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Introduction
Polycystic kidney disease (PKD) is described by the growth 
of numerous cysts in the kidneys. When cysts form in the 
kidneys, they are filled with fluid. PKD cysts can intensely 
enlarge the kidneys while replacing much of the normal 
structure, causing in reduced renal function and leading 
to end-stage renal disease (ESRD). Autosomal dominant 
polycystic kidney disease (ADPKD; OMIM 173900) and 
autosomal recessive polycystic kidney disease (ARPKD; 
OMIM 263200) are important causes of kidney failure, 
morbidity and mortality in children and adults of all racial 
groups worldwide (1). The worldwide prevalence is esti-
mated to be between 1:400 to 1:1000 live births for ADP-
KD (2) and 1 in 6000 to 1 in 40 000 live births for ARPKD 
(3). Although, ADPKD and ARPKD exhibit variations in 

inheritance pattern, clinical presentation, typical appear-
ance of the kidneys and global prevalence, both diseases 
are caused by mutations in proteins located in primary 
cilia (4,5).

Materials and Methods
For this review, we used a variety of sources by searching 
through PubMed, Embase, Scopus and directory of open 
access journals (DOAJ). The search was performed by us-
ing combinations of the following key words and or their 
equivalents; polycystic kidney disease, cystogenesis, cyst 
development and pathways. 

Genes in polycystic kidney disease
In ADPKD renal cysts are formed along the full length of 

L. V. K. S. Bhaskar1*, Ramprasad Elumalai2, Soundararajan Periasamy2

1Sickle Cell Institute Chhattisgarh, Raipur, India
2Department of Nephrology, Sri Ramachandra University, Chennai, India

Implication for health policy/practice/research/medical education:
Polycystic kidney disease (PKD) is characterized by the growth of numerous fluid filled cysts in the kidneys. PKD cysts can 
profoundly enlarge the kidneys while replacing much of the normal structure, resulting in reduced renal function and leading 
to end-stage renal disease (ESRD). Given that currently, there are no active effective treatments for PKD, other than renal 
replacement therapy when indicated, the focus of scientists and clinicians ought for the development of therapies to slowdown 
disease progression. This review focuses on the current understanding of the pathways and therapeutic targets in PKD. 
Please cite this paper as: Bhaskar LVKS, Elumalai R, Periasamy S. Pathways, perspectives and pursuits in polycystic kidney 
disease. J Nephropharmacol. 2016;5(1):41-48. 

Polycystic kidney disease (PKD) is characterized by the growth of numerous cysts in the 
kidneys. When cysts form in the kidneys, they are filled with fluid. PKD cysts can profoundly 
enlarge the kidneys while replacing much of the normal structure, resulting in reduced 
kidney function and leading to kidney failure. Autosomal dominant polycystic kidney 
disease (ADPKD) is a hereditary disease that occurs in one out of 1000 humans. PKD and 
its causes are being dissected through studies of human populations and through the use 
of animal models. Mouse models in particular have made a substantial contribution to our 
understanding of the gene pathways involved in the pathogenesis and the nature of signaling 
molecules that act in a tissue-specific manner at critical stages of cyst development. PKD 
has a number of characteristics that make it uniquely challenging for the development of 
therapies to slowdown disease progression. This review provides current understanding of the 
etiopathology, pathways involved and therapeutic targets of PKDs.
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the nephron with prevalence to the collecting duct (CD) 
(6,7) and in ARPKD renal cyst formation is virtually re-
stricted to the CD (6,8,9). Several lines of evidence dem-
onstrate that the mechanical stress arising from varia-
tions in tubular flow or tubular composition in CD cells 
elevate [Ca2+]i (10-12). These impaired mechanosensitive 
[Ca2+]i responses, observed for both cultured ADPKD 
(13) and ARPKD cells (14-16), indicating that the disrupt-
ed [Ca2+]I signaling plays a fundamental role in cystogen-
esis. Several studies have provided compelling evidence 
for the function of polycystin-1 (PC-1) and polycystin-2 
(PC-2) proteins. Polycystin-2 can act as a calcium-ion-
permeable cation channel, and that polycystin-1 may be 
involved in regulating/localizing this channel, and play a 
role in regulating calcium homeostasis. A disruption in 
intracellular calcium homeostasis seems likely to result in 
many cellular abnormalities associated with cystogenesis 
in ADPKD. Further, polycystin 1 and 2 appears to be a 
member of a superfamily of proteins involved in regula-
tion of renal epithelial cell growth. In the kidney, PC-2 
like PC-1 is expressed in all nephron segments, with the 
possible exception of the thin limbs, but is absent from 
glomeruli (17).
Thus, ADPKD has two disease loci, PKD1 and PKD2, the 
loss of both copies disrupts this cascade and causes hy-
perplasia of a given cell resulting in a cyst. The mutations 
of PKD1 gene located on 16p13.3 are responsible for 85% 
of cases, remaining 15% by the mutations of PKD2 gene 
which is located on the chromosome 4q21–23 (18,19). In 
elderly patients, the PKD2 mutations are more prevalent 
than the PKD1. Forty percent of PKD patients were shown 
the progression of ESRD by the age 63 years have disease 
linked to PKD2 (20,21). However, among the ADPKD 
patients the mutations of PKD1 and PKD2 produce the 
identical renal and extra renal manifestations (22).
ARPKD is a recessive disorder, studies using spontaneous-
ly aroused PCK rat model and the method of positional 
cloning in human ARPKD families indicated that ARPKD 
is caused by mutations in PKHD1 gene that localized to 
chromosome region 6p12. The PKHD1 gene encodes the 
protein fibrocystin or polyductin, which homologous to 
the proteins of PKD1 and PKD2, has been found in the 
primary cilium and basal body of renal and bile duct epi-
thelium (23). The PKHD1 has expressed at high levels in 
the human foetal and adult kidneys, but the lower level 
expression was detected in the liver and pancreas. So far, 
more than 300 mutations was documented in PKHD1; 
among these the truncating mutations exhibits most se-
vere cases, are often leads prenatal or neonatal death 
(24,25). As majority of mutations being rare variants and 
one third of these mutations seen in single families, only 
10%-20% of ARPKD cases are associated common muta-
tions of PKHD1 gene. 

Pathways in polycystic kidney disease
Although, cellular changes and mechanisms involved 

in initial stages of cyst formation might differ between 
ADPKD and ARPKD, the pathogenetic mechanisms be-
come increasingly similar as the disease progresses and 
involve common pathways (26,27). Once the cysts are 
formed, further the abnormal cells enforce continuous 
stress on the surrounding tissues, resulting local injury, 
which is probably accompanied by synthesis of growth 
factors and cytokines, triggering additional cyst formation 
(28). Furthermore, the development and enlargement of 
cysts in ADPKD requires tubular cell proliferation, ex-
tracellular matrix abnormalities and trans-epithelial fluid 
secretion. Many signaling pathways and transcription fac-
tors control the development and growth of polycystic 
kidneys (29). 
Fluid flow-induced bending of the primary cilia causes cal-
cium influx into the cell through PC2 channels, allowing 
for release of calcium from intracellular stores. Calcium 
influx into cells modulates the activities of calcium-bind-
ing proteins (30,31) that can regulate signal transduction 
pathways leading to changes in gene expression and the 
control of cell growth and differentiation (32,33). The 
reduced calcium caused by mutation of PKD1 or PKD2 
can inhibit adenylyl cyclase 6 leading to increased cyclic 
adenosine monophosphate (cAMP). Cyclic AMP may 
have a central role in cyst growth by stimulating both 
fluid secretion and cell proliferation (34,35). It has been 
demonstrated that cAMP inhibits the proliferation of nor-
mal renal epithelial cells. In contrast, cAMP promotes the 
proliferation of cells derived from PKD patients (34). Low 
intracellular calcium causes cAMP elevation, which in 
turn stimulates B-Raf, mitogen-associated/extracellular-
regulated kinase (MEK) and extracellular signal-regulat-
ed kinase (ERK) in cystic kidney cells but not in normal 
kidney cells. In normal kidney cells, B-Raf is repressed 
by Akt (protein kinase B) in a phosphoinositide-3 kinase 
(PI3K) and calcium-dependent manner, but in cystic kid-
ney and calcium-restricted cells, Akt activity is reduced, 
allowing for activation of B-Raf by cAMP (36).
Abnormalities in a number of other intra cellular signal-
ling pathways not regulated by Ca2+ or cAMP have also 
been reported. These include mammalian target of ra-
pamycin (mTOR) (37), PI3-kinase (38,39), cystic fibrosis 
transduction regulator (CFTR) (40), Jak2-STAT1/3 (41), 
NFAT (nuclear factor of activated T cells) (42), and NF-kB 
(nuclear factor kappa B) signaling (43).
The phosphoinositide 3 kinase (PI 3-kinase) signaling 
pathway is an excellent candidate for regulation of epithe-
lial tubule formation. It was demonstrated that PI3-kinase 
plays an important role in the regulation of kidney tubule 
branching morphogenesis during development (44). PC-1 
can induce resistance to apoptosis through the phosphati-
dylinositol 3-kinase/Akt signaling pathway (38,39). PC-1 
can also favor cell migration by regulating PI3-kinase-
dependent cytoskeletal rearrangements (38). Another 
downstream signaling target that is regulated by changes 
in PI 3-kinase activity levels is the mammalian target for 
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rapamycin (mTOR). There is overwhelming evidence that 
the PC-1 controls the mTOR pathway and regulates cell 
size in a Tsc2-dependent manner, by inhibiting the ERK-
mediated phosphorylation of tuberin (45).
Cyst growth in ADPKD involves proliferation of the cyst-
lining cells and fluid secretion into the cyst lumen due 
to transepithelial secretion of chloride subsequent to an 
increase in cAMP mediated by cystic fibrosis transmem-
brane conductance regulator (CFTR) (46). This suggests 
that inhibitors of the CFTR Cl-channel might retard cyst 
growth. However, expression of CFTR protein in PKD 
cysts is highly heterogeneous and it is therefore postulated 
that additional ion channels other than CFTR might also 
attribute to electrolyte secretion that leads to cyst growth. 
Calcium-dependent chloride channels, that are activated 
through stimulation of Gq-coupled purinergic receptors 
(P2YR), are potential candidates for the mechanisms of 
the secretion (47). Further, epidermal growth factor (EGF) 
signaling play a major role in renal electrolyte homeostasis 
and cyst growth in both ADPKD and ARPKD through cel-
lular proliferation of incompletely differentiated epithelial 
cells and accumulation of fluid within the cysts (48). Since 
EGF and its related growth factors regulate the epithelial 
Na+ channel activity, it is possible that ENaC inhibition 
facilitates cyst formation in PKD (49). A coordinated in-
teraction between ENaC and CFTR was found in disease 
processes associated with dysfunctional CFTR (50,51). 
Expression of polycystin-1 activates the JAK-STAT path-
way in a process that requires polycystin-2, thus upreg-
ulating p21 (waf1) and inducing cell cycle arrest in G0/
G1. Mouse embryos lacking Pkd1 have defective STAT1 
phosphorylation and p21 (waf1) induction indicating that 
the polycystin-1/2 complex is to regulate the JAK/STAT 
pathway. Further, mutations that disrupt polycystin-1/2 

binding prevent activation of the JAK-STAT pathway (41).
Further support for PC1 signaling through G-proteins 
comes from PC1 activation of phospholipase C (PLC) me-
diated by the Gαq and the subsequent activation of the 
calcineurin/nuclear factor of activated T-cells (NFAT) 
pathway. Signaling through this pathway also connects 
the function of polycystins as regulators of intracellular 
calcium levels. Exogenous expression of the PC1 C tail 
domain results in an increase in calcium level in a reac-
tion requiring PLC β. This intracellular increase in calci-
um leads to the activation of calcineurin, a serine–threo-
nine phosphatase that dephosphorylates NFAT. Activated 
NFAT translocates to the nucleus and regulates target 
genes at composite NFAT/AP-1 elements. In addition to 
the evidence for PC1 mediating NFAT activation, NFAT 
is co-expressed with PC1 in renal tubular epithelial cells 
of developing and adult mice, proposing that NFAT and 
PC1 may work together in a pathway (42). HEK293 cells 
silenced for PKHD1 showed a higher PI3K/Akt activity, 
selective inhibition of PI3K/Akt using LY294002 or wort-
mannin in these cells increased NF-κB activity (43).

Therapeutic approaches in polycystic kidney disease
The increased understanding of the molecular mechanisms 
of PKD has provided a number of targets for therapeutic 
intervention. Molecular pathogenesis of cystogenesis and 
cyst progression are the targets of current therapy (Table 
1). Many signaling pathways and transcription factors 
control the cystogenesis and cyst progression of polycys-
tic kidneys. Owing to functional redundancy, reciprocal 
reinforcement and feedback loops these pathways should 
be considered as a part of network. Cells lacking PC1 and 
PC2 proteins show decreased levels of calcium that trigger 
adenylyl cyclase and leading to increased levels of cAMP 

Table 1. Pathway targets and therapeutic approaches used in the treatment of PKD

Treatment target Possible therapy Reference
Increased apoptosis

 CDK Roscovitine (Seliciclib, CYC202) (52,53)
Caspases Caspase inhibitor (IDN-8050) (54)

Increased proliferation
cAMP Vasopressin V2-receptor antagonists (55,56)
mTORC1 and 2 mTOR inhibitors (57,58)
Renin-angiotension system ACE inhibitors/ARBs (59-61)
Tyrosine kinases EGFR tyrosine kinase inhibitor (62,63)
Transcription factors PPAR-γ agonist (64,65)

Abnormal extra cellular matrix metabolism
Increased collagen expression PPAR-γ agonist (66)
Increased metalloproteinases activity MMP inhibitor (batimastat) (67)

Abnormal fluid secretion
cAMP Vasopressin V2-receptor antagonists (68,69)
CFTR Thiazolidinone and glycine hydrazide analogs (46,70,71)

Cilia
Calcium influx TRPC and TRPP2 channel blockers (72)
Inflammation TNF-α inhibitors (73)
Polycystin-1/polycystin-2 Inhibitors of PI3K (LY294002 and wortmannin) (74)

Abbreviations: CDK, Cyclin-dependent kinase; cAMP, cyclic adenosine monophosphate; CFTR, cystic fibrosis transduction regulator; PKD, polycystic 
kidney disease.
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(75). The central role of cAMP in the pathogenesis of PKD 
and the ability to hormonally modulate cAMP in a cell-
specific manner provide opportunities for such strate-
gies in PKD. It is very important to note that vasopressin 
V2-receptor and somatostatin SSTR2- receptor signaling 
utilize cAMP as a second messenger and their signaling 
increase and decrease cAMP respectively. Hence antago-
nists of vasopressin V2-receptor (aquaretics) and agonists 
of somatostatin SSTR2-receptor were used to achieve the 
desired inhibition of intracellular aAMP. Two important 
aquaretics OPC-31260 and tolvaptan showed reduction in 
cAMP levels, slowing cystogenesis, and renal enlargement 
and dysfunction in murine models (76,77). Further, these 
aquaretics have been approved for the treatment of ADP-
KD in Japan (78). The somatostatin analogue, octreotide, 
was found to be effective in slowing progression in liver 
and kidney cystic disease in a rat model of PKD. Inhibi-
tion of cAMP levels and delayed cyst growth in vitro by 
octreotide provided further scope for the octreotide in the 
treatment of PKDs (55). A patient with ADPKD receiv-
ing octreotide showed simultaneous reduction in hepatic, 
kidney and breast cystic volume with preservation of renal 
function (79). Treatment with octreotide long-acting re-
lease in Japanese ADPKD patients showed that Octreotide 
is safe and effective drug in controlling total kidney vol-
ume (TKV) and total liver volume (TLV) (80).
As cAMP elevation in cystic kidney cells stimulates B-Raf, 
MEK and ERK (81), their inhibitors were tested for their 
action in retarding the progression of PKD (82). Admin-
istration of an oral MEK inhibitor, PD184352, inhibited 
renal cyst enlargement in pcy mice by suppressing ERK 
(83). In contrast to this MEK1/2 inhibitor U0126 had 
no protective effect in the acute perinatal Pkd1 model of 
ADPKD (84). Further, PLX5568, a novel selective small 
molecule inhibitor of Raf kinases attenuated cyst enlarge-
ment in vitro and failed to improve kidney function in a 
rat model of ADPKD (85). Thus, the therapeutic value of 
blocking MAPK/ERK signaling pathway in PKD is still 
controversial.
Inhibition of EGF signaling by a EGFR tyrosine kinase 
inhibitor (EKI-785) slowed the progression of PKD and 
reduced mortality in rat model (63). Further, EKI-785 
and EKB-569 attenuated the development of PKD in 
Han:SPRD rats (86). In contrast to this over expression 
and mislocalization of EGFR are not detected at the api-
cal membrane of cystic cells in PCK rats (87), question 
the potential therapeutic benefits of EGFR tyrosine kinase 
inhibitors in treating the PKD.
Previous studies demonstrated an increased mTOR sig-
naling (37) in murine models and human ADPKD, while 
mTOR inhibitors reverse ADPKD progression (88). Fur-
ther, sirolimus (rapamycin) prevented aberrant activation 
of mTOR in epithelial cells lining the cysts and decreased 
polycystic liver volume, in sirolimus-treated transplant 
recipient ADPKD patients (89). While in one study with 
everolimus, cyst volume was blunted, renal functional loss 

was unchanged at the expense of greater side effects (90). 
In general previously conducted clinical trials could not 
demonstrate any clinically relevant effect of mTOR inhibi-
tion on cyst growth or renal function. However, a recently 
published randomized controlled pilot study demon-
strated a significant increase in 125I-iothalamate (iGFR) in 
ADPKD patients receiving low-dose rapamycin compared 
with those receiving standard care, without a significant 
effect on total kidney volume after 12 months (91). As 
it is not possible to find a treatment plan that satisfy all 
desired dose levels simultaneously, some compromise be-
tween under dosing the target organ and overdosing the 
surrounding organs has to be found. Treating ADPKD by 
combining low dose mTOR inhibitors with non-mTOR 
based treatments is an effective strategy that would maxi-
mize efficiency and prevent adverse side effects (92). A 
study in pkd1 mice demonstrated dose dependent effects 
serolimus on mTOR signalling and showed that the con-
ventional doses in man (blood concentrations ~3 µg l-1) 
are ineffective in slowing cystogenesis (93). Capitalizing 
on the observation that PCKD cells express high levels 
of folate receptors, folate-conjugated rapamycin has been 
used as a novel approach to improve direct drug delivery 
to renal epithelial cells for effectively limiting cyst growth 
and reducing side effects (94).
Increased renal vascular resistance exhibited by hyper-
tensive patients is the first demonstration of the involve-
ment of RAAS in modulation of hypertension in ADPKD 
(95). The RAAS contributes to hypertension in ADPKD, 
but may also independently accelerate renal cyst growth. 
Presence of RAAS components (AGT, ACE, ANG II and 
angiotensin II type I receptor) within cysts and tubules 
and activation of RAAS during cyst expansion in ADPKD 
has also been demonstrated (96). Angiotensin II receptor 
blockers (ARBs) increased renal blood flow in ADPKD, 
while having an acceptable side effect profile (60,97,98). 
Several studies in animal models of PKD have shown that 
ACE inhibitors decreased cyst formation and improved 
renal function (99,100). The studies on ACE inhibitors 
in ADPKD are inconclusive because they have used small 
numbers of patients for shorter periods of time (101-105).

Conclusion
Till date, the treatment options for PKD have been limited 
to kidney replacement therapy by dialysis or transplanta-
tion. Understanding of molecular mechanisms underlying 
ADPKD pathogenesis led to the development of pathway-
based therapies for the polycystic kidney. At each step in 
the pathway, a new treatment could be developed, but 
complete inhibition of PKD progression may require a 
combination of the various treatments.
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