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Rib fractures are common injuries caused by chest trauma, which may cause serious consequences. It is essential to diagnose rib
fractures accurately. Low-dose thoracic computed tomography (CT) is commonly used for rib fracture diagnosis, and
convolutional neural network- (CNN-) based methods have assisted doctors in rib fracture diagnosis in recent years. However,
due to the lack of rib fracture data and the irregular, various shape of rib fractures, it is difficult for CNN-based methods to
extract rib fracture features. As a result, they cannot achieve satisfying results in terms of accuracy and sensitivity in detecting
rib fractures. Inspired by the attention mechanism, we proposed the CFSG U-Net for rib fracture detection. The CSFG U-Net
uses the U-Net architecture and is enhanced by a dual-attention module, including a channel-wise fusion attention module
(CFAM) and a spatial-wise group attention module (SGAM). CFAM uses the channel attention mechanism to reweight the
feature map along the channel dimension and refine the U-Net’s skip connections. SGAM uses the group technique to
generate spatial attention to adjust feature maps in the spatial dimension, which allows the spatial attention module to capture
more fine-grained semantic information. To evaluate the effectiveness of our proposed methods, we established a rib fracture
dataset in our research. The experimental results on our dataset show that the maximum sensitivity of our proposed method is
89.58%, and the average FROC score is 81.28%, which outperforms the existing rib fracture detection methods and attention
modules.

1. Introduction

Rib fractures are associated with significant morbidity and
are detected in at least 10% of all injured patients [1], with
patients frequently requiring admission to the intensive care
unit (ICU) and mortality rates as high as 33% [2]. To avoid
serious consequences, accurate detection of rib fractures is
important. Low-dose thoracic computed tomography (CT)
scans are commonly used in the assessment and auxiliary
diagnosis of rib fractures [3, 4], but missed diagnoses are
common. Studies have shown that the sensitivity of diagno-
sis of rib fractures is only about 60% on initial chest CT eval-
uations [5], and missed diagnosis may cause severe medical
accidents. Moreover, it is time-consuming for radiologists
to find and locate rib fractures in numerous CT slices.

Artificial intelligence (AI) has recently made remarkable
progress. It is widely used in medical data analysis, such as
detection of diabetic retinopathy [6], classification of neo-
nates cry [7], and analysis of electroencephalogram (EEG)
signals [8]. The detection of rib fracture can be regarded as
a computer vision task. Deep convolutional neural networks
(CNNs) are used to extract the features hard to find by
human beings and achieve the state-of-the-art performance
in many computer vision tasks [9–13]. As for computer-
aided diagnosis, CNNs are widely used for segmentation,
detection, and classification of lesions in medical images,
such as lung nodule detection and classification [14–16],
brain tumor segmentation [17–19], breast cancer detection
and classification [20–22], which demonstrate their extraor-
dinary ability to outperform medical professionals.
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Motivated by the successful application of CNNs in
computer-aided diagnosis, several initial attempts have been
made to design rib fracture detection algorithms based on
CNNs in recent years. For instance, Chen et al. [23] pre-
sented a spatial coherence-based rib fracture detection
method to detect rib fractures. They first gave a novel feature
extraction method to extract the rib regions from CT slices.
Then, for each rib region, they applied a spatial coherence
convolutional neural network to recognize rib fractures.
Zhou et al. [24] used Faster R-CNN [25], a two-stage
region-based object detection model, to locate and classify
rib fractures in 2D CT slices. Jin et al. [26] proposed a 3D
CNN network called FracNet, based on U-Net [27], to seg-
ment the rib fracture region from a single cut patch. Then,
they applied a sliding window mechanism for the whole
3D CT volume to detect rib fractures. Meng et al. [28] pro-
posed a fully automated rib fracture detection pipeline con-
sisting of five stages: rib segmentation, vertebra detection, rib
labeling, rib fracture detection, and rib fracture classification.
In the rib fracture detection stage, the proposed model VRB-
net was used to locate the fracture and output the probability
map, which is based on the V-Net structure and includes a
ResNet module (R-module) and a bottleneck ResNet module
(B-module). These works use 2D or 3D CNNs to detect rib
fractures and have achieved good results. But there is still
research space of improving the CNN network’s ability to
get a better result in rib fracture detection tasks. There are
still some problems with rib fracture detection using CNN
networks. On the one hand, it is challenging to collect rib
fracture data due to obstacles such as privacy ethics and data
labeling cost, which lead to limited training data. On the
other hand, some of the rib fracture regions are not apparent
compared with the normal rib regions. With the narrow
shape of ribs and various irregular fracture structures, rib
fractures can be easily confused with normal ribs in CT
images and misdiagnosed. These issues limit the perfor-
mance of CNN models. Table 1 lists the relevant works
and the challenges they face.

The attention mechanism has been widely studied
recently in various AI areas. The idea of the attention mech-
anism is to focus on essential information and quickly obtain
the most effective information, which can help the CNN net-
work learn more fine-grained information from the samples
to improve the feature extraction ability. Inspired by the
attention mechanism, we proposed a U-Net-based rib frac-
ture detection algorithm for automatic and accurate rib frac-
ture detection called CFSG U-Net. To improve the detection
performance in our algorithm, we proposed a dual-attention
mechanism to help the network learn rib fracture features
from limited data, which includes a channel-wise fusion
attention module (CFAM) and a spatial-wise group atten-
tion module (SGAM). CFAM focuses on the channel rela-
tionship in CNNs, and adaptively redistributes the weights
of features along the channel dimension. Besides, we also
use CFAM to refine the U-Net’s skip connections. The study
has shown a semantic gap between low-level and high-level
features merged in U-Net’s long skip connections [29, 30],
which hurts the network’s performance. CFAM is used to
adjust these two sets of features before convolutional blocks

merge them to help them fuse effectively. SGAM focuses on
spatial information and adjusts the weights along the spatial
dimension. Commonly spatial attention in [31, 32] uses
average-pooling or max-pooling to aggregate channel-wise
information, which may lose fine-grained information and
cannot fully characterize the various semantic information
of the feature map. To solve this problem, we divide feature
maps into several groups. Each group generates channel-
wise statistics individually to learn spatial attention maps,
allowing spatial attention to capturing more fine-grained
semantic information.

To verify the performance of our proposed method, we
established a dataset of rib fractures from the local hospital’s
patients, including 3134 rib fracture annotations for 818 CT
images.

The contributions of this paper are summarized as
follows:

(i) We propose the CFSG U-Net for automatic rib frac-
ture detection, which is enhanced by our proposed
novel dual-attention mechanism including CFAM
and SGAM

(ii) We established a rib fracture dataset, including 3134
rib fracture annotations for 818 CT images

(iii) Our proposed method achieves a sensitivity of
89.58%, and the average FROC score is 81.28% on
our dataset, which outperforms the state-of-the-art
methods.

2. Materials and Methods

2.1. Ethics. All procedures involving human participants in
this retrospective study were approved by the ethics commit-
tee of Suzhou TCM Hospital Affiliated to the Nanjing Uni-
versity of Chinese Medicine. The requirement for informed
consent was waived according to the ethical standards of
the institutional review board.

2.2. Materials. A total of 818 patients participated in this
study. We collected 818 CT images of patients with chest
trauma between March 2017 to April 2019 from the hospi-
tal’s picture archiving and communication systems (PACS).
There are 511 male and 307 female patients, with an average
age of 57. All CT scans were acquired from a CT machine
with a voltage of 270 kV and a current of 200-300mA, stored
in digital imaging and communications in medicine
(DICOM) format. The scan thickness was 1.25-5mm.

Three experienced musculoskeletal radiologists com-
pleted the annotation of CT images. Two have more than
five years of experience in musculoskeletal CT imaging diag-
nosis, and the senior one has more than ten years of experi-
ence. Firstly, all CT images were checked by two junior
doctors, combined with the perspectives of the coronal, sag-
ittal, and horizontal planes, to find out and locate the rib
fractures and mark them with 3D masks. The results of the
initial annotation were reviewed by the senior radiologist
and confirmed the final ground truth. All CT images were
annotated by ITK-SNAP [33], and the labels were exported
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in neuroimaging informatics technology initiative (NIFTI)
format. Finally, 3134 annotations were acquired. An exam-
ple of the annotation can be seen in Figure 1.

The dataset was randomly divided into three parts,
including the training set, validation set, and test set with a
ratio of 7 : 1 : 2. We trained the model on the training set
and adjusted the hyperparameters on the validation set to
obtain the model with the best performance. Finally, we
tested the model’s actual performance on the test set.

2.3. Data Preprocessing. In addition to the bone region, chest
CT contains information about other tissues. Such redun-
dant information may negatively impact prediction accuracy
and detection speed. Removing these redundant tissues is an
intuitive way to avoid such negative impacts. For this pur-
pose, we use a series of morphological operations to extract
the bone regions in the CT image and then normalize the
results to obtain the final input data for the neural network.
The overall procedure is illustrated in Figure 2.

The original image is shown in Figure 2(a). If we extract
the largest connected components directly after binarizing
the image using a certain threshold to obtain the bone
region, some ribs may be lost, especially for the eleventh
and twelfth ribs. Therefore, we remove small connected
components and apply dilation operations before extracting
the largest connected components.

First, we select the threshold of 180 HU to binarize
the image to capture the high-intensity bone region
(Figure 2(b)). After that, the connected components include
bone regions and other redundant tissues and noise. If we
make a dilation operation immediately, these distracting
components will be mixed with the bone areas. Therefore,
before the dilation operation, we remove the connected com-
ponents smaller than 4000mm3 in volume (Figure 2(c)). The

surrounding areas of bone tissues, including cortical and
bone marrow, are important for diagnosing rib fractures,
but the mask cannot completely cover these areas after
binarization. Therefore, we make a morphological dilation
operation to expand the regions and fill small holes
(Figure 2(d)). After all the above operations, we extract the
largest connected components to obtain the bone region
mask we need (Figure 2(e)). Finally, we multiply the bone
region mask with the original image, all parts within the
mask retain the original information, while everything out-
side the mask is filled with -300 HU . The extracted bone
region can be seen in Figure 2(f).

To make the bone clear, we adjust the CT image to the
bone window, the window width is 1200, and the window
level is 300. Finally, we use min-max normalization to trans-
form the data to the range ½0, 1�. The formula for min-max
normalization is as follows:

x′ = x −min xð Þ
max xð Þ −min xð Þ : ð1Þ

The final output of preprocessing can be seen in
Figures 2(g) and 2(h).

2.4. Proposed Neural Network Structure. Our proposed
CFSG U-Net uses the encoder-decoder structure based on
U-Net, a widely used architecture for medical image seg-
mentation. The detailed design of our proposed network is
shown in Figure 3.

In the encoder path, CSFG U-Net gradually downsam-
ples and doubles the number of channels. In contrast, in
the decoder path, the resolution is restored step by step with
transpose convolution, and the number of channels is
reduced by convolution; skip connections are used to

Table 1: Review of deep learning applications of rib fracture detection.

Reference Dataset Method used
Evaluation
metrics

Research challenges

[23]
In-house dataset. No information
about the dataset is mentioned in

the paper

Rib region extract method and
spatial coherence convolutional

neural network

Accuracy, recall,
and speed

There were limited comparative
experiments and the potential of
CNN networks was not fully

researched

[24]

1,079 patients and 25,054 2D
annotations from 3 different

hospitals, slice thicknesses range
from 1 to 5mm

Faster R-CNN
Precision recall,
and F1-score

This work only used 2D CNN,
and no 3D information was
combined. The precision and
recall of this work were not

particularly high

[26]

A total of 7,473 annotated
traumatic rib fractures from 900
patients from a single center, slice

thicknesses range from 1 to
1.25mm

Sliding widow mechanism and a
modified U-Net called FracNet

Free response
receiver-
operating

characteristic
(FROC) analysis

This article only carried out a
single-center study, and the
landscape of deep neural

networks was not fully explored

[28]
8,529 chest CT images and 33,828
annotations, slice thickness of CT

images was 0.625mm

Rib fracture detection pipeline
consisting of five stages: rib

segmentation, vertebra detection, rib
labeling, rib fracture detection, and
rib fracture classification. VRB-Net

for rib fracture detection

Recall, precision,
and F1 score

The ground truth for detection
and classification may include

incorrect cases caused by
incorrect annotation
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introduce the fine-grained information of low-level features
to help the feature map restore the resolution.

The encoder block includes convolutional layers, batch
normalization, and ReLU activation function. Moreover,
the residual connections proposed by He et al. [34] are intro-
duced to extract more accurate rib fracture features. Recent
work [35, 36] has shown that convolution may lose informa-
tion, while residual connections can help deliver contextual
information, improve segmentation accuracy, and accelerate
the convergence speed. After that, max-pooling layers are
used to downsample the feature maps.

In the decoder block, we propose a channel-wise fusion
attention module (CFAM) to reweight the feature map along

the channel dimension and refine the U-Net’s skip connec-
tions. The CFAM considers the interchannel relationship
between low-level and high-level features and uses the atten-
tion mechanism to adjust these two sets of features before
fusing them. Inspired by the group technique, we introduce
a spatial-wise group attention module (SGAM), which can
learn spatial attention maps in a group manner. The atten-
tion map of each group attends to a specific semantic fea-
ture, which can reserve more spatial structural information
and help the spatial attention module capture more fine-
grained semantic information.

In the decoder block, the low-level features from the
encoder path and the high-level features from the decoder

(a) (b)

(c)

Figure 1: An example of rib fracture annotation (see the red mask). (a) Axial view. (b) Coronal view. (c) Sagittal view.
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(a) (b)

(c) (d)

(e)

Figure 2: Continued.
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path are refined by CFAM and then fused by a convolution
block. After that, the SGAM is used to refine the features
spatially. At last, a convolution block is used to learn features
and help the network adapt to the attention mechanism.
Residual connection is also used to fine-tune the features.

2.5. Channel-Wise Fusion Attention Module. The overall
architecture of CFAM is illustrated in Figure 4(a). CFAM
is a channel attention module that strengthens useful feature
responses and suppresses unimportant feature responses by
adjusting the relationship along the channel dimension.
But unlike the classic channel attention like SE block and
ECA block, our CFAM takes full account of the structure
of U-Net. CFAM not only uses channel attention to adjust
the channels’ weights for a single feature map but also con-
siders the interchannel relationship between the low-level
and high-level features merged by the U-Net’s skip connec-
tion. Studies have shown a semantic gap between two sets of

features merged in U-Net’s skip connections [29, 30]. The
low-level features have more fine-grained information, while
the high-level features have more semantic information.
Convolution cannot integrate them well. To address this
issue, CFAM calculates the relationship between the low-
level and high-level features and adjusts their channels’
weights simultaneously to help these levels of two feature
maps fuse better.

CFAM uses global average pooling (GAP) and 1D con-
volution to capture the interchannel relationship of two sets
of features to be merged in a long skip connection. Two
channel attention maps are generated to refine the corre-
sponding two sets of features before they are merged by a
convolution block.

Denote one of the low-level features before downsam-
pling in the encoder-block as Fe ∈ RC×L×W×H , and the corre-
sponding high-level features after the transpose convolution
in decoder-block as Fd ∈ RC×L×W×H , where C, L, W, and H

(f) (g)

(h)

Figure 2: The procedures of preprocessing: (a) the original CT image, (b) the binary bone region mask after thresholding at 180 HU, (c) the
mask after removing small connected components, (d) the mask after morphological dilation, (e) the mask after extracting the largest
connected component, (f) the extracted bone regions by applying the mask, (g) the bone regions after data normalization, and (h) the
3D view of the preprocessing output.
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are the number of channels, the length, the width, and the
height of the feature map. First of all, we use global average
pooling (GAP) to aggregate spatial information and generate
the corresponding spatial statistics se, sd ∈ RC as follows:

se = GAP Feð Þ = 1
LWH

〠
L,W,H

i=1,j=1,k=1
Fe i, j, kð Þ, ð2Þ

sd = GAP Fdð Þ = 1
LWH

〠
L,W,H

i=1,j=1,k=1
Fd i, j, kð Þ: ð3Þ

where i, j, k represents the voxel value at position ði, j, kÞ of a
single channel in the feature map with 1 ≤ i ≤ L, 1 ≤ j ≤W,
1 ≤ k ≤H.

As demonstrated in [33], to capture interchannel rela-
tionships, avoiding dimensionality reduction is important,
and local cross-channel interaction is helpful. So, we concat-
enate se and sd in the channel dimension, and perform 1D
convolution with kernel size n followed by a sigmoid activa-
tion to generate the channel attention map Mc

eðFe, FdÞ ∈ Rc

for the low-level features and Mc
dðFe, FdÞ ∈ Rc for the high-

level features. Finally, the refined low-level features Fe′ ∈
RC×H×W×L and the refined high-level features Fd′ ∈
RC×H×W×L can be obtained by:

Fe′ =Mc
e Fe, Fdð Þ · Fe = σ f n se, sdð Þð Þ · Fe, ð4Þ

Fd′ =Mc
d Fe, Fdð Þ · Fd = σ f n se, sdð Þð Þ · Fd , ð5Þ

where σ denotes the sigmoid function mapping the feature
values into the range of ½0, 1� and f n denotes the standard
1D convolution with kernel size n.

2.6. Spatial-Wise Group Attention Module. For computer
vision tasks, spatial attention is also important, so we pro-
posed SGAM to gain spatial attention to refine the feature
map in the spatial dimension. Previous works [31, 32] use
average-pooling or max-pooling to aggregate channel-wise
information, which cannot fully characterize the various
semantic information of the feature map. The rib fracture
regions are often not apparent compared with the normal
rib regions and usually with various irregular shapes, so
obtaining more fine-grained semantic information can
enhance the CNN network’s ability for feature extraction.
Studies shows that group convolution can learn better fea-
ture representation than standard convolution [37]. Inspired
by this, SGAM divides feature maps into several groups and
simultaneously learns an attention map for each group. Each
attention map focuses on a specific semantic subfeature,
making SGAM to gain more fine-grained semantic informa-
tion than previous works.

The detailed architecture of SGAM is illustrated in
Figure 4(b). First of all, for a feature map F ∈ RC×L×W×H ,
we divide it into G groups along the channel dimension:
F = fF1,⋯,FGg, Fi ∈ RC/G×L×H×W . After that, for each feature
group Fi, we use 1 × 1 × 1 convolution to obtain the channel
statistics si ∈ R1×L×W×H .

si = f1×1×1 Fið Þ, ð6Þ

where f1×1×1 denotes a standard 3D pointwise convolution.
Then, a standard 7 × 7 × 7 convolution followed by a sig-

moid activation function is performed to generate 3D spatial
attention map MsðFiÞ ∈ R1×L×H×W for each group. The final
refined feature group Fi′∈ RC/G×L×H×W can be computed by:

E1

D1

E2

E3

E4

D3

D2

Conv + BN + Relu

Conv + BN + Relu

+

C

Conv + BN + Relu

Conv + BN + Relu

CFAM

F′
d

F
d

F
e

F′
e

SGAM

+

Decoder block

Encoder block

+

C

Encoder block

Decoder block

Conv3×3×3

Conv3×3×3

Max-pooling

Transpose conv

Add

Concat

Output map 1 × 9633D input patch 1 × 963

16 × 963

32 × 963

64 × 243

128 × 123 128 × 243

64 × 483

32 × 483

Figure 3: Our proposed CFSG U-Net. The model uses a U-Net structure consisting of four encoder blocks (E1-E4) and three decoder blocks
(D1-D3). The number next to each block indicates the input size of each block. In the decoder block, Fe denotes the feature map from the
encoder path, and Fd represents the feature map from the decoder path.
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Fi′=Ms Fið Þ · Fi = σ f7×7×7 sið Þð Þ · Fi, ð7Þ

where f7×7×7 denotes a standard 3D convolution with the
kernel size of 7 × 7 × 7.

2.7. Loss Function. Since the rib fracture region is much
smaller than the background, which will make the prediction
of the network more biased towards the background, we use
the dice loss to solve this problem. However, Dice loss is
unstable in the training process, so the weighted binary

cross-entropy (WBCE) loss is also introduced to address this
issue.

Let N denote the domain of all voxels of a sample patch
with length L, width W, and height H. byi ∈ ½0, 1� is the ith

voxel of the prediction result for a sample with domain N ,
and yi ∈ f0, 1g is the corresponding ground truth.

The Dice loss can be defined as:

LDice = 1 − 2 ∑N
i yi byi

∑N
i yi + byi

: ð8Þ

×

GAP

GAP

×

2×C

C×L×W×H

F
d

F
e

Concat

Multiply

Sigmoid C

1D Conv×

𝜎

𝜎

𝜎

C

(a)

C

C/G

C/G

C/G

1 1

×…
… Conv1 × 1 × 1

Conv7 × 7 × 7

Multiply

Sigmoid

F
d

𝜎

𝜎

×

(b)

Figure 4: (a) The proposed channel-wise fuse attention module (CFAM). Fe denotes the feature map from the encoder path, and Fd denotes
the feature map from the decoder path. GAP represents the global average pooling. The symbol next to the feature indicates the size of the
corresponding feature. (b) The proposed spatial-wise group attention module (SGAM). Fd denotes the feature map from the decoder block,
and the symbol in each block represents the number of channels of each block.
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The weighted BCE loss can be defined as:

LBCE = −
1
N
〠
N

i=1
αyi log byið Þ + 1 − yið Þ log 1 − byið Þð Þ, ð9Þ

where α is the weight of positive voxels, which is set to 5 in
our experiments.

The final loss function is defined as:

L = LWBCE + LDice: ð10Þ

2.8. Implementation Details. Due to the limitation of GPU
memory, the cropped 1 × 96 × 96 × 96ðchannel × length ×
width × heightÞ 3D patches are used as the input of the net-
work. To balance the positive and negative samples, in the
training stage, 60% of the data are positive, containing at

least one rib fracture, and 40% of the data are randomly
sampled negative samples containing tissues without any
rib fractures. Data augmentation methods including random
rotation, affine, and flip are used for all samples.

In the inference stage, we use a sliding window with a
window size of 96 × 96 × 96 and a step of 48 to scan the
whole CT image and omit the background area without
any tissues. To obtain the final result, we compute the con-
nected component after binarizing the segmentation map
using the threshold 0.4 and take the average segmentation
scores of the connected component as the final detection
confidence. To reduce false positives (FP), all detection pro-
posals with volume less than 300 voxels are removed.

The CFSG U-Net is implemented in Pytorch. The kernel
size n of CFAM in the decoder blocks is set to 5 and the
group number G of SGAM is set to 4, which achieves the
best results in our experiments. We initialize our model

(a) (b)

(c)

Figure 5: Three true-positive segmentation results of the CSFG U-Net. The ground truth is labelled by the yellow line, and the segmentation
result is labelled by the red line.
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using the method introduced in [38] and train the model on
two NVIDIA V100 32GB GPUs with the batch size of 16 for
100 epochs. Adam optimizer with β1 = 0:9, β2 = 0:999, ϵ =
1 e − 8, an initial learning rate of 1e − 3, the momentum of
0.9, and weight decay of 1e − 4 are used for the training.

3. Results and Discussion

3.1. Results of Rib Fracture Segmentation. We first report the
segmentation results of the CSFG U-Net, as shown in
Figure 5; there are three true-positive results included. The
ground truth is labelled by the yellow line, and the segmen-
tation result is labelled by the red line.

Because the rib fracture area is small and narrow, and
the boundary between the fracture region and the normal
region is not very obvious, the dice between the segmenta-
tion result and the corresponding ground truth is not excep-
tionally high compared with other segmentation tasks. Due
to these reasons, we did not include the quantitative segmen-
tation result in the evaluation of our method.

3.2. Results of Rib Fracture Detection. As demonstrated in
[26], we consider a detection is true positive if the IOU >
0:2 between any annotations. The free-response receiver-
operating characteristic (FROC), which considers the sensi-
tivity and the average number of false-positive per scan
(FPs/scan), is used to evaluate the performance of models.
The sensitivities are measured at five key rates, including
1/2, 1, 2, 4, and 8 FPs per scan. And the average sensitivity
of these five particular rates is also used to have an overview
of FROC analysis.

To verify the effectiveness of our proposed CSFG U-Net,
we compare our method with several cutting-edge rib frac-
ture detection methods proposed in recent years include
FracNet [26] and VRBNet [28], which use the 3D settings.
And we also compare our method with several commonly
used U-Net-based deep neural networks for medical image
segmentation, including 3D U-Net [39], MutiResUnet [29],
Attention U-Net [40], and ResUNet [41]. Except for the dif-
ferences of the CNN model, the other experimental settings
of different methods are the same.

The results of the experiments are shown in Table 2. It
can be seen from the results that, compared with the existing
rib fracture detection models and other segmentation net-
works of U-Net architecture, our method achieves the high-
est average FPs 81.28%, which illustrates the effectiveness of
our proposed network on the task of rib fracture detection.

To verify the effectiveness of the attention module we
proposed, our method is also compared with several other
attention modules including SE [42], CBAM [31], and ECA
[43], as shown in Table 3. Here, we refer to the backbone of
CFSG U-Net without CFAM and SGAM as ResUNet, which
is proposed in [41].We apply the compared attentionmodules
in the decoder path of ResUNet as in our proposed CFSG U-
Net. According to the results, the attention modules we pro-
posed demonstrate better performance, indicating that in the
U-Net architecture, our attention module can effectively help
the network learn rib fracture features.

3.3. Ablation Studies. To justify the effectiveness of our pro-
posed components, we conduct several ablation experiments
with the leave-one-out method. The results are shown in
Table 4.

To verify the effect of CFAM, we compare the perfor-
mance of the whole CFSG U-Net model and the model after
removing CFAM. It can be found that the model with
CFAM can obtain a higher recall score, especially with low
FPs/scan rates.

At the same time, to verify the effectiveness of the SGAM
module, we design two experiments. In the first experiment,
we remove the SGAMmodule from CFSG U-Net. In the sec-
ond experiment, we set the number of SGAM groups to 1,
equivalent to generating spatial attention without grouping.
It can be seen through experiments that spatial attention
can indeed improve the performance of the CNN module,
and learning multiple groups of spatial attention can help

Table 4: Ablation experiment results for our proposed method.
The best results are marked in bold. w/o denotes “without,” w/
denotes “with.” G denotes the number of groups of SGAM.

Methods
Sensitivities (FPs/scan)

0.5 1 2 4 8 Avg.

CFSG U-Net 67.15 76.92 84.78 87.98 89.58 81.28

w/o CFAM 62.18 72.76 81.41 84.46 87.50 77.66

w/o SGAM 64.10 74.52 82.53 85.74 88.46 79.07

w/ SGAM G = 1 66.35 76.28 84.13 87.50 89.26 80.71

Table 3: Comparison experiment results of different attention
methods. The best results are marked in bold. ResUNet denotes
the backbone proposed in [41].

Methods
Sensitivities (FPs/scan)

0.5 1 2 4 8 Avg.

CFSG U-Net 67.15 76.92 84.78 87.98 89.58 81.28

ResUNet+CBAM 65.22 75.48 83.49 86.70 88.94 79.97

ResUNet+ECA 62.66 73.08 81.41 84.78 87.98 77.98

ResUNet+SE 63.14 73.72 81.73 85.10 87.98 78.33

Table 2: Comparison experiment results of our proposed method,
several cutting-edge rib fracture detection methods, and commonly
used U-Net architecture deep neural networks are included. The
best results are marked in bold. FPs/scan denote false positives
per scan.

Methods
Sensitivities (FPs/scan)

0.5 1 2 4 8 Avg.

CFSG U-Net 67.15 76.92 84.78 87.98 89.58 81.28

FracNet 60.10 70.03 79.01 82.21 85.90 75.45

VRBNet 71.31 77.56 82.21 85.25 85.25 80.32

3D U-Net 59.46 69.23 77.72 81.73 85.26 74.68

MutiResUnet 61.70 71.79 80.93 83.81 87.18 77.08

Attention U-Net 61.54 72.12 81.09 84.29 87.34 77.28

ResUNet 60.90 70.99 80.13 83.33 86.70 76.41

10 Computational and Mathematical Methods in Medicine



the spatial attention module generate finer attention maps
and reserve more fine-grained information, thereby improv-
ing the model’s ability to learn rib fracture features.

4. Discussion

In this study, we built a deep learning model to aid in the
diagnosis of rib fractures. In the experimental results, our
model achieves an average sensitivity of 81.28% and a max-
imum sensitivity of 89.58%, which show that our method
can detect rib fractures effectively and outperform the exist-
ing works. Before our work, several works used CNN to
detect rib fractures but did not fully tap the potential of
the CNN network. In our work, we propose a dual-
attention module including CFAM and SGAM to improve
the feature extraction ability of the CNN network to enhance

its sensitivity and accuracy in the rib fracture detection task.
We carried out several comparative and ablation experi-
ments to test the effect of our proposed dual-attention mod-
ule. Compared with other attention modules, our dual-
attention module achieved the best results. At the same time,
in the ablation experiments, we verified the effectiveness of
CFAM and SGAM. The joint action of CFAM and SGAM
improved the ability of the CNN network to detect rib
fractures.

However, our work still has some limitations. First of all,
our data only comes from a hospital, and the sample source
is not very wide, so the model’s versatility needs to be
improved. In addition, in terms of data labeling, on the
one hand, our data are labeled by different radiologists; it
is hard to establish the labeling gold standard. On the other
hand, the boundary of fractures is not obvious. These two

(a) (b)

(c)

Figure 6: Three false-positive cases: (a) false-positive caused by uneven bone mineral density; (b) false-positive around the vertebra area; (c)
false-positive around the costochondral joint. The ground truth is labelled by the yellow line, and the segmentation result is labelled by the
red line.
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reasons will introduce noisy labels, which may have an
adverse effect on the voxel-level segmentation task. Finally,
although our algorithm has obtained the highest sensitivity,
it is hard to suppress false positives in a single-stage detec-
tion framework. The false-positive cases can be seen in
Figures 6(a)–6(c). Several reasons cause the false positives.
For instance, the rib with uneven bone mineral density can
be easily misdiagnosed, and the area around the vertebra
and costochondral joint might also be misdiagnosed in some
CT scans.

5. Conclusions

In this work, to improve the ability of CNN to detect rib, we
propose a novel rib fracture detection model called CFSG U-
Net. Inspired by the attention mechanism of CNNs in recent
years, we propose CFAM to refine features in channel per-
spective and SGAM to refine the semantic information in
the spatial. We apply these two modules in the decoder block
to reassign the weights in the channel and spatial dimen-
sions to help the network learn rib fracture features from
limited data.

To verify the effectiveness of our proposed method, we
cooperated with the local hospital and established a rib frac-
ture dataset, including 3134 rib fracture annotations for 818
CT images. And then, we conducted a series of experiments
on this dataset, and the results show that the maximum sen-
sitivity of our proposed method is 89.58%, and the average
FROC score is 81.28%; these results outperformed the exist-
ing rib fracture detection system. Moreover, the ablation
experiment results show that the proposed CFAM and
SGAM modules surpass other attention modules in the rib
fracture detection task, proving their effectiveness.

In the future, we will strengthen our work mainly from
three aspects to further improve our method. Firstly, we will
collect more rib fracture data and conduct multicenter
research to enhance the versatility of our algorithm. In addi-
tion, we will explore how to reduce the adverse effect of
noisy labels. Finally, we will continue exploring how to
improve our rib fracture detection algorithm’s performance
in reducing false positives.
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