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Abstract: Metastasis formation accounts for the majority of tumor-associated deaths and consists of
different steps, each of them being characterized by a distinctive adaptive phenotype of the cancer
cells. Metabolic reprogramming represents one of the main adaptive phenotypes exploited by cancer
cells during all the main steps of tumor and metastatic progression. In particular, the metabolism
of cancer cells evolves profoundly through all the main phases of metastasis formation, namely the
metastatic dissemination, the metastatic colonization of distant organs, the metastatic dormancy,
and ultimately the outgrowth into macroscopic lesions. However, the metabolic reprogramming of
metastasizing cancer cells has only recently become the subject of intense study. From a clinical point
of view, the latter steps of the metastatic process are very important, because patients often undergo
surgical removal of the primary tumor when cancer cells have already left the primary tumor site,
even though distant metastases are not clinically detectable yet. In this scenario, to precisely elucidate
if and how metabolic reprogramming drives acquisition of cancer-specific adaptive phenotypes might
pave the way to new therapeutic strategies by combining chemotherapy with metabolic drugs for
better cancer eradication. In this review we discuss the latest evidence that claim the importance of
metabolic adaptation for cancer progression.
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1. Introduction

The capability of cells to alter their metabolic phenotype according to the surrounding conditions
has historically been referred to as metabolic reprogramming [1,2]. Metabolic reprogramming is a key
trait of cellular physiology, being involved in several processes such as development [3,4],
regeneration [5,6], inflammation [7,8], and cell survival in a stressful microenvironment [9,10].
Cancer cells are constantly exposed to external stress sources, with oxygen and nutrient shortage
being a major barrier to tumor survival [11,12]. Therefore, the capability to cope with a harsh
microenvironment and thrive represents a major achievement for cancer progression. In this scenario,
metabolic reprogramming becomes a relevant cancer hallmark, since it confers a significant advantage
over the surrounding environment, allowing cancer cells to adapt and progress [13,14]. Indeed,
the plastic and continuous evolution of the metabolic network has been historically related both
to cancer cell survival and proliferation [15], metastatic progression [16,17], and even resistance to
anti-cancer treatments [18].

Importantly, the understanding of metabolic plasticity in tumor physiology is still puzzling,
being dictated by oncogenic signaling, tissue of origin, and even tumor grade [19].

In this scenario, understanding tumor-specific metabolic rewiring and consequent tumor-specific
metabolic addiction might provide new actionable targets of clinical relevance [20–22].
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2. The Genetic Roots of Tumor Metabolism Reprogramming

The most striking changes in tumor cellular bioenergetics include the elevation of aerobic glycolysis
(also termed the Warburg effect), the increase in glutaminolytic flux, the upregulation of amino acids
and lipid metabolism, the enhancement of mitochondrial biogenesis, and the induction of a pentose
phosphate pathway [23,24] (Figure 1).
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Figure 1. Metabolic reprogramming in cancer progression. (A) Driver mutations of cancer leads to 
metabolic reprogramming in primary tumors. (B) epithelial to mesenchymal transition (EMT) 
progression leads to a further shift towards glycolysis, fatty acid oxidation, and glutamine 
metabolism. (C) circulating tumor cells (CTCs) activate a prominent antioxidant response while, at 
the same time, maintaining the glycolytic flux. (D) MET revert the metabolic reprogramming of EMT, 
with mitochondrial respiration and lipogenesis upregulation. (E) Dormant cells in metastases mainly 
rely on mitochondrial respiration, autophagy, and fatty acid oxidation. (F) The progression towards 
overt metastases requires a dense interplay with the surrounding niche, with a simultaneous 
addiction to glycolysis, mitochondrial respiration, and fatty acid oxidation. 

3. Metabolic Intra-Tumor Heterogeneity 

Tumor limitless proliferative potential arises in a genetically mutated background, which allows 
cancer cells to overcome proliferation barriers in response to intrinsic and extrinsic perturbation 
[95,96]. However, although being generated by a single cell, tumors become complex ecosystems 
composed of extremely different cells. This phenomenon - generally referred to as intra-tumor 
heterogeneity - has been extensively reviewed and involves both a genetic and epigenetic counterpart 
[97]. Indeed, overt tumors are characterized by the presence of cells that differ both under the 
mutational profile and under the transcriptional profile [98]. 

Figure 1. Metabolic reprogramming in cancer progression. (A) Driver mutations of cancer leads to
metabolic reprogramming in primary tumors. (B) epithelial to mesenchymal transition (EMT) progression
leads to a further shift towards glycolysis, fatty acid oxidation, and glutamine metabolism. (C) circulating
tumor cells (CTCs) activate a prominent antioxidant response while, at the same time, maintaining the
glycolytic flux. (D) MET revert the metabolic reprogramming of EMT, with mitochondrial respiration
and lipogenesis upregulation. (E) Dormant cells in metastases mainly rely on mitochondrial respiration,
autophagy, and fatty acid oxidation. (F) The progression towards overt metastases requires a dense
interplay with the surrounding niche, with a simultaneous addiction to glycolysis, mitochondrial
respiration, and fatty acid oxidation.

These changes are fundamental to sustain tumor proliferation and progression in a genetic
context where the major regulators of cell proliferation and physiology are generally mutated [13,14].
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For example, glycolytic fueling is associated with activated oncogenes (e.g., RAS, MYC), and mutant
tumor suppressors (e.g., TP53) [25–27], whose alterations are pivotal to sustain cell proliferation and
attenuate apoptosis.

TP53 mutation is one of the most frequent alterations in human tumors [28], and its role in metabolic
reprogramming has been elucidated in several cancers, including hepatocellular carcinoma [29],
pancreatic [30], ovarian [31], head and neck [32], and breast cancer [33,34].

TP53 loss can promote glycolysis as a consequence of its role as direct and indirect transcriptional
repressor of glucose transporters GLUT1, GLUT4 and GLUT3 [35,36]. In addition, TP53 regulates
cell metabolism through the control of TP53-inducible Glycolysis and Apoptosis Regulator (TIGAR)
expression: TIGAR is induced by TP53 and displays fructose bisphosphatase enzymatic activity.
In particular, TIGAR reduces the amount of intracellular fructose-2,6-bisphosphate, a positive allosteric
inductor of glycolysis: therefore, TIGAR mediates a TP53-dependent glycolysis inhibition [37]. In a
tumoral TP53-mutated context, the TIGAR-driven brake to glycolysis is removed and cancer cells
can upregulate the glycolytic pathway even in the presence of oxygen [38]. TP53 also regulates
glucose metabolism through the direct inhibition of glucose-6-phosphate dehydrogenase (G6PD),
the first and rate-limiting enzyme in the pentose phosphate pathway [39]. Moreover, the relief
of TP53-mediated PTEN induction fosters PI3K-AKT signaling, thus resulting in upregulated
glycolysis [40]. Besides glucose metabolism, TP53 was shown to affect glutamine metabolism.
In particular, glutaminase 2, which is highly expressed in liver cells, represents a downstream target
of TP53. Glutaminase 2 mainly acts by increasing production of glutamate and α ketoglutarate,
which in turn leads to enhanced mitochondrial respiration [41]. In hepatocellular carcinoma patients,
TP53 mutation is associated with decreased levels of glutaminase 2: functionally, glutaminase 2
suppression is linked to enhanced anchorage-independent survival and increased tumorigenesis in
hepatocellular carcinoma [42]. Finally, mutated TP53 promotes fatty acids synthesis through the
cooperation with Sterol regulatory elements binding proteins (SREBPs), leading to the upregulation of
the mevalonate pathway [43,44].

MYC represents another gene frequently overexpressed in many tumors [45], and its role in
promoting metabolic reprogramming has been reported in several cancer types, including colorectal [46],
pancreatic [47], breast [48], prostate cancer [49], and glioma [50]. In particular, in breast cancer MYC
induces the expression of the ADHFE1 oncogene, which upregulates glycolysis, Krebs cycle, and amino
acids synthesis [51,52]. Furthermore, MYC overexpression has been shown to promote thioredoxin
interacting protein (TXNIP) suppression in breast and prostate cancer, thus leading to increased
glucose uptake to fuel glycolytic metabolism [48,53]. MYC effects on glycolytic metabolism have been
demonstrated also in the setting of glioma, where glycolytic intermediate are used to fuel anabolic purine
metabolism [54]. Moreover, two independent works on pancreatic cancer have shown the role of MYC
in promoting both glycolysis upregulation [55] and protein anabolism [46]. Lipid-wise, the work from
Loda and colleagues showed that MYC-overexpressing prostate cancer patients display higher activation
of fatty acids turnover with respect to control patients [49], thus suggesting a role for MYC in this branch
of cell metabolism. Furthermore, in glioma, the work by Rich and colleagues showed that MYC can
upregulate the anabolism of mevalonate, a crucial lipid for cholesterol biosynthesis [50]. Furthermore,
MYC was reported to exert a profound effect on glutamine metabolism [56]. Indeed, reverse genetics
experiments on glioma cell lines revealed that MYC directly regulate the transcription of high affinity
glutamine importers, which are fundamental for glioma cell survival [25]. In neuroblastoma, MYC was
shown to upregulate the levels of glutaminase 2, which in turn sustains viability and proliferation
of cancer cells. In this scenario, glutaminase 2 depletion strongly impairs the metabolic pathways
downstream to glutaminolysis, namely glutamine-dependent anaplerotic reactions and glycolysis [57].
Similarly, studies on lymphoma and prostate cancer demonstrated that MYC promotes the expression
of mitochondrial glutaminase through the direct repression of miR-23a and miR-23b, that, in turn,
inhibit mitochondrial glutaminase expression. The expression of mitochondrial glutaminase is
fundamental for both lymphoma and prostate cancer cell survival and proliferation [58]. Interestingly,
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MYC was also reported to have a role in promoting glutamine synthesis in a context of glutamine
deprivation: in vitro and in vivo experiments on breast cancer cell lines revealed that MYC induces the
expression of glutamine synthetase, resulting in increased glutamine synthesis, glutamine-mediated
leucine uptake, survival in glutamine-deprived medium, and tumorigenesis [59]. Finally, MYC was
also shown to directly regulate proline metabolism in lymphoma and prostate cancer cells through the
suppression of proline oxidase and the induction of glutaminase-dependent proline synthesis [60].
Interestingly, MYC-driven proline biosynthesis requires NAD(P)H as cofactor and promotes NAD(P)
accumulation: as a function of this recycling, proline biosynthesis interlocks with pathways that
generate NAD(P)H, namely glycolysis and pentose phosphate pathway, and ultimately fosters tumor
growth [61].

It is worth noting that MYC effects on tumor metabolism are strictly dependent on the cancer’s
tissue of origin. Indeed, while MYC-induced murine liver carcinoma displays a significant increase
of glucose and glutamine catabolism, MYC-induced lung adenocarcinoma shifts towards glutamine
accumulation [19].

Another frequently mutated gene in human cancers is KRAS, whose activation leads to deregulated
proliferation [62]. This gene has been reported as a major regulator of metabolism reprogramming
in several cancers, namely pancreatic [63], colorectal [64], and lung [65]. The main way through
which KRAS affects metabolism is via the induction of glycolysis [66] and glutamine metabolism [67],
to provide anabolic intermediates to fuel nucleic acids biosynthesis and allow tumor progression.
Indeed, similarly to TP53, mutated KRAS leads to increased expression of the GLUT1, as well as
glucose uptake, glycolysis, and lactate production [27]. In addition, in-vitro and in-vivo reverse
genetics experiments in pancreatic ductal adenocarinoma (PDAC) revealed that cancer cells rely on
a non-canonical pathway of glutamine metabolism, which is strictly regulated by KRAS. Instead of
shunting glutamine-derived glutamate into α ketoglutarate in the mitochondria to fuel the tricarboxylic
acid cycle, PDAC conveys glutamine-derived aspartate into cytoplasm where it is converted into
oxaloacetate by aspartate transaminase. Oxaloacetate is then metabolized to pyruvate, so to provide
anabolic intermediates and to increase the NADPH/NADP ratio, which maintains the cellular redox
state [67]. Furthermore, KRAS was shown to upregulate the enzyme asparagine synthetase in colorectal
cancer via the PI3K-AKT-mTOR pathway, which allows cells to survive and proliferate upon glutamine
depletion. Interestingly, KRAS-mutated colorectal cancer patients display significantly higher levels of
asparagine synthetase enzyme with respect to wild-type KRAS patients [68].

Therefore, metabolic reprogramming generally plunges its own roots into a genetically mutated
background, where the major drivers of tumorigenesis induce profound changes in metabolic profile.

Eventually, although non mutated in the vast majority of cancer patients [69,70], the Hypoxia
Inducible Factor-1α (HIF-1α) represents a critical gene in several solid tumors [71,72]. The main way
through which HIF-1α activity is upregulated in cancer is via the post-translational stabilization when
the oxygen partial pressure drops below 10 mm Hg [73]. Once stabilized, HIF-1α translocates into the
nucleus where it binds to its heterodimeric partner Aryl Hydrocarbon Receptor Nuclear Translocator
and then regulates the expression of more than 100 genes [72]. The main effects of HIF-1α on cell
physiology involve cell cycle arrest, induction of angiogenesis, and metabolic reprogramming [72,73],
and these change have been associated to poor prognosis in several cancer types [74–76]. As far
as metabolic reprogramming is concerned, HIF-1α was historically associated with a profound
upregulation of the glycolytic pathways. First of all, HIF-1α was reported to induce the expression
of glucose membrane transporters GLUT1 and GLUT3 [77,78]. Moreover, HIF-1α promotes the
overexpression of several enzymes involved in glycolytic steps, namely aldolase A, phosphoglycerate
kinase 1, pyruvate kinase M, hexokinase 2, and enolase 1 [79–82]. In addition, the HIF-1α-mediated
glycolytic switch is accompanied by a significant downregulation of mitochondrial respiration [73].
Indeed, HIF-1α was shown to induce the expression of pyruvate dehydrogenase kinase, which in turn
inactivates the pyruvate dehydrogenase complex, thus inhibiting the initiation of Krebs cycle [83].
Furthermore, HIF-1α affects mitochondria physiology through the upregulation of the protein BNIP3,
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whose activity leads to an upregualtion of mitophagic pathway [84]. Eventually, HIF-1α is involved in
the direct upregulation of lactate transporters [85] and lactate dehydrogenase A, which converts the
glycolytic pyruvate into lactate and restores the intracellular NAD [86].

In parallel, HIF-1α was reported to affect fatty acid metabolism and, in particular, to promote
lipogenesis at the expense of fatty acid oxidation. Indeed, besides inhibiting pyruvate dehydrogenase,
HIF-1α counters fatty acid oxidation, another major source of acetyl-CoA, through the transcriptional
repression of medium- and long-chain acyl-CoA dehydrogenases [87]. On the other hand, HIF-1α was
shown to upregulate the expression of SREBP-1, which in turn promotes the expression of fatty acid
synthase, thus indirectly promoting a lipogenic shift in hypoxic cells [88]. Besides lipid synthesis,
HIF1-α was also reported to increase the lipid levels of cancer cells through the direct upregulation
of Fatty Acid Binding Protein 3 (FABP3) and FABP7, both involved in lipid uptake. In addition,
uptaken lipids are generally conveyed into lipid droplets during hypoxia and, coherently, HIF-1α was
shown to upregulate adipophilin, an essential structural component of lipid droplets [89]. Interestingly,
the effects of HIF1-α on lipid metabolism interlock with the effects on amino acid metabolism. Indeed,
HIF-1α was shown to induce the expression of SIAH2, which in turn promotes the proteolysis of
OGDH2, a critical subunit of the enzyme complex α ketoglutarate dehydrogenase [90]. In this way,
α ketoglutarate cannot fuel the Krebs cycle and is shunted towards lipid biosynthesis through the
activity of isocitrate dehydrogenase 1: interestingly, the α ketoglutarate which is used to fuel lipogenesis
is mostly derived from glutamine catabolism in hypoxic conditions [91]. Furthermore, hypoxia was
reported to upregulate glutamine and leucine uptake in neuroblastoma cell lines, thus rising the
intracellular amino acid availability [92]. Similarly, a recent work on glioblastoma (GBM) revealed
that HIF-1α fosters branched-chain amino acid (BCAA) metabolism by upregulating the expression
of both BCAA transporter LAT1 and BCAA metabolic enzyme BCAT1 [93]. Eventually, studies on
hepatocellular and renal carcinoma cells revealed that HIF-1α induces glutamate release by increasing
the expression of glutamate transporters SLC1A1 and SLC1A3. At the same time, HIF-1α also
upregulates the expression of glutamate receptors, thus fostering a glutamate signal in cancer cells and
ultimately leading to tumor outgrowth [94].

3. Metabolic Intra-Tumor Heterogeneity

Tumor limitless proliferative potential arises in a genetically mutated background, which allows
cancer cells to overcome proliferation barriers in response to intrinsic and extrinsic perturbation [95,96].
However, although being generated by a single cell, tumors become complex ecosystems composed of
extremely different cells. This phenomenon—generally referred to as intra-tumor heterogeneity—has
been extensively reviewed and involves both a genetic and epigenetic counterpart [97]. Indeed,
overt tumors are characterized by the presence of cells that differ both under the mutational profile
and under the transcriptional profile [98].

Intriguingly, intra-tumor heterogeneity is not limited to these two aspects, being also tightly
bound to the metabolic profile of cancer cells (Figure 2). Metabolic heterogeneity is crucial for several
aspects of human physiology since it allows closely related cells to take on distinct tasks [99–101].

Similarly, multiple cancers have been shown to be metabolically heterogeneous, with a distinct part
of tumoral tissue activating distinct metabolic pathways. In this way, cancer cells dynamically adapt
to and cope with the surrounding microenvironment where nutrient and oxygen shortage imposes
the activation of and the addiction to specific metabolic pathways [102]. Then, tumor metabolism is
spatially dictated by the interaction with the surrounding microenvironment, where cancer associated
fibroblasts, blood vessels, and immune cells are heterogeneously distributed [103,104].

Single-cell gene expression profiling of head and neck squamous cell carcinoma (HNSCC)
and melanoma revealed that cells from the same tumor may significantly differ in the expression
of genes involved both in oxidative phosphorylation (OXPHOS) and glycolysis [105]. Moreover,
HNSCC’s metabolic heterogeneity can be fostered by stress conditions: in particular, chemotherapy
administration was shown to increase spatial metabolic heterogeneity in HNSCC, with the segregation
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of different tumoral populations characterized by differential NADPH stability [106]. In addition,
the in-vivo application of oxygen sensitive dyes in HNSCC tumors revealed that glycolytic fluxes
are higher in hypoxic regions with respect to normoxic ones [107]. Similarly, the metabolic analysis
of one renal cell carcinoma patient revealed a marked regional distribution of pyruvate and lactate,
with lactate increasing and pyruvate decreasing in the presence of hypoxic regions [108]. Moreover,
a work on human breast cancer showed that the inner part of the tumor is more oxidized and less
capable to uptake glucose than the periphery, despite the presence of islets of cells in the necrotic
core that exhibit high glucose uptake [109]. Intriguingly, cells derived from a single breast cancer
patient biopsy were shown to display a significantly higher heterogeneity in oxygen consumption
rate (and, therefore, in metabolism [110]) when compared to normal cells from the same patient [111].
Spatial metabolic heterogeneity was also reported in lung cancer. First of all, the work by DeBerardinis
and colleagues proved that cancer cells within the same lesion can fine-tune their metabolism according
to the external nutrient supply. In particular, cells that experience low perfusion display higher glucose
addiction to fuel their metabolic machinery, whereas highly perfused cells can switch onto different
carbon sources, including amino acids, lipids, ketones, and lactate [112].
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In addition, metabolic analysis of renal cell carcinomas indeed revealed the presence of two
distinct metabolic clusters within a single tumor, one characterized by glycolytic and pentose phosphate
intermediates and another characterized by cystine and 2-oxobutyric acid and depleted for glycolytic
intermediates [113]. In the same way, spatial analysis of esophageal cancer showed that metabolite
profile can be extremely variable within the cancerous tissue: in particular, metabolites such as amino
acids, fatty acids, and nucleosides were found to be unevenly distributed in the the tumoral milieu [114].
Heterogenous metabolite distribution within single tumors was also confirmed in colorectal [115],
gastric [116], prostate [117], and papillary thyroid cancers [118].

Metabolic heterogeneity has been shown as a peculiar trait also of hematologic malignancies,
as reported by two studies on lymphoma by Martinez-Outschoorn and colleagues. Here, the metabolism
of tumor cells has been shown to differ from the stromal one (i.e., tumor associated macrophages,
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fibroblasts, neutrophils, and many others). In particular, lymphoma cells are characterized by
oxidative metabolism, while stromal cells display a tumor-induced glycolytic metabolism. In addition,
stromal cells actively export lactate via MCT-4 transporter and the molecule is rapidly uptaken by
tumoral cells via MCT-1: in this way, lactate fuels the OXPHOS of tumoral cells [119,120].

In addition to spatial metabolic heterogeneity, the work by Lisanti and colleagues showed a
functional metabolic heterogeneity, with breast cancer stem cells upregulating mitochondrial proteins,
glycolysis, and protein anabolism enzymes with respect to the rest of the tumor [121]. Functional
metabolic heterogeneity of cancer stem cells has also been reported in brain tumors. In particular,
GBM slow-cycling cells were proven to display higher activation of mitochondrial OXPHOS and lipid
metabolism with respect to fast cycling cells [122]. In addition, two independent works have shown
that GBM stem cells (GSCs) may exist in two different states: when subjected to hypoxia, GSCs activate
glycolysis, whereas they turn to OXPHOS when oxygen becomes available [123,124].

Cancer cells may display extreme metabolic dissimilarity even in a narrow space interval.
Indeed, a study conducted on the invasive front of lung cancer showed that the leading cells of the
migratory front specifically rely on mitochondrial respiration, whereas the trailing follower cells
activate glycolysis [125]. This suggests an extremely precise fine-tuning of metabolic properties of lung
cancer cells during stromal invasion.

Moreover, progression from early to advanced lung cancer is usually associated with a change in the
genetic profile, with heterozygous KRAS mutation becoming homozygous. In this scenario, two distinct
populations coexist and have been shown to differ under the metabolic profile, with homozygous cells
displaying increased glycolysis, glucose uptake, and lactate secretion with respect to heterozygous
ones [126].

This dynamic evolution of metabolic profile is also shared by melanoma, where metastasis
spreading has been linked to metabolic features that distinguish cellular populations. Indeed,
the progression towards an invasive phenotype in melanoma has been linked to the downregulation
of the microphthalmia-associated transcription factor (MITF) oncogene, which in turn leads to
reduced lipogenesis [127]. Therefore, invasive non-lipogenic melanoma cells coexist with lipogenic
proliferative cells within the same lesion. In addition, melanoma metastasis has been also linked to
lactate metabolism, with the lactate transporter MCT1 being upregulated in metastasizing melanoma
cells [128]. Intriguingly, lactate metabolism was also identified as a key player in oral squamous cell
carcinoma, with lactate uptaking cells being more proliferative than the surrounding lactate exporting
cells [129].

Finally, a recent work on PDAC demonstrated how epigenetic mechanism accounts for the
metabolic plasticity and heterogeneity of tumoral cells. In particular, the authors show that a
spontaneous dysregulation of the SWI/SNF remodeling complex causes a de-differentiation of a
subpopulation of pancreatic tumor cells into a more aggressive and mesenchymal one. The resulting
mesenchymal tumoral cells are characterized by the depletion of the chromatin regulator SMARCB1
and by the consequent activation of MYC, eventually leading to increased protein anabolism and
biomass synthesis [47].

4. Metabolic Reprogramming in Epithelial to Mesenchymal Transition

Metabolic reprogramming represents an efficient response of tumoral cells to a hostile
microenvironment. However, the persistence of harsh conditions has been shown to be detrimental
for tumor progression, leading to proliferation arrest and, eventually, cell death. In particular,
a tumor microenvironment is characterized by deregulated cellular proliferation, which in turn
leads to nutrient deprivation and oxygen consumption [130]. Glucose shortage has been shown
to induce cell cycle arrest [131] and apoptotic cell death [132,133] in in-vitro cancer models. In the
same way, glutamine deficiency exerts the same effect on tumoral cells: in-vitro studies conducted
on neuroblastoma and breast cancer cell lines have shown that glutamine deprivation leads to
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apoptosis [134] and proliferation arrest [135], respectively. On top of that, severe hypoxia conditions
have been shown to promote cancer cell death in in-vitro cancer cell lines [136].

In addition to the effects on tumoral cell death and proliferation, the harsh microenvironment plays
a role in promoting the epithelial to mesenchymal transition (EMT). In particular, glucose deficiency
promotes invasive traits [137] and EMT induction [138]. On the other hand, glutamine shortage
increases the expression of the asparagine synthetase enzyme [139], which in turn promotes EMT and
metastasis [140]. Ultimately, in-vitro hypoxic conditioning boosts EMT through the unfolded protein
response (UPR)-dependent release of Transforming Growth Factor β (TGFβ) [141].

Therefore, tumor cells experience a stressful microenvironment that induces cell cycle alteration
and, concomitantly, fosters invasive traits. In this scenario, EMT represents a way through which cancer
cells may avoid the detrimental effects of stress: several works have pointed out that the acquirement
of stemness traits in EMT counters the induction of cell death upon harsh conditioning [142–144].

4.1. Glucose Metabolism and EMT

Interestingly, the EMT process involves a profound rearrangement of cellular metabolism across
different tumor types (Figure 1A), with a complex network of pathways being perturbed by the
major regulators of this process, such as Twist1, Snai1, and Zeb1 [17,145]. One of the most reported
events in EMT is the increase of glucose uptake and of glycolytic pathway [146], which derives from
the activity of several EMT regulators. In particular, pancreatic ductal carcinoma cells exposed to
the EMT-inducers Tumor Necrosis Factor α (TNFα) and TGFβ upregulate the expression of glucose
transporters GLUT1 and GLUT 3 and the expression of several glycolytic enzymes (i.e., HK2, PKM2,
LDH-A, and LDH-B) [147]. In parallel, experiments on breast cancer cell lines showed that Twist1
overexpression induces similar effects, thus increasing glucose uptake and glycolytic fueling [148].
In-vitro experiments in breast [149] and lung cancer cell lines [150] have also shown that glucose
transporters represent Zeb1 transcriptional targets. On top of that, by a reverse genetics approach,
it has been shown that the EMT inducer Fyn-related kinase (FRK) promotes glucose uptake and
glycolytic metabolism in lung cancer models [151]. Coherently, the overexpression of the EMT effector
Snai1 promotes glycolysis through the inhibition of the fructose-1,6-biphosphatase enzyme [152] and
through the upregulation of glucose transporters [153].

These works suggest that EMT requires increased glucose supply to guarantee cell survival.
Interestingly, the work of Kim and colleagues has shown a completely different situation, with Snai1
repressing the rate-limiting glycolytic enzyme phosphofructokinase-1 to shunt glucose towards the
pentose phosphate pathway [154].

Besides glycolysis upregulation, increased lactate production has been reported as a common
marker of EMT metabolic reprogramming [17]. Indeed, works on pancreatic [147,153], breast [148–152],
and lung cancers [151], as well as hepatocellular carcinoma [155] have indeed shown an increase in
lactate production in highly glycolytic cancer cells experiencing EMT.

As a consequence of glycolytic promotion, a reduced activity of mitochondrial function in
EMT-experiencing cancer cells [145] has been reported. Indeed, the analysis of a panel of twenty
different solid tumors revealed a significant downregulation of Krebs cycle and OXPHOS genes in
the presence of EMT signature expression [156]. In addition to this, an in-vitro study on lung cancer
cell lines showed that TGFβ-mediated EMT increases mitochondrial reactive oxygen species (ROS)
production and induces mitochondrial membrane potential drop [157]. Moreover, in-vitro works with
breast cancer models showed that basal cell lines display significantly reduced mitochondrial function
when compared with luminal cell lines [158]. On the other hand, in-vivo models of breast cancer have
provided significant evidence that downregulation of the mitochondrial protein TMEM126A leads
to increased invasiveness and metastasis [159]. Therefore, these works corroborate the fact that an
efficient EMT should rely on glycolytic rather than on oxidative metabolism.
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4.2. Lipid Metabolism and EMT

In addition to glucose metabolism, EMT has been shown to alter the lipid profile of cancer
cells [146]. In particular, during EMT the metabolism of lipids has been reported to shift towards
lipogenesis, to the detriment of fatty acid oxidation [145]. Indeed, Liang and colleagues showed
in a cohort of salivary adenoid cystic carcinoma patients that high levels of PRRX1, a potent EMT
inducer, positively correlate with free fatty acids accumulation [160]. Furthermore, increased levels of
sphingosine 1-phosphate positively correlate with enhanced EMT in colorectal [161,162] and bladder
cancer [163]. To further corroborate a role for lipogenesis in fostering an efficient EMT, a work by Xing
and colleagues showed that lipid catabolism severely impairs EMT in clear cell renal carcinoma [164].

A study conducted on colorectal cancer provided a causal role for the lipogenic pathway
operated by the acyl-CoA synthetase/Stearoyl-CoA desaturase network in promoting EMT switch
and invasiveness [165]. On top of that, a work on lung cancer cell lines demonstrated a pro-EMT role
for the ATP citrate lyase enzyme, which converts citrate to acteyl-CoA, thus generating the building
blocks for lipogenesis [166]. Coherently, augmented fatty acid synthase (FASN) activity and cholesterol
biosynthesis enhance the expression of EMT positive regulators and induce metastases in ovarian
and breast cancer models [167,168]. Then, another study on lung cancer cell lines showed that FASN
can promote TGFβ signaling, thus reinforcing the EMT process [169]. Conversely, other works have
pointed out that FASN activity has to be reduced in order to efficiently perform EMT in breast [170]
and lung cancer cell lines [171]: a possible explanation may be that FASN activity is required to trigger
EMT, while it has to be inhibited in order to complete the transition [145].

4.3. Amino Acid Metabolism and EMT

Together with carbohydrates and lipid metabolism, amino acid and, in particular,
glutamine metabolism plays a key role in EMT [17]. Indeed, high intracellular glutamine levels were
shown to be necessary to promote EMT in several in-vitro models [172]. In particular, efficient glutamine
uptake via SLC1A5 transporter is fundamental for prostate cancer proliferation and metastasis via
the upregulation of E2F-dependent cell cycle genes [173]. Glutamine can promote EMT through the
enzyme glutaminase, that converts glutamine to glutamate. Indeed, works on lung [174] and ovarian
cancer [175] showed that invasive phenotype strongly relies on the expression of glutaminase. In this
regard, a study by Kang and colleagues showed that EMT phenotype in breast, ovarian, and colorectal
cancers depends both on glutamine levels and glutaminase activity [176]. In parallel, a recent study on
colorectal cancer patients demonstrated that the enzyme glutamate dehydrogenase is fundamental to
mediate metastasis via EMT [177]. Conversely, a work by Mani and colleagues suggested that breast
cancer needs to become glutamine independent to efficiently perform EMT [178]. Also in this case,
a possible explanation can be a different role for glutamine in EMT initiation and completion.

Therefore, cancer cells should accomplish stringent metabolic requirements to successfully
perform the EMT. In particular, the glycolytic switch that is usually associated with tumor development
is further exacerbated in EMT, with a concomitant reduction in mitochondrial activity. Similarly,
tumors progressing through EMT foster the glutamine dependency that already characterizes the
cancer growth. Ultimately, lipid metabolism is funneled towards lipogenesis, with fatty acid levels
being essential for EMT to progress.

5. The Metabolic Reprogramming in Circulating Tumor Cells and Mesenchymal to
Epithelial Transition

5.1. Metabolic Requirements of Circulating Tumor Cells

Metastasis spreading is a multi-step process which also requires tumoral cells to survive in
the bloodstream and then colonize specific organ niches. Previous works described the metabolic
requirements that circulating tumor cells (CTCs) fulfill in order to survive in the circulation (Figure 1C).
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First of all, matrix detachment and nutrient paucity induce an increased oxidative stress in
tumor cells [179,180], and, therefore, CTCs need to activate an antioxidant response to survive.
In line with this, two in vitro studies from DeBerardinis and colleagues showed that antioxidant
response improved the survival in melanoma and lung cancer models upon matrix detachment.
Melanoma cells were proven to reprogram their metabolism and activate the NADPH-generating
folate pathway: NADPH is shunted to regenerate glutathione supply, which is fundamental to
withstand oxidative stress [181]. Similarly, lung cancer cells were shown to repress the oxidative
metabolism of glucose and glutamine and to promote the reductive formation of citrate from glutamine,
which increases the production of NAPDH and the concomitant buffering of ROS [182]. Also, an in-vitro
work conducted with colon cancer cells investigated the differences in the gene expression profile
between the metastasis-competent CTC-MCC-41 cell line and the primary-tumor derived HT-29
cell line [183]. The two models were revealed to be extremely different under the metabolic profile,
with the CTC-spreading cell line upregulating fatty acid oxidation and enzymes traditionally involved
in ROS scavenging (i.e., monoamine oxydase (MAO) [184], paraoxonase [185], and glutathione
S-transferase [186]).

In addition to antioxidant response, several works showed that CTC largely rely on glucose
metabolism. In particular, the glycolytic enzyme PGK1 and the pentose phosphate pathway enzyme
G6PD were shown to be a reliable marker to isolate aggressive CTC subpopulations in a cohort of
breast cancer patients [187]. Coherently, the upregulation of the same gene represents an efficient
strategy to identify metastatic prostate cancer patients [188]. The high glycolytic metabolism has also
been proven to result into a high lactate production, which was indeed used in devices aimed at CTC
isolation [189,190]. Ultimately, a work from Aceto and colleagues conducted in CTCs derived from
breast cancer patients pointed out a significant hyperactivation of the ATP metabolic process and
amino acid metabolism [191].

5.2. Metabolic Requirements of the Mesenchymal to Epithelial Transition

Upon dissemination into the bloodstream, cancer cells revert the EMT to colonize organs and
spread metastases, a process known as mesenchymal to epithelial transition (MET) [192]. Similar to
EMT, MET requires a profound metabolic reprogramming (Figure 1D).

First of all, one of the major metabolic changes of EMT, increased glycolysis addiction, has
been shown to decrease in the MET process. In particular, works on breast [193], ovarian [194],
and lung cancer [195] showed that glycolysis inhibition is markedly associated with EMT repression,
thus resulting in MET promotion. A logic counterpart to glycolysis inhibition is represented by
oxidative metabolism, which is indeed strongly upregulated in MET accomplishment. The work
by Kralli and colleagues showed that in vitro upregulation of the Estrogen-Related Receptor γ in
breast cancer cells results in an increased oxidative capacity and MET promotion, ultimately affecting
tumor fitness [196]. Similarly, experiments on rat adenocarcinoma showed that a hyperoxic state
induces glycolysis repression and oxidative metabolism promotion, which in turn are associated with
MET [197]. These works suggest that the reversion of EMT glycolytic metabolism back to OXPHOS is
a key process to promote MET.

In addition to glucose, lipid metabolism has been shown to play a role in MET promotion. Indeed,
in-vitro [198] and in-vivo [199] studies on breast cancer revealed that increased lypolysis is a key
trait of cells that revert the EMT phenotype. These works further corroborate previous experiments,
where lipid oxidation was shown to be crucial in EMT suppression [200,201].

6. The Metabolic Evolution of Metastasis Outgrowth

The colonization of distant organs and the formation of overt metastases both require a dynamic
interaction between the tumor cells and the surrounding microenvironment. The specific organs
colonized by a tumor type collectively define the tropism for that tumor, with lungs, liver, brain, bones,
and lymph nodes being generally the most colonized organs across cancer types [202].
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6.1. Metabolic Features of In Situ and Metastatic Dormant Cancer Cells

Metastasis spreading requires a dense interplay between tumoral and stromal cells, based both
on metabolic and non-metabolic features. However, the progression from CTCs to overt metastasis
represents a generally long-lasting and complex phenomenon. This progression passes, in most
cases, through a dormancy phase [203] where cancer cells survive in a non-proliferative state in the
organ niche, again relying on a dramatic rearrangement of metabolism (Figure 1E). Interestingly,
cancer dormancy metabolism is differently regulated during cancer progression. Indeed, two distinct
studies on acute myeloid leukemia proved that dormant cells strictly decrease the levels of ROS
through the activation of OXPHOS metabolism, at the expense of glycolysis [204,205]. This fact is
somehow counterintuitive, since OXPHOS is generally reported to increase the levels of ROS [206].
To better understand this point, it is worth mentioning that cancer cells are generally characterized by
high metabolic rate, with extremely elevated ROS production as a consequence. In rapidly growing
tumors, ROS-mediated DNA damage provides a selective advantage to cancer cells, since it promotes
mutations, DNA instability, and eventually development of chemoresistance [207]. Several in vitro
studies, showed that the inhibition of mitochondrial electron transport chain fosters ROS accumulation,
leading to apoptotic cell death [208–210]. Therefore, in a dormant system, the reduction of ROS
can be successfully achieved through the dampening of the metabolic rate and through an efficient
OXPHOS. Similarly, dormant glioma stem cells were proven to shunt glycolytic intermediates towards
glycerol and phospholipid metabolism via the upregulation of the enzyme GPD1: this metabolic
profile is crucial to withstand ROS and ultimately maintain the dormant compartment of glioma
cells [211]. ROS withstanding was shown to be critical also in in vitro models of dormant breast
cancer, where a generally slower metabolism is associated with glycolytic downregulation and
nicotinamide synthesis upregulation: ROS detoxification is achieved here through the increased
production of NADH and NADPH [212]. At the same time, pancreatic ductal adenocarcinoma stem
cells show metabolic addiction to OXPHOS, fatty acid oxidation and autophagy in order to survive
and promote tumor relapse [213]. Furthermore, fatty acid oxidation was demonstrated to be crucial
also in in-vitro and in-vivo breast cancer dormancy models [214]. Finally, autophagy represents a
key pathway for ovarian cancer dormant cells [215]: interestingly, the autophagic switch leads to
glycolysis upregulation in this tumoral setting, thus suggesting a model-dependent metabolic profile
in the process of dormancy establishment.

The metabolism of dormant cells was also investigated in metastatic settings, where tumoral
cells reprogram their metabolic profile to successfully cope with the new microenvironment.
Dormant pancreatic ductal adenocarcinoma metastases to liver activate oxidative phosphorylation in
the absence of inflammation, while they shift towards glycolytic and proliferative phenotype when
inflammation rises [216]. In an opposite way, in-vitro models of breast cancer bone metastasis showed
that dormant cancer cells are generally better maintained in an overall glycolytic microenvironment,
while an oxidative microenvironment leads to breast cancer outgrowth [217]. Similar results were
also obtained in colorectal cancer models, where prominin-dependent glycolysis upregulation was
identified in the highly metastatic dormant cancer cells [218]. These works suggest an extreme diversity
in the metabolic program of dormant metastatic cells, which depends both on the tissue of origin and on
the metastatic niche. Similarly to in situ ovarian cancer dormant cells [215], two works from Shepherd
and colleagues showed that dormant metastatic ovarian cancer cell viability relies on autophagy
upregulation via LMP1-AMPK signaling [219,220]. To further corroborate this notion, dormant breast
cancer cells that metastasize to the lung were proven to depend on a autophagy to survive [221].

6.2. Metabolic Requirements in Metastatic Outgrowth

Eventually, cancer cells evade the dormant state to become overt metastases (Figure 1F). First of
all, metastatic cells can revert the dormant phenotype through a molecular dialogue triggered by the
metastatic stroma. For example, neutrophil extracellular traps elicit proliferation of lung cancer dormant
cells via the proteolytic remodeling of extracellular laminin that activates the YAP signaling [222].
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In addition, breast cancer metastasis to lungs were shown to progress via GALNT14-mediated
signalling, which overcomes the inhibitory signals of lung bone morphogenetic proteins and promotes
the establishment of a favorable microenvironment in the lungs [223]. Ultimately, astrocytes promote
the proliferation of melanoma and breast cancer brain metastases through the supply of fatty acids
that can be metabolized by cancer cells [224].

Specific metabolic programs are then required to foster the proliferation of the awaken dormant
cancer cells. A recent work on breast cancer unveiled the metabolic profile of lung micrometastases:
breast cancer cells were shown to upregulate the OXPHOS pathway, with amino and fatty acid
metabolism also converging towards mitochondrial respiration [225]. Also, pyruvate metabolism was
reported as a key player in fostering breast cancer metastases to lungs. Indeed, pyruvate can fuel
aerobic respiration through pyruvate carboxylase and therefore allow ROS withstanding [226]. On top
of that, pyruvate uptake also induces the production of oxoglutarate, a key intermediate for collagen
biosynthesis and, consequently, for collagen-mediated niche shaping [227]. In addition to pyruvate,
fatty acid oxidation was shown to promote breast cancer lung and liver metastases through the
activation of Src oncogene: intriguingly, ROS scavenging represents an important step to be achieved in
order to have Src activation [228]. Coherently, breast cancer metastases to lymph nodes were shown to
rely on the upregulation of YAP-mediated fatty acid oxidation to successfully outgrow [229]. Moreover,
also in oral carcinoma and gastric cancer, the upregulation and post-translational modification of the
fatty acid receptor CD36 was shown to foster fatty acid oxidation, ultimately promoting lung [230,231]
and omental fat pad metastases [232].

Similar to what has been observed in metastatic breast cancer dormant cells, the murine breast
cancer cell line 4T1 adopts different behaviors when reaching distinct metastatic sites, with liver
metastases showing a glycolytic phenotype, while lung and bones metastases move towards
OXPHOS [233]. As for breast cancer metastases, also melanoma-derived metastases were proven to be
metabolically heterogeneous, with brain metastases upregulating OXPHOS more than extracranial
metastases [234].

Interestingly, in the brain niche, breast cancer metastatic cells establish a functional crosstalk
with stromal cells: on one hand, breast cancer suppress the glucose uptake in non-tumoral cells
via miR-122 secretion, thus increasing nutrient availability [235]; on the other hand, breast cancer
cells acquire brain-like properties, switching onto a GABAergic phenotype that allows to uptake and
catabolize GABA [236]. Besides breast cancer, other tumor types were investigated in the metabolic
reprogramming process that is involved in overt metastasis establishment. A recent work from Lengyel
and colleagues reported an active interaction between ovarian cancer metastases and adipocytes in the
omental fat pad. In particular, the elevated fatty acids supply from adipocytes is exploited by metastatic
cells that rely on fatty acid oxidation to proliferate [237]. Eventually, a work on colorectal cancer
metastases showed that the liver parenchyma upregulates ALDOB-mediated fructose metabolism in
tumoral cells. As a consequence, glycolysis and pentose phosphate pathways are fostered specifically
in liver metastases, where they promote colorectal cancer metastasis growth [238].

7. Metabolism and Cancer Therapy

Resistance to available standard of care therapies represents a major hurdle in cancer
eradication [239]. In clinical settings, the persistence of tumor cells that were not eliminated by
chemotherapy generally leads to cancer relapse, with tumoral cells remodeling their phenotype upon
treatment and becoming even more complex to eradicate [240]. Interestingly, metabolism reprogramming
has been shown to be relevant also in the process of therapy resistance, with biochemical pathways
being extremely fine-tuned by the chemotherapy bottleneck. Therefore, metabolism relevance in tumor
progression has been envisaged as a double-edged sword: indeed, the metabolic addiction of cancer
cells can be further exploited to incisively counter tumor progression and metastatic relapse.

Even in non-tumoral settings, doxorubicin and cisplatin were proven to induce a profound
rearrangement of cellular metabolism. Indeed, in vitro models of mouse embryonic stem cells showed
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that cisplatin administration promotes significant changes in nucleotide and amino acid metabolism and
in urea cycle [241]. In parallel, rats treated with doxorubicin displayed reduced adipogenesis, with the
major regulator PPARγ being severely downregulated by the drug. On top of that, PPARγ inhibition
was demonstrated to impede plasma glucose and lipid clearance, thus resulting in hyperglycemia and
hyperlipidemia [242].

Similarly, in tumoral settings, chemotherapy was proven as a major player in metabolism
remodeling both in solid and hematological malignancies. Interestingly, literature suggests that
that a significant perturbation of metabolic pathways can be synthetically lethal with chemotherapy
administration, thus managing to eradicate cancer where chemotherapy alone cannot. Two independent
works on AML showed that therapy-resistant cancer cells display a similar metabolic response to
two different drug settings. In details, in vivo cytarabine-resistant AML cells increase the levels of
ROS and shifted their metabolism towards OXPHOS and lipid oxidation [243]. On the other hand,
in vitro sorafenib-resistant AML cell lines showed a similar increase in ROS, with cells exhibiting
a higher glucose demand, accompanied by a lower reliance on pentose phosphate pathways [244].
Interestingly, a switch towards mitochondrial metabolism was also reported for different solid tumors,
namely colorectal, lung, prostate and breast cancer. In particular, in vitro models and patients-derived
samples of colorectal cancer cells resistant to 5-fluorouracil were shown to shift their metabolism
towards OXPHOS. This metabolic reprogramming is accompanied by an increase in ROS production
and by a diminished lactate production and pentose phosphate pathway activity [245]. Similarly,
in vitro and in vivo models of lung cancer were shown to increase mitochondrial mass and activity upon
short-time cisplatin exposure: this metabolic shift is associated to a parallel downregulation of glycolytic
pathway [246]. Analogously, docetaxel-resistant prostate cancer was shown to shunt several metabolic
intermediates, namely lactate, glutamine, and glucose towards OXPHOS, with a concomitant decrease
in intracellular ROS content [247]. Furthermore, doxorubicin resistance in a primary triple-negative
breast cancer cell line was shown to be achieved through the OXPHOS upregulation, with a parallel
reduction in lactate production [248]. Ultimately, Herlyn and collegues reported that upon cisplatin
or vemurafenib treatment, the appereance of multidrug resistant melanoma cells rely on JARID1B
up-regulation. The JARID1B high expression in turns induces sustained up-regulation of proteins
involved in the electron transport chain and down-regulation of glycolytic enzymes [249].

In all the aforementioned models, the authors showed that OXPHOS inhibition can overcome the
cancer resistance to chemotherapy.

Interestingly, the metabolic reprogramming towards mitochondrial activity was shown to
be highly model-specific, with other solid tumors reacting in a completely opposite manner to
chemotherapy. For example, gastric cancer was shown to upregulate glycolysis upon cisplatin
treatment: in this setting, glycolysis inhibition through enolase downregulation or glucose starvation
was shown to revert cisplatin resistance [250]. In addition, even if highly reliant on mitochondrial
metabolism [251], doxorubicin-resistant anaplastic thyroid cancer was shown to activate the pentose
phosphate pathway via the overexpression of 6-phosphogluconate dehydrogenase. Of note, the authors
demonstrated that the inhibition of 6-phosphogluconate dehydrogenase can overcome the resistance
to chemotherapy [252].

Along with carbohydrate metabolism, chemotherapy was reported to critically impact lipid-related
pathways. In particular, two separate works on breast cancer revealed a significant increase in lipid
droplets accumulation and cholesterol biosynthesis upon either doxorubicin [248] or tamoxifen [253].
It is worth noting that the silencing of perilipin, the proteic structural component of lipid droplets,
resulted in reduced viability of doxorubicin-resistant breast cancer cells [248]. Lipid biosynthesis was
also proven to be critical in other models of chemotherapy resistant cells. In particular, a recent work
by Schreiber and colleagues showed in a panel of human tumors that the synthesis of polyunsaturated
fatty acids is crucial for cancer cells to survive upon chemotherapy. Indeed, these lipids are substrates
for the phospholipid glutathione peroxidase, whose activity prevents ferroptotic cell death [254].
On the other hand, fatty acid oxidation was shown to be a key player in ovarian cancer chemoresistance.
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Indeed, fatty acid oxidation both provides metabolic intermediates to fuel metabolism and sustains
NADPH production: also here, the full reversion of the resistance to chemotherapy was obtained
through fatty acid oxidation inhibition [255].

Eventually, glutamine metabolism perturbation was reported to be synthetic lethal with
chemotherapeutic administration in several tumors. In particular, glutamine depletion was proven to
be extremely effective on cisplatin-resistant lung cancer, eliciting massive death of tumoral cells that
were not eradicated by the drug [256]. On the other hand, GBM cells were shown to survive upon
rapamycin exposure through an upregulation of glutaminase activity, which allows cells to bypass the
metabolic block imposed by rapamycin [257]. Suppression of either glutaminase expression or activity
sensitized therapy-resistant GBM cells to rapamycin. Similarly, two independent works on ovarian
and esophageal squamous-cell cancer revealed that glutaminase inhibition increased tumor sensitivity
both to cisplatin [258,259] and paclitaxel [258]. Eventually, ovarian cancer cisplatin-resistant cells were
shown to rely on MYC-dependent glutaminase upregulation to catabolize glutamine and fuel OXPHOS.
Interestingly, the inhibition of glutaminase synergizes with cisplatin treatment, ultimately leading to
increased ovarian cancer cell apoptosis [260].

As a proof of concept of the role of metabolism in regulating the response to a broad range of
therapy agents, many works pointed out the extraordinary efficacy of coupling caloric restriction
(i.e., a reduced calorie intake [261]) in empowering the response to standard of care therapeutic
regiments. In particular, caloric restriction was demonstrated to be extremely effective in enhancing
chemotherapy effects in breast cancer [262–264], lung cancer [265], colorectal cancer [266], glioma [267],
and fibrosarcoma [262].

Finally, the metabolic addiction of cancer cells has been proposed as a therapeutic target
per se (Figure 3), with metabolic drugs eliciting a profound impairment on tumor progression.
Exploiting tumor-specific metabolic vulnerabilities might indeed represent a therapeutic strategy
with minimal specific side-effects. One of the major mutations that induce metabolic reprogramming
involves the enzymes IDH1 and IDH2. Since their identification, IDH inhibitors were proposed as
efficient drugs to eradicate IDH-driven gliomas [268]. The metabolic addiction to IDH was also exploited
in further works in AML setting, with the development of efficient drugs capable to counter tumor
progression [269,270]. Moreover, the metabolic reprogramming generated by IDH mutation makes
cancer cells extremely vulnerable to NAD depletion: indeed, a recent study by Cahill and colleagues
showed that NAD deprivation leads to cancer regression in IDH-mutated GBM [271]. Besides IDH,
other enzymes involved in glucose metabolism were shown to be exploitable to arrest tumor progression.
Several works pointed out the efficacy of OXPHOS inhibitors in eradicating bot solid and hematological
malignancies. In particular, the inhibition of mitochondrial ATPase was proven to counter GBM
in vivo, without affecting neither fibroblasts nor astrocytes [272]. At the same time, the inhibition of
electron transport chain complex I [273] and II [274] was show to suppress AML. In the same way,
the impairment of mitochondrial respiration was reported to impede ovarian cancer progression [275],
while the contemporary inhibition of glycolysis and OXPHOS was demonstrated to suppress breast
cancer [276]. Similarly, the simultaneous abrogation of mitochondrial respiration and lactate export
promotes cancer death in several in vitro cancer models [277]. Interestingly, the inhibition of lactate
generation was as also investigated as a possible therapeutic strategy, however results were highly
model-dependent. On one hand, inhibition of LDH-A was shown to critically reduce tumor burden in
TP53-mutated pancreatic cancer, while TP53-wild type tumors were not affected [30]. On the other
hand, inhibition of LDH-A enzyme was shown to be insufficient to eradicate melanoma, which activate
the autophagy pathway in order to survive LDH-A inhibition [278]. Eventually, cancer addiction to
glucose metabolism was recently exploited to treat tumor cells with the monosaccharide mannose.
Mannose is uptaken via the same transporter as glucose, however its accumulation within cancer cells
impair all the branches of glucose metabolism, thus leading to tumor shrinkage [279].
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Figure 3. Targeting metabolic pathways to eradicate tumor growth. Inhibitors for several metabolic
pathways have been described. The inhibition of glucose, amino acid and fatty acid metabolism was
shown to be promising for a successful eradication of tumoral disease.

Besides glucose, amino acid metabolism was an intriguing field of investigation to identify
metabolic vulnerabilities of cancer cells. The enzyme drug L-Asparaginase represents a cornerstone
in acute lymphoblastic leukemia (ALL) treatment since it exploits cancer dependency on asparagine
to counteract ALL progression [280,281]. However, a recent study suggested a repurposing of
L-Asparaginase in breast cancer treatment, as asparagine bioavailability was shown to be crucial for
metastasis spreading [140]. Besides asparagine, aspartate was also shown as a limiting metabolite in
tumor growth, with tumors overexpressing asparaginase (which converts asparagine to aspartate)
growing at faster rate [282]. The heavy addiction of cancer cells to amino acids was further shown by
Jordan and colleagues, who proved that chemo-naïve AML stem cells undergo cell death when amino
acid uptake and metabolism are pharmacologically impaired [283]. Similarly, the pharmacological
inhibition of glutamine uptake was shown to be crucial for breast, lung, and colorectal cancer
progression, with inhibited cells undergoing increased oxidative stress and tumor proliferation
arrest [284].

Finally, fatty acid metabolism impairment represents an exploitable target in cancer therapy.
Several studies pointed out that the fatty acid oxidation inhibitor etomoxir can counter tumor
progression, both in solid and hematologic malignancies. In particular, etomoxir was proven to be
efficient in blocking tumor growth and metastasis spreading in bladder cancer, with inhibited cells
undergoing lipid accumulation and NADPH deprivation [285]. Moreover, etomoxir was reported to
eradicate Myc-driven triple negative patient-derived breast cancer [286]. Similar results were obtained
in GBM, with etomoxir leading to ROS accumulation and ATP and NADPH shortage, which in turn
promote cancer cell death [287]. Eventually, etomoxir cytotoxic effects were also confirmed in in vitro
models of AML, where the drug elicited a dose-dependent apoptosis induction [288]. Besides fatty acid
oxidation, fatty acid synthesis was shown as a promising target in arresting tumor progression. Indeed,
the knock-out of SREBP transcription factors, which regulate lipid biosynthesis, abrogates bladder
cancer proliferation and migration phenotype [22,289]. In addition, a recent work focused on the
role of acetyl-CoA in cancer progression. Tumor cells undergoing Warburg effect need to produce
adequate amounts of acetyl-CoA, that is mainly shunted to lipid synthesis and histone modification:
indeed, the absence of acetyl-CoA synthetase (ACSS2) enzyme leads to tumor burden reduction in
in vivo models of hepatocellular carcinoma [290]. Similarly, two independent works demonstrated
that the pharmacological inhibition of acetyl-CoA carboxylase enzyme leads to tumor growth arrest
in lung [291] and pancreatic cancer [292]. Finally, fatty acid desaturation was also shown to be a
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critical step in cancer homeostasis, with the inhibition of the enzyme Stearoyl-CoA desaturase 1 (SCD1)
leading to tumor growth impairment in colorectal [293] and lung and gastric cancer [294].

8. Conclusions

A completely abnormal metabolism has been historically indicated as one of the major hallmarks
of cancer [96]. In this review, we have shown that cancer metabolic reprogramming plunges its
roots into a genetically altered background, with mutations in major cell physiology regulators
profoundly affecting the metabolism of tumor cells. In this scenario, the metabolic fluxes are heavily
changed, with a major involvement of glycolysis and glutamine metabolism to fuel tumor growth,
together with a dynamic lipid turnover. However, similar to what is observed under the genetic and
transcriptional point of view, tumors revealed to be heterogeneous also in their metabolism, with cells
in the same lesion adopting completely different pathways to thrive in the presence of different stimuli.
Moreover, cancer cell metabolism is highly dynamic and continuously reprogrammed during tumor
progression, from the spreading of metastatic cells to the colonization of new organs, to the formation
of overt metastases. All of these steps require a precise fine-tuning of cellular metabolism, in a way
that is dictated by both endogenous and exogenous factors. Eventually, cancer cells are capable of
reprogramming their metabolic profile to survive chemotherapy, with resistant cells emerging upon
the treatment (also) thanks to a bioenergetic shift. Fortunately, this profound addiction of cancer cells
to metabolic pathways has provided quite a number of druggable targets that can be exploited in
therapeutic settings in an attempt to hopefully counter tumor progression.
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