molecular dynamics simulations. J. Comput. Chem.
2004, 25 (11), 1400−1415.
(57) Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E.; Mittal, J.; Feig, M.;
Mackerell, A. D., Jr. Optimization of the additive CHARMM all-atom
protein force field targeting improved sampling of the backbone phi,
psi and side-chain chi(1) and chi(2) dihedral angles. J. Chem. Theory
Comput. 2012, 8 (9), 3257−3273.
(58) Desmond Molecular Dynamics System, version 3.0; D. E. Shaw
Research: New York, NY, 2011.
(59) Lyman, E.; Higgs, C.; Kim, B.; Lupyan, D.; Shelley, J. C.; Farid,
R.; Voth, G. A. A role for a specific cholesterol interaction in stabilizing
the Apo configuration of the human A(2A) adenosine receptor.
Structure 2009, 17 (12), 1660−1668.
(60) Li, J.; Ziemba, B. P.; Falke, J. J.; Voth, G. A. Interactions of
protein kinase C-alpha C1A and C1B domains with membranes: a
combined computational and experimental study. J. Am. Chem. Soc.
2014, 136 (33), 11757−66.
(61) Li, J.; Jonsson, A. L.; Beuming, T.; Shelley, J. C.; Voth, G. A.
Ligand-dependent activation and deactivation of the human adenosine
A(2A) receptor. J. Am. Chem. Soc. 2013, 135 (23), 8749−59.
(62) Martyna, G. J.; Tobias, D. J.; Klein, M. L. Constant-Pressure
Molecular-Dynamics Algorithms. J. Chem. Phys. 1994, 101 (5), 4177−
4189.
(63) Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N·
Log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys.
1993, 98 (12), 10089−10092.
(64) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.;
Pedersen, L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys.
1995, 103 (19), 8577−8593.
(65) Maestro-Desmond Interoperability Tools, version 3.0; Schrö-
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