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alysis of multidrug-resistant
breast cancer cells in vitro using methyl-tert-butyl
ether method†

Li Zong, ab Zifeng Pi, a Shu Liu,*a Zhiqiang Liua and Fengrui Song *a

The comprehensive characterization of metabolome and lipidome to reveal unknown pathological

conditions, are being used to investigate the molecular mechanisms of cancer, especially in the field of

early diagnosis, treatment, and prognosis. The multidrug resistance (MDR) of tumor cells limits the

therapeutic effect of anti-cancer drugs and is the main obstacle for chemotherapy. Here, we adopted

a methyl-tert-butyl ether (MTBE)-based extraction method to simultaneously extract small polar

molecules and lipophilic metabolites for nontargeted metabolomics of multidrug-resistant breast cancer

cell line MCF-7/ADR and its parental cell line MCF-7/S by ultra-performance liquid chromatography

coupled with quadrupole time-of-flight mass spectrometry. Distinctly different metabolic features were

shown between MCF-7/ADR cells and MCF-7/S on the basis of multivariate analyses. 17 potential

biomarkers were identified. And these potential biomarkers were mainly correlated with cell membrane

lipids composition, cell signaling regulated by lipids, and anti-oxidation ability. The studies of cellular

ultrastructure and morphology by in situ atomic force microscopy (AFM) also demonstrated the cellular

membrane changed along with the MDR. We expect that this study could provide a new method for

monitoring drug resistance during clinical chemotherapy and be useful for the development of drugs to

overcome the MDR.
Introduction

Breast cancer is one of the most common malignancies in
women. Along with surgery, radiotherapy, hormonal therapy
and targeted antibodies, chemotherapy is oen used to treat
breast cancer and anthracyclines are widely used in the
chemotherapy of breast cancer.1 Adriamycin (ADR) as anthra-
cycline drug is most widely used in the chemotherapy of breast
cancer.2,3 It belongs to cell cycle non-specic drugs and its
action mechanisms have been known.4 But multidrug resis-
tance (MDR) usually occurs, which is a major obstacle for breast
cancer treatment. MDR possesses multifactorial natures. The
main drivers for MDR include the increased levels of detoxi-
cation enzymes, the alterations of uptake and efflux of drugs,
the changes of drug target enzymes, enhanced DNA repair and
deregulation of survival/apoptosis signaling pathways.5–8 A
complex network exists in multidrug-resistant cells to assist
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tumor progression. The most classical mechanism for MDR is
the overexpression of drug efflux proteins, in which,
P-glycoprotein (P-gp) is widely known. Although three genera-
tions of P-gp inhibitors have been developed, only a few were
really used in clinical,9 so the development of inhibitors for
MDR is gaining more and more attention. Understanding how
these drivers responsible for MDR synergistically and system-
atically work is the prerequisite for effectively reversing MDR.

Although genomics and proteomics have been used to
investigate the MDR mechanisms, and several related genes
and proteins have been found, the investigation of alterations of
global metabolites at the molecular level between the sensitive
and resistant breast tumor cells is more needed. This is because
the metabolome is the endpoint of omics cascade and the most
closeness to the phenotypes.10 Lipidomics is a branch of
metabolomics. Lipids participate in various biological
processes, such as the constituent of cellular membranes,
energy storage, cell motility and adhesion, and apoptosis.11 It
has been demonstrated that human cancers are associated with
disruption of lipid metabolism and/or lipids-related signaling
pathways.12 Lipid-based biomarkers have been investigated as
tools for tumor diagnosis,13 grade,14 subtyping,15 metastasis,16

and prognosis.17 For example, higher plasma levels of lyso-
phosphatidylcholine 18:0 are related to a lower risk of common
cancers.18 Therefore, the identication of metabolites and lipids
as biomarkers plays critical roles in the tumor research.
RSC Adv., 2018, 8, 15831–15841 | 15831
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The gold-standard Folch and Bligh–Dyer extraction proce-
dure are two of the common methods based on a biphasic
solvent system for lipids extraction. But both systems contain
chloroform, which can be toxic and cause chemical modica-
tion of labile lipid species. In addition, both the Folch and
Bligh–Dyer methods are easy to bring contamination for the
collection of the lipids from the lower phase of the two-phase
system because the insoluble materials are between the two
phases, which is not benecial for subsequent analysis.19

Matyash et al. have developed a halogenate-free method where
lipids are enriched in the upper phase by using a lower density
of methyl-tert-butyl ether (MTBE) in combination with meth-
anol and water. And the precipitate and insoluble materials are
at the bottom of the tube in this method, so that the lipids in the
up layer are easily collected. By this method, we can accomplish
the analysis of the two different types of compounds, lipophilic
and water-soluble, in one experiment, thus which can save time
and dosage of sample compared with the conventional
methods.20

The rst step that cytotoxic drugs enter the cell interior is the
interaction of drugs and cell membrane. The changes of lipids
or the proteins located in the cell membrane could affect the
membrane permeability and uidity. And it's been known that
the overexpression of transmembrane protein P-glycoprotein (P-
gp) plays a crucial role in the multidrug resistance. Therefore,
investigating the microstructure of cell membrane is very useful
for the research of the interaction of drugs and cell membrane.
Atomic Force Microscopy (AFM) is a powerful tool for
researching the structure of cellular membrane surface at the
nanometer scale, providing the information of changes in the
biophysical properties of the cell, such as roughness, elasticity,
viscosity, and so on. It's a great advantage for studying cells
including living and xed cells that no complex sample prepa-
rations are needed.

Therefore, in this work, AFM was used to observe the
microstructure of cellular membrane surface and the cell size.
The cell surface roughness was detected by the topography to
further understand the changes of the cell membrane surface
induced by the MDR. And UPLC-Q-TOF-MS-based metab-
olomics and lipidomics were employed to prole intracellular
metabolites and lipids in MCF-7/ADR and parental MCF-7/S
cells by MTBE extraction. The potential biomarkers were iden-
tied by multivariate statistical analysis to explore the mecha-
nism of MDR. By building the metabolic network correlated
with potential biomarkers and analysing metabolic pathways,
we investigated the relationship between MDR and metabolic
perturbation on MCF-7/S cells in vitro. The results of this study
are useful for understanding the molecular basis of MDR and
even discovering new and effective targets to diagnose or reverse
resistance.

Experimental
Reagents and materials

HPLC-grade chloroform, methanol, acetonitrile and formic
acid (Fisher Scientic, Loughborough, UK) were used.
Methyl-tert-butyl ether (MTBE) was purchased from Aladdin
15832 | RSC Adv., 2018, 8, 15831–15841
Co., Ltd. (Shanghai, China). Ammonium acetate was taken
from Sigma-Aldrich (St. Louis, MO, USA). Ultrapure water was
produced by a Milli-Q plus (Milford, MA, USA) water puri-
cation system. MCF-7/ADR cells were purchased from Keygen
Biotech Co., Ltd. (Nanjing, China) and parental MCF-7/S cells
were purchased from Chinese Academy of Medical Science.
Adriamycin was purchased from Hisun Pharm Co., Ltd.
(Taizhou, China). RPMI-1640 medium was taken from
Hyclone, China. Fetal bovine serum was purchased from
Hangzhou Sijiqing Co., Ltd. (Hangzhou, China). Penicillin
and streptomycin were purchased from Beijing Dingguo Co.
Ltd. (Beijing, China). Leucine enkephalin was obtained from
Waters (Milford, USA).
Cell culture

The MCF-7/ADR cells were established by exposing parental
MCF-7/S cells to increasing concentrations of adriamycin (from
0.01 to 1 mg mL�1). Aer cells could survive in 1 mg mL�1 adria-
mycin, they were maintained in medium containing 1 mg mL�1

adriamycin for two months to obtain MCF-7/ADR cells. Human
breast cancer cell line MCF-7/ADR and MCF-7/S were maintained
in RPMI-1640 medium containing 10% (v/v) fetal bovine serum,
100 U mL�1 penicillin, 100 mg mL�1 streptomycin. To maintain
the drug-resistant phenotype, MCF-7/ADR cells were grown in
RPMI-1640medium supplemented with 1 mgmL�1 ADR andwere
grown in adriamycin-free culture medium for 1 week before the
experiment. All cells were cultured at 37 �C in a humidied
atmosphere of 5% CO2. The culture medium was changed every
2–3 days. The establishedMCF-7/ADR and parental MCF-7/S cells
with the same passage number (the 35th generation) were used
in our experiment.
Drug sensitivity assay

Drug sensitivity was detected by colorimetric MTT assay. When
MCF-7/ADR and MCF-7/S cells grew to nearly 80% conuence,
these cells were trypsinized and seeded in 96-well plates with
100 mL of cell suspension solution at a density of 5000 cells per
well. Aer adhering overnight, the cells were treated with 100 mL
of different concentrations of adriamycin solution (0, 1, 2, 4, 8,
16, 32, 64, and 128 mM, respectively) and incubated for an
additional 48 h. Aer that time, the medium was replaced with
fresh-prepared RPMI-1640 medium, followed by incubation
with 20 mL of 5 mg mL�1 solution of MTT at 37 �C for 4 hours.
Then themediumwas completely removed and 150 mL of DMSO
was added to each well to resolve the formazan product. Finally,
the plate was incubated for 10 minutes on a shaker at 37 �C and
the optical density (OD) at 570 nm was measured using a Spec-
traMax i3 (Molecular Devices, USA) microplate reader. The IC50

values were calculated by the GraphPad Prism 5 soware
(GraphPad Soware, USA). Each concentration had 6 redupli-
cative wells and was repeated at least three times. Adriamycin
was dissolved in water to prepare a 2 mM stock solution, further
diluted with the RPMI-1640 medium to the desired
concentrations.
This journal is © The Royal Society of Chemistry 2018
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The observations of cell ultrastructure alterations by AFM

The MCF-7/S cells and MCF-7/ADR cells were seeded in a 6-well
plate with pre-placed sterile slides at a density of 2 � 105 cells
per well. Aer 48 h, the medium was discarded, and the
adherent cells were washed with cold PBS twice immediately,
followed by dryness in the stream of nitrogen. TheMCF-7/S cells
and MCF-7/ADR cells were imaged on the Dimension Icon AFM
(Veeco, Plainview, NY, USA) using silicon nitride probe (model
SCANASYST-AIR, Veeco, USA) in the ScanAsyst mode, which is
an imaging mode with automatic image optimization tech-
nology. The parameters of the AFM probe used in this experi-
ment were as follows: a resonance frequency of 50–90 kHz,
spring constant of 0.4 N m�1, and cantilever thickness of 0.55–
0.75 mm. All AFM experiments were performed in air at ambient
temperature. Twelve atomic force microscopic images were
acquired for 6 pieces of glass slide where two single cells on
each glass slide were selected to observe for each cell line. The
40� 40 mm2 scan area was performed to obtain the single whole
cell, and the 10 � 10 mm2 local area of the cell was continuously
imaged. All the images were acquired with a 512 � 512 data
point resolution. The shape, height and size of two cell lines
were analyzed. And the roughness was obtained by analyzing
four selected locations (5 � 5 mm2 area) at the centre and side
regions of each cell from each cell line. The arithmetic mean
roughness Ra and root mean square roughness Rq on the height
image were used to assess the average roughness of a given area.
The overall weighted mean surface roughness was calculated
according to the previously reported method.21 The images were
analyzed by the NanoScope analysis soware 1.8 (Bruker, Santa
Barbara, CA, USA).
Cell sample preparation and metabolite extraction

For metabolomics and lipidomics analyses, MCF-7/ADR and
MCF-7/S cells were seeded in 6-well plates at a density of 2� 105

cells per well for 48 h. Aer that, the medium was discarded,
and the adherent cells were washed with cold PBS twice
immediately, followed by addition of 200 mL of cold ultrapure
water to each well. Finally, the plates were stored at�80 �C until
extraction.

The polar metabolites and lipids extractions were based on
a MTBE–methanol–H2O (20 : 6 : 5.8, v/v/v) extraction protocol
(modied slightly).19,20,22 600 mL�20 �Cmethanol were added to
each well, and cells were scraped and collected to centrifuge
tubes. Then these tubes were vortexed. Aer that, 2 mL of MTBE
was added and the mixtures were shaken for 1 h at room
temperature. Phase separation was induced by adding 380 mL of
water, standing for 10 min at room temperature and the
samples were centrifuged at 1000 � g, 4 �C for 10 min. The
upper phase containing nonpolar metabolites was collected,
and the lower phase was re-extracted with 1 mL of the MTBE–
methanol–water (10 : 3 : 2.5, v/v/v) mixture, that was corre-
sponding to the ratio of the different compositions of the upper
phase. The two phases were ltered through 0.22 mmmembrane
lter, and dried under a stream of nitrogen. Then the dried
upper layers were resuspended in 200 mL of iso-
propanol : acetonitrile : water (2 : 1 : 1), and the lower layers
This journal is © The Royal Society of Chemistry 2018
were resuspended in 100 mL of initial mobile phase and then
transferred to glass autosampler.

UPLC-MS conditions

Waters Acquity UPLC system equipped with a Q-TOF SYNAPT
G2 High Denition Mass Spectrometer (HDMS) (Waters Crop.,
Manchester, UK) was used for the analysis of lipid-and water-
soluble metabolites. Each sample was injected into a reversed
phase BEH C18 column (2.1 mm � 50 mm, 1.7 mM, Waters
Corp., Milford, MA) kept at 37 �C. For the metabolite analysis of
bottom layer, acetonitrile (A) and 0.1% aqueous formic acid (v/v)
(B) were used asmobile phase and the sample inject volume was
5 mL. The ow rate was 0.3 mL min�1. In the positive ion mode,
the mobile phase gradient was as follows: 0–2 min, 5–35% A; 2–
5min, 35–45% A; 5–5.5 min, 45–54% A; 5.5–6min, 54–67% A; 6–
8.5 min 67–84% A; 8.5–14.5 min 84–90% A; 14.5–18 min, 90–
100% A; 18–18.5 min, 100–5% A and kept at 5% A for 3 minutes.
In the negative ion mode, the mobile phase gradient was as
follows: 0–1 min, 5–50% A; 1–3.5 min, 50–80% A; 3.5–8.5 min,
85–98% A; 8.5–9 min, 98–100% A and maintained 100% A for 3
minutes, followed by equilibration with 5% A for 3 minutes. The
mobile phases used for the lipidomic analysis were iso-
propanol–acetonitrile (90 : 10, v/v) (A) and acetonitrile–water
(60 : 40, v/v) (B), both containing 10 mM ammonium formate
and 0.1% formic acid. In the positive ion mode, the gradient
elution was as follows: 0–3 min, 15–25% A; 3–5 min, 25–50% A;
5–11 min, 50–69% A; 11–17.5 min, 69–97% A; 17.5–21.5 min,
97–100% A; 21.5–22 min, 100–15% A, and held for 3 minutes. In
the negative ion mode, the gradient elution was as follows: 0–
1 min, 25% A; 1–2 min, 25–50% A; 2–9.5 min 50–97% A, fol-
lowed by equilibration with 25% A for 3 minutes. The ow rate
was 0.4 mL min�1. The injection volume was 2 mL, and the
temperature of autosampler was maintained at 4 �C.

The mass spectrometer with electrospray ionization (ESI)
source was operated in positive and negative modes over the
mass range from 50 to 1200 Da. In positive ion mode, the
capillary voltage and cone voltage were set at 2.8 kV and 30 V,
while at 2.2 kV and 30 V in negative ion mode, respectively. The
source temperature and desolvation gas temperature were set at
110 �C and 350 �C, respectively. Nitrogen was respectively used
as cone gas and desolvation gas. The ow rates of cone gas and
desolvation gas were set at 50 L h�1 and 600 L h�1, respectively.
Argon was used as the collision gas in the MS/MS experiments
and collision energy was adjusted according the mass fragment
spectrum. Data were acquired in centroid mode. Leucine
enkephalin at a concentration of 2 ng mL�1 and with a ow rate
of 5 mL min�1 was used as the lock mass.

Data processing and analysis

The acquired data were processed using MassLynx V4.1 so-
ware (Waters) to give a data matrix consisting of the retention
time, m/z, and abundance value for each ion, and EZinfo 2.0
soware was used to analyze the data matrices and identify
statistically signicant ions, where principal component anal-
ysis (PCA) and orthogonal partial least-squares discriminant
analysis (OPLS-DA) were performed. The score plot and S-plot
RSC Adv., 2018, 8, 15831–15841 | 15833
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based on OPLS-DA model were taken for class separation and
showed variables contributing to the classication. The poten-
tial metabolites were screened based on the variable impor-
tance in projection (VIP) value of VIP > 1 and p < 0.05 by using
Student's t-test.

These potential ions were searched against the freely avail-
able metabolome databases, HMDB, Lipid MAPS, and METLIN.
Once the potential metabolites had been identied, they were
conrmed by matching fragmentation patterns and retention
times. Only those that matched the knownmetabolite identities
were conducted for further analysis. The metabolic pathways
associated with these putative metabolites were evaluated with
MetaboAnalyst 3.0, which is available online (http://
www.metaboanalyst.ca). The metabolic network was visualized
by MetScape, a plug-in CytoScape (v.3.4.0) soware to provide
the relationship between metabolites and genes and interpret
the metabolomics data.
Results
Drug sensitivity of MCF-7/ADR cells to adriamycin

The IC50 value was an indicator of drug sensitivity. As shown in
Fig. S1,† MCF-7/ADR cells had a signicantly higher IC50 value
for the adriamycin compared with parental MCF-7/S cells. The
IC50 values of MCF-7/S and MCF-7/ADR cells were 6.22 � 0.87
mM, 36.43 � 1.52 mM, respectively. And the IC50 values of
established MCF-7/ADR cells were also in comparison with that
of the purchasedMCF-7/ADR cells. The IC50 values of purchased
MCF-7/ADR cells were 18.92 � 1.55 mM. This means that higher
levels of adriamycin are required to achieve same cytotoxic
effects for MCF-7/ADR cells than that of MCF-7/S cells, i.e., MCF-
7/ADR cells were resistant to adriamycin, and the established
MCF-7/ADR cells were more resistant than purchased MCF-7/
ADR cells.
AFM observations for surface morphology and
nanomechanical properties of single MCF-7/S and MCF-7/
ADR cell

Fig. 1(A1 and B1) show the morphologic information of the two
cell lines. The AFM imaging revealed that the morphology of the
MCF-7/ADR cell was spheroidal structure instead of the normal
elongated shape of the MCF-7/S cell and the diameter of the
MCF-7/ADR cell was 1.36 � 0.24 mm instead of the 1.22 � 0.35
mm of the MCF-7/S cell. The height of MCF-7/ADR cell was 25.27
� 3.73 mm, and the MCF-7/S cell was 22.73 � 3.52 mm, indi-
cating that the average in height of cells increased slightly with
the MDR, nevertheless the size and height of cell were not
signicantly different between theMCF-7/S cell andMCF-7/ADR
cell (p > 0.05).

Fig. 1(a1 and b1) are the high-resolutionmagnied images to
show the ultrastructure of the cell membrane surface. The cell
membrane architecture of MCF-7/S cell was relatively smooth,
fewer protrusions were on the cell membrane surface, but
surface protrusions on the surface of MCF-7/ADR cell were
higher and rougher. The surface roughness was used to quan-
tify changes of the cancer cell topography. As shown in Table 1,
15834 | RSC Adv., 2018, 8, 15831–15841
the valves of Ra and Rq of two different areas on one cell show
signicant differences on the two cell lines. The Ra and Rq valves
of MCF-7/S cells were minimum, indicating the smooth surface
shown in Fig. 1(a1 and b1), but the Ra and Rq valves of MCF-7/
ADR cells increased, indicating a rougher surface. Moreover,
the valves of surface roughness at the edge region were higher
than the ones at the central region, indicating the topographical
heterogeneity of the membrane surface of cells.

The changes of polar and non-polar metabolites following
MTBE extraction in MCF-7/ADR and parental cells

The untargeted lipidomics and metabonomics were carried out
using UPLC-Q-TOF-MS in positive and negative ion modes. The
typical base-peak ion (BPI) chromatograms from the non-polar
and polar metabolites of MCF-7/ADR are shown in Fig. S2.† The
further observation of global metabolic differences between the
drug-resistant and parental MCF-7/S cells was performed by
pattern recognition analysis. A principal component analysis
(PCA) was initially used to obtain a comprehensive comparison
and identify outliers of the LC-MS data from different groups.
PCA scores plot based on polar and non-polar metabolites in
both positive and negative ionmodes (Fig. 2 and S3†) all showed
good separations among different groups, which indicates the
endogenous substances were disturbed signicantly due to the
emergence of drug resistance.

Identication of potential biomarkers

To identify the main metabolites responsible for the separation
between drug-resistant and drug-sensitive groups, S-plots ob-
tained from OPLS-DA analysis was used (Fig. 3, S4 and S5†). In
the S-plots, the distance of variables from the origin is positively
related to their importance for the group separation, which
means variables far away from the origin would have greater
contribution to group discrimination. Moreover, the variable
importance in the projection (VIP) value was used to quantify
the contribution. In this paper, variables with VIP values of >1
were selected. The selected variables were conrmed by
Student's t-test (p < 0.05). Finally, 4 polar metabolites and 13
lipids based on the conditions above (Table 2) were considered
as the potential biomarkers for further study. The accurate
molecular weights and fractional isotope abundance of these
potential biomarkers provided by Q-TOF-MS were used to
presume their molecular formulas. And the structures of these
possible compounds were obtained by searching freely acces-
sible databases such as Lipid MAPS and HMDB. The potential
biomarkers were identied nally according to the mass frag-
ments and retention time present in commercially available
mass spectral database or literatures. The identication of
Cer(d18:0/16:0) or Cer(d16:0/18:0) was taken as an example. The
m/z 540.5350 at retention time (Rt) 9.04 min was targeted and
monitored. Fig. 4A is the extracted ion chromatogram (EIC) of
540.5350, and Fig. 4B is the MS2 spectrum. The m/z 540.5350
was inputed to databases in the forms of [M + H]+, [M + Na]+, [M
+ NH4]

+ adducts in the positive mode within mass error of
10 ppm, to which many known metabolites corresponded, so
the possible molecular formula C34H69NO3 would be assigned
This journal is © The Royal Society of Chemistry 2018



Fig. 1 Representative AFM images of MCF-7/S and MCF-7/ADR cells. The first column (A1 and B1) and third column (A3 and B3) show height and
three dimensional images of the entire MCF-7/S and MCF-7/ADR cells, respectively. The second column (A2, a2, B2 and b2) are peak force error
images to highlight the fine features in the images. The first column (a1 and b1) and third column (a3 and b3) are the high-resolution zoomed
height and three dimensional images (10 � 10 mm2) of the cells, respectively. The colors in the images indicate different heights with light and
dark colors corresponding to higher and lower topography, respectively.
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to the potential biomarker based on elemental composition and
fractional isotope abundance. Based on the obtained MS/MS
spectrum, fragment ions were primarily observed at 311.2950,
284.2935, 283.2636, 274.2752, and 256.2639. The most abun-
dant ion at m/z 256.2639 ([M + H � 284]+) corresponded to the
fatty acyl moiety as a protonated amide ion ([C15H31CONH3]

+,
Table 1 Average roughness of MCF-7/S and MCF-7/ADR cells in the
different regions (the centre and edge region of the cell)

Cell line

Edge region Central region

Ra (nm) Rq (nm) Ra (nm) Rq (nm)

MCF-7/S 52.52 � 1.75 70.95 � 2.28 24.62 � 0.80 29.17 � 0.98
MCF-7/ADR 76.45 � 1.06 105.83 � 1.35 44.52 � 0.92 60.18 � 1.51

This journal is © The Royal Society of Chemistry 2018
256.2635), indicating the fatty acid substituent. And the less
abundant product ion atm/z 311.2950 ([M + H � 229]+) was also
individually observed in the MS2 spectra of m/z 512.5037 and
484.4726. So it's inferred that the ion was irrelevant to the the
fatty acid substituent. The ion at m/z 311 might arise from the
neutral loss of H2O and the fatty acid substituent. The loss of
the fatty acyl substituent as a ketene (C16H33CH]CO) from the
m/z 540.5350 yielded the m/z 274.2752, indicating the backbone
of ceramide may be amino alcohol containing 16 carbon atoms.
Moreover, the less abundant product ion at m/z 284.2935 ([M +
H � 256]+) is the characteristic fragment ion of dihydrocer-
amides or the protonated amide ion ([C17H35CONH3]

+). Given
these fragments, the Cer(d18:0/16:0) or Cer(d16:0/18:0) might
be assigned to the m/z 540.5350. The other peaks were also
identied by this method.
RSC Adv., 2018, 8, 15831–15841 | 15835



Fig. 2 Scores plot of lipid metabolites in positive ion mode (A) and negative ion mode (B). Scores plot of PCAmodel with MS data of metabolites
from the MCF-7/S (black) and MCF-7/ADR (red) cells.
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Heat map of all the differential metabolites was conducted to
visualize the relative concentration of these potential
biomarkers in each sample. On the heat map (Fig. 5), the up-
regulation or down-regulation of the potential biomarkers in
the drug-resistant groups compared to the drug-sensitive
groups was expressed with different colors, thereby the
changes of the patterns in metabolite concentrations across
samples are observed easily. The higher levels of dihydrocer-
amide and the lower levels of phosphatidylcholines (PCs) and
lysophosphatidyl-cholines (LPCs) were shown clearly in the
drug resistant MCF-7/ADR cells.
Metabolic pathway analysis on biomarkers

The metabolic pathways related to drug resistance were deter-
mined by MetaboAnalyst 3.0. The most relevant pathways exis-
ted in the present experimental condition could be identied
based on the results obtained by using the pathway analysis,
integrating results from powerful pathway enrichment analysis
with the pathway topology analysis. By inputting the potential
biomarkers that were signicantly inuenced by drug resis-
tance, all the matched pathways were then presented graphi-
cally in Fig. 6 as well as in Table S1.† From Fig. 6, we can see that
the sphingolipid metabolism, glycerophospholipid metabo-
lism, arachidonic acid metabolism and glutathione metabolism
Fig. 3 S-plot of OPLS-DA model with MS data of non-polar metab-
olites in positive ion mode.

15836 | RSC Adv., 2018, 8, 15831–15841
were recognized as the most important metabolic pathways
associated with drug resistance. To reveal the biochemical
relationship among these potential biomarkers, the pathway-
based network was visualized by Metascape (Fig. 7). Ten of
seventeen potential biomarkers were recognized by Metascape
and were built a metabolic pathway network. It is noted that the
compound–reaction–enzyme–gene network was not fully con-
nected. And we input two key metabolites, arachidonate and
pyruvate, and expanded the isolated network components by
Metscape expanding function to make the network to be fully
connected. We then used CentiScape, a plugin within Cytoscape
soware, to estimate the node importance according to the
centroid and betweenness centrality scores. The node with the
centroid and betweenness centrality values that were larger
than the network average was considered as the most important
node. As shown in Fig. 7, four of ten potential biomarkers,
including sphinganine, phosphatidylcholine, lysophosphati-
dylcholine, and phosphatidylinositol were in the critical posi-
tion, and they were associated with many cellular metabolic
processes. Moreover, the result of pathway analysis showed that
the pathway with high impact value inuenced byMDRwere the
sphingolipid and glycerophospholipid metabolism pathways.
Sphingolipidmetabolism pathway is involved into sphinganine,
ceramide, ceramide 1-phosphate, sphingosine 1-phosphate,
sphinganine 1-phosphate, dihydroceramide, and other metab-
olites. And phosphatidylcholine, lysophosphatidylcholine, and
phosphatidylinositol are correlated with glycerophospholipid
metabolism pathway. And there were discriminable differences
in the levels of dihydroceramide, sphinganine, phosphatidyl-
choline, lysophosphatidylcholine, and phosphatidylinositol
between the MCF-7/ADR cells and the control group. These
indicated that sphingolipids and glycerophospholipids played
critical roles in the MDR. These key nodes in the metabolic
network represent potential therapeutic targets that could be
utilized for the reversal of MDR for breast cancer.
Discussion

Lipids are known to possess diverse biological functions such as
energy storage, structural composition of cell membranes, and
signal transduction.23 It's demonstrated that the disorder of
This journal is © The Royal Society of Chemistry 2018
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Fig. 5 The heat map of metabolite levels in MCF-7/ADR and parental
cells. The columns represent samples in different experimental
conditions, and the rows represent different biomarkers. Different
colors represent the concentrations in different samples.

Fig. 4 The MS/MS experiment of m/z 540.5350 in positive ion. (A) is
the extracted ion chromatogram (EIC) of m/z 540.5350, (B) is the MS2

spectrum mode.
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lipids is related to a variety of diseases including cancer,
obesity, diabetes and neurodegenerative diseases.24 So, in this
study, we adopt a MTBE-based method to prole intracellular
metabolites and lipids in MCF-7/ADR and parental MCF-7 cells
by UPLC-Q-TOF-MS. The metabolic pathways related to lipid
metabolism involving sphingolipid metabolism, glycer-
ophospholipid metabolism and arachidonic acid metabolism
as well as antioxidant pathway were revealed as the most
important altered metabolic pathways in terms of the changes
of metabolites in these pathways.

Meanwhile, AFM was used to observe the changes of
microstructure of cellular membrane surface and the cell size.
The cell surface roughness was applied to further understand
the changes of the cell membrane surface induced by the MDR.
The data indicated that the topographical heterogeneity existed
on the membrane surface of cells, due to the higher valves of
surface roughness at the edge region than the ones at the centre
region. Moreover, the cell membrane architecture of MCF-7/S
cell was relatively smooth, less protrusions were on the cell
membrane surface than MCF-7/ADR cell, may be attributed to
the overexpression of the ATP-binding cassette (ATP) proteins
pumping the drugs out of the cells. It has been reported that the
protruding particles correspond to membrane proteins or to
protein-lipid complexes.25 Therefore, the cellular membrane,
affecting the permeability to drugs and protein exposure, could
serve a target for reversal of drug resistance.
Fig. 6 Metabolic pathway analysis of breast cancer cells affected by
the MDR. The color and size of each circle is based on the p level for
Student's t-test and pathway impact value, respectively.
Sphingolipid metabolism

Sphingolipids are the major lipid constituents of cellular
membranes. Sphingolipids contain sphingomyelins and glyco-
sphingolipids (cerebrosides, sulfatides, globosides and gangli-
osides). The intermediates of sphingolipids metabolism, such
as ceramide, dihydroceramide, sphinganine, and sphingosine,
have various effects on cellular processes including cell growth,
cell invasion, apoptosis and the others, but the effects were
different according to the type of fatty acids attached to the
sphingosine backbone.26
15838 | RSC Adv., 2018, 8, 15831–15841
Dihydroceramide, an intermediate of sphingolipid meta-
bolic pathway, is generated by de novo synthesis of ceramide in
the endoplasmic reticulum (ER). It plays roles in autophagy,
hypoxia, and cellular proliferation and has been associated with
many diseases.27 It can inhibit mitochondrial ceramide channel
formation and reduce the permeabilisation of the outer
membrane and apoptosis, which is favorable for tumor cells.28,29

So, dihydroceramide is a type of antiapoptotic substance, but
the role of dihydroceramide in apoptosis is controversial, which
may be associated with the chain length and degree of
This journal is © The Royal Society of Chemistry 2018



Fig. 7 Network of the identified potential biomarkers associated with MDR. The metabolites, genes, enzymes, and reactions are represented by
a hexagon, ellipse, round rectangle, and diamond. The size of the node represents the direction of the change of metabolite in the MCF-7/ADR
cells compared with the parental cells. The input compounds are filled with red. Node with centrality values (centroid and betweenness) greater
than the threshold value is filled with dark blue. The potential biomarker with centrality values greater than the threshold value is shown in red
border.
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unsaturation of fatty acid linked to dihydroceramide. Moreover,
reactive oxygen species (ROS) generation could trigger dihy-
droceramide production, as the oxidative stressors hydrogen
peroxide, menadione, or tert-butyl-hydroperoxide could
increase dihydroceramide levels in various immortalized cell
lines.27 Furthermore, increased ROS levels in cancer cells have
been found and are related to tumor resistance to chemo-
therapy by regulating P-gp and other multidrug resistant
proteins expression, but the correlation between ROS and drug
resistant proteins lacks enough evidence.30

Glycerophospholipids metabolism

It can be seen that one of the most signicant alterations
resulted from drug resistance is the decrease in PCs contents.
This journal is © The Royal Society of Chemistry 2018
Glycerophospholipids are also the main components of the
cell membranes, directly affecting the physiological function of
cells. Changes in the concentrations of phospholipids indicate
the changes of cell membrane composition and permeability,
which will affect the normal physiological function of cells. So
the change of phospholipid content well reects the disorders
of lipid metabolism in vivo, and is a very important biological
indicator. Lysolipids and fatty acids are the natural products of
lipid hydrolysis by phospholipases. Moreover, the intra-
mitochondrial oxidation of fatty acids is an important energy
source for growth and proliferation of cells.

The lower contents of phosphatidylcholines (PCs) and lyso-
phosphatidylcholines (LPCs) were found in the MCF-7/ADR
cells compared with the MCF-7/S cells. PCs are the major and
RSC Adv., 2018, 8, 15831–15841 | 15839
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important components of cell membrane, and lysoPCs and fatty
acids are the hydrolysates of glycerophospholipids in the reac-
tion catalyzed by phospholipase A2 (PLA2). Decreased levels of
PCs indicated that the metabolism of this membrane phos-
pholipid PCs could be enhanced, and increased activity of PLA2
may be responsible for this phenomenon. Meanwhile, the
changes of PC contents could affect the structure and properties
of cell membranes. The uidity of cell membrane is propor-
tional to the cell permeability of the drug. The higher levels of
long-chain saturated fatty acids in the biological membrane
could decrease the cell membrane uidity, because those fatty
acids are more rmly packed and form stronger van der Walls
interactions with each other, resulting in the increased rigidity
of the cell membranes.31 In addition, the increase of cholesterol
and sphingomyelin (SM) could also cause the decrease of cell
membrane uidity.32 Furthermore, functional alterations may
be caused by protein position changes, arising from changes in
structural cell membrane induced by modication in cell
uidity, like an alteration in exposure or function of the P-gp,
thereby mediating drug resistance.33 So the decrease of PC
and the increase of dihydroceramide associated with SMmay be
responsible for the decreased cell permeability to drug. And the
ultrastructure analysis of the membrane surface also demon-
strated that the membrane did change along with the MDR.

LysoPCs can be further metabolized by lysophospholipase to
fatty acids and choline, suggesting that lysoPCs may act as
carriers of fatty acids in addition to being glycerophospholipid
metabolism intermediates. The decreased levels of lysoPCs
indicated that a higher metabolism rate existed in the drug-
resistant MCF-7/ADR cells. Moreover, lysoPCs have cytolytic and
membrane perturbing properties,34 and are believed to be rapidly
acylated with acetyl-CoA to maintain normal membrane
composition,35 so the levels of lysoPCsmust be strictly controlled.
Arachidonic acid metabolism

The arachidonic acid metabolism was disturbed according to
the drug resistance effect on thromboxane metabolite in the
MCF-7/ADR cells. Thromboxane (TX) belonging to the category
of prostanoids, which also include prostaglandin (PG), is an
important bioactive lipid mediator that is responsible for
various physiological and pathological processes including
inammation and cancer. Thromboxane (TX) is synthesized
from the prostaglandin H2 (PGH2) by thromboxane synthase
(TXAS), and PGH2 is biosynthesized from arachidonic acid via
the cyclooxygenase-2 (COX-2). And thromboxane is released to
the extracellular space to work in an autocrine or paracrine
manner by binding to cell surface receptors. The release process
was regulated by multidrug resistance-associated proteins
(MRPs).36 Previous research also found that COX-2 could up-
regulate the expression of P-glycoprotein in drug-resistant
human cancer cells, and the selective COX-2 inhibitors could
reverse the drug resistance.37 In addition, overexpression of
TXAS has been found in both squamous cell carcinoma and
transitional cell carcinoma of the bladder and TXAS inhibition
could enhance cells sensitivity to the chemotherapeutic
agents.38
15840 | RSC Adv., 2018, 8, 15831–15841
Antioxidant pathway (5-oxoproline and alpha-tocotrienol)

5-oxoproline (pyroglutamate) is converted to glutamate by 5-
oxoprolinase, which is related with glutathione (GSH) recycling.
Although, the levels of GSH were not detected, it could be
speculated that the lower 5-oxoproline levels observed in the
MCF-7/ADR cells were related to the changes of glutathione
concentrations. One of mechanisms involved in adriamycin
action is the free oxygen radical generation.39 And GSH plays an
important role in removing these free radicals.40 Furthermore,
GSH can react with a wide range of reactive electrophiles
including antineoplastic drugs such as vincristine (VCR) and
adriamycin (ADR) under the catalyzation of glutathione-s-
transferase (GST) to form GSH conjugates and these GSH
conjugates may be pumped out by the multidrug resistance-
associated protein (MRP), whereby causing a lower intracel-
lular level than that necessary for cytotoxicity in the tumor
cells.41 Thisis also the most widely investigated MDR mecha-
nism, which drugs are pumped out of the tumor cells by one or
more energy-dependent transporters, such as glycoprotein P (P-
gp/ABCB1) and MRP. Accordingly, GSH is consider as an
important antioxidant and scavenger of toxicant. Therefore, the
levels of 5-oxoproline are correlated with anti-oxidative and
detoxifying capacity, which affect effectiveness of adriamycin
treatment.

Alpha-tocotrienol is a member of the vitamin E family, which
comprises a-, b-, g-, and d-tocopherols as well as a-, b-, g-, and d-
tocotrienols. And tocotrienols are currently receiving more
attention because of the antioxidative, hypocholesterolemic,
and anti-cancer activities. However, in low concentrations a-
tocotrienol had little effect on proliferation and apoptosis of
human breast cancer cells.42

According to the above-mentioned discussion, adriamycin-
resistant cells were more energetic in the anti-oxidation,
detoxication and the regulation of proliferation and
apoptosis-related signaling than adriamycin-sensitive cells.
Conclusion

In this study, signicant metabolic changes were observed
between multidrug resistant cells and drug sensitive cells by
using an UPLC-Q/TOF-MS-based metabolomic technique,
which were mainly involved in some important metabolic
pathways, such as glycerophospholipid metabolism, sphingo-
lipid metabolism, arachidonic acid metabolism as well as
antioxidant pathways. The adriamycin-resistant cells are better
in the anti-oxidation, the regulation of proliferation and
apoptosis-related signaling and the detoxication than the
adriamycin-sensitive cells. And the results were also interpreted
by MTT assay and AFM assay, showing that MCF-7/ADR cells
developedMDR and the cellular membrane also changed due to
the MDR. Moreover, it has been demonstrated that the alter-
ations in phospholipid composition of cell membrane, espe-
cially glycerophospholipids and sphingolipids could change the
uidity and structure of cell membrane, so lipids are vital in the
formation of MDR. Targeting the glycerophospholipids and
sphingolipids metabolism could be an approach to reverse
This journal is © The Royal Society of Chemistry 2018
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MDR. Additionally, the metabolic changes observed in the
present studymay help us to reveal themolecular mechanism of
multidrug resistance and serve for early diagnosis.

Conflicts of interest

There are no conicts to declare.

Acknowledgements

The work was supported by the National Natural Science
Foundation of China (No. 81773690, 81373952).

Notes and references

1 H. Wang, T. Vo, A. Hajar, S. Li, X. Chen, A. M. Parissenti,
D. N. Brindley and Z. Wang, BMC Cancer, 2014, 14, 37–51.

2 R. Misra, M. Das, B. S. Sahoo and S. K. Sahoo, Int. J. Pharm.,
2014, 475, 372–384.

3 A. T. Lucas, S. K. O'Neal, C. M. Santos, T. F. White and
W. C. Zamboni, J. Pharm. Biomed. Anal., 2016, 119, 122–129.

4 R. Zhang, X. Zhuang, L. Zong, S. Liu, Z. Liu and F. Song, Anal.
Bioanal. Chem., 2016, 408, 5843–5854.

5 G. Kibria, H. Hatakeyama and H. Harashima, Arch.
Pharmacal Res., 2014, 37, 4–15.

6 L. Galluzzi, I. Vitale, J. Michels, C. Brenner, G. Szabadkai,
A. Harel-Bellan, M. Castedo and G. Kroemer, Cell Death
Dis., 2014, 5, e1257–e1274.

7 M. Videira, R. L. Reis and M. A. Brito, Biochim. Biophys. Acta,
2014, 1846, 312–325.

8 C. A. Vilanova-Costa, H. K. Porto, L. C. Pereira,
B. P. Carvalho, W. B. Dos Santos and P. Silveira-Lacerda
Ede, Biol. Trace Elem. Res., 2015, 163, 39–47.

9 S. Karthikeyan and S. L. Hoti, Anti-Cancer Agents Med. Chem.,
2015, 15, 605–615.

10 A. Zhang, H. Sun, G. Yan, P. Wang and X. Wang, BioMed Res.
Int., 2015, 2015, 354671–354676.

11 S. Wang, X. Chen, H. Luan, D. Gao, S. Lin, Z. Cai, J. Liu,
H. Liu and Y. Jiang, Rapid Commun. Mass Spectrom., 2016,
30, 533–542.

12 G. van Meer, EMBO J., 2005, 24, 3159–3165.
13 L. Yang, X. Cui, N. Zhang, M. Li, Y. Bai, X. Han, Y. Shi and

H. Liu, Anal. Bioanal. Chem., 2015, 407, 5065–5077.
14 K. A. Ahmed and P. Chinnaiyan, Metabolites, 2014, 4, 740–

750.
15 C. M. Rocha, A. S. Barros, B. J. Goodfellow, I. M. Carreira,

A. Gomes, V. Sousa, J. Bernardo, L. Carvalho, A. M. Gil and
I. F. Duarte, Carcinogenesis, 2015, 36, 68–75.

16 C. D. Hart, L. Tenori, C. Luchinat and A. Di Leo, Adv. Exp.
Med. Biol., 2016, 882, 217–234.

17 M. L. Doria, A. S. Ribeiro, J. Wang, C. Z. Cotrim,
P. Domingues, C. Williams, M. R. Domingues and
L. A. Helguero, FASEB J., 2014, 28, 4247–4264.

18 T. Kuhn, A. Floegel, D. Sookthai, T. Johnson, U. Rolle-
Kampczyk, W. Otto, M. von Bergen, H. Boeing and
R. Kaaks, BMC Med., 2016, 14, 13–21.
This journal is © The Royal Society of Chemistry 2018
19 V. Matyash, G. Liebisch, T. V. Kurzchalia, A. Shevchenko and
D. Schwudke, J. Lipid Res., 2008, 49, 1137–1146.

20 S. Chen, M. Hoene, J. Li, Y. Li, X. Zhao, H. U. Haring,
E. D. Schleicher, C. Weigert, G. Xu and R. Lehmann, J.
Chromatogr. A, 2013, 1298, 9–16.

21 A. K. Adya, E. Canetta and G. M. Walker, FEMS Yeast Res.,
2006, 6, 120–128.

22 C. Z. Ulmer, R. A. Yost, J. Chen, C. E. Mathews and
T. J. Garrett, J. Proteomics Bioinf., 2015, 8, 126–132.

23 S. B. Breitkopf, S. J. H. Ricoult, M. Yuan, Y. Xu, D. A. Peake,
B. D. Manning and J. M. Asara, Metabolomics, 2017, 13, 30–
50.

24 C. Y. Wang, M. Wang and X. L. Han, Mol. BioSyst., 2015, 11,
698–713.

25 H. Bai, H. Jin, F. Yang, H. Zhu and J. Cai, Scanning, 2014, 36,
622–631.

26 T. Sassa, S. Suto, Y. Okayasu and A. Kihara, Biochim. Biophys.
Acta, 2012, 1821, 1031–1037.

27 M. M. Siddique, Y. Li, B. Chaurasia, V. A. Kaddai and
S. A. Summers, J. Biol. Chem., 2015, 290, 15371–15379.

28 P. Breen, N. Joseph, K. Thompson, J. M. Kraveka, T. I. Gudz,
L. Li, M. Rahmaniyan, J. Bielawski, J. S. Pierce, E. Van Buren,
G. Bhatti and D. Separovic, Anticancer Res., 2013, 33, 77–84.

29 J. Shi, J. Zhou, H. Ma, H. Guo, Z. Ni, J. Duan, W. Tao and
D. Qian, Anal. Bioanal. Chem., 2016, 408, 1413–1424.

30 S. Galadari, A. Rahman, S. Pallichankandy and
F. Thayyullathil, Free Radical Biol. Med., 2017, 104, 144–164.

31 A. M. Campos, E. Maciel, A. S. Moreira, B. Sousa, T. Melo,
P. Domingues, L. Curado, B. Antunes, M. R. Domingues
and F. Santos, J. Cell. Physiol., 2016, 231, 1024–1032.

32 I. N. Todor, N. Y. Lukyanova and V. F. Chekhun, Exp. Oncol.,
2012, 34, 97–100.

33 J. Leibovici, O. Klein, Y. Wollman, N. Donin, T. Mahlin and
M. Shinitzky, Biochim. Biophys. Acta, 1996, 1281, 182–188.

34 X. Gao, M. Guo, Q. Li, L. Peng, H. Liu, L. Zhang, X. Bai,
Y. Wang, J. Li and C. Cai, PLoS One, 2014, 9, e100017–100026.

35 K. Klavins, T. Koal, G. Dallmann, J. Marksteiner, G. Kemmler
and C. Humpel, Alzheimer's Dementia, 2015, 1, 295–302.

36 A. Furugen, H. Yamaguchi, N. Tanaka, N. Shiida, J. Ogura,
M. Kobayashi and K. Iseki, Prostaglandins Other Lipid
Mediators, 2013, 106, 37–44.

37 H. B. Xu, F. M. Shen and Q. Z. Lv, Eur. J. Pharmacol., 2016,
776, 1–8.

38 O. Moussa, J. M. Riker, J. Klein, M. Fraig, P. V. Halushka and
D. K. Watson, Oncogene, 2008, 27, 55–62.

39 B. Cao, M. Li, W. Zha, Q. Zhao, R. Gu, L. Liu, J. Shi, J. Zhou,
F. Zhou, X. Wu, Z. Wu, G. Wang and J. Aa, Metabolomics,
2013, 9, 960–973.

40 Y. Liu, T. Chen, M. H. Li, H. D. Xu, A. Q. Jia, J. F. Zhang and
J. S. Wang, Chemosphere, 2015, 138, 537–545.

41 G. Rocha Gda, R. R. Oliveira, M. A. Kaplan and C. R. Gattass,
Eur. J. Pharmacol., 2014, 741, 140–149.

42 R. Loganathan, K. R. Selvaduray, K. Nesaretnam and
A. K. Radhakrishnan, Cell Proliferation, 2013, 46, 203–213.
RSC Adv., 2018, 8, 15831–15841 | 15841


	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a
	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a
	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a
	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a
	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a
	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a
	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a
	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a
	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a
	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a

	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a
	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a
	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a
	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a
	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a
	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a

	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a
	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a
	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a
	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a
	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a

	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a
	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a
	Metabolomics analysis of multidrug-resistant breast cancer cells in vitro using methyl-tert-butyl ether methodElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12952a


