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Abstract

Gene selection in unannotated large single cell RNA sequencing (scRNA-seq) data is impor-

tant and crucial step in the preliminary step of downstream analysis. The existing approaches

are primarily based on high variation (highly variable genes) or significant high expression

(highly expressed genes) failed to provide stable and predictive feature set due to technical

noise present in the data. Here, we propose RgCop, a novel regularized copula based

method for gene selection from large single cell RNA-seq data. RgCop utilizes copula corre-

lation (Ccor), a robust equitable dependence measure that captures multivariate dependency

among a set of genes in single cell expression data. We formulate an objective function by

adding l1 regularization term with Ccor to penalizes the redundant co-efficient of features/

genes, resulting non-redundant effective features/genes set. Results show a significant

improvement in the clustering/classification performance of real life scRNA-seq data over the

other state-of-the-art. RgCop performs extremely well in capturing dependence among the

features of noisy data due to the scale invariant property of copula, thereby improving the sta-

bility of the method. Moreover, the differentially expressed (DE) genes identified from the

clusters of scRNA-seq data are found to provide an accurate annotation of cells. Finally, the

features/genes obtained from RgCop is able to annotate the unknown cells with high

accuracy.

Author Summary

The existing approaches for gene selection which are based on high variation (highly vari-

able genes) or significant high expression (highly expressed genes), failed to provide a sta-

ble and predictive feature/gene set. Since single cell data is susceptible to technical noise,

the quality of genes selected prior to clustering is of crucial importance in the preliminary

steps of downstream analysis. Here, we propose a novel regularized copula based method

for gene selection that leverage copula correlation (Ccor) measure for capturing cell-to-cell

variability within the data. The proposed objective function uses an l1 regularization term

to penalizes the redundant co-efficient of features/genes. We got significant improvement

in the clustering/classification performance of cells over the other state-of-the-art. Due to

the scale-invariant property of copula RgCop is impervious to technical noise, an acute

issue associated with scRNA-seq data analysis. Moreover, the selected features/genes can
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be able to determine the unknown cells with high accuracy. Finally, RgCop can be applica-

ble for identifying rare cell clusters or minor subpopulations within the single cell data.

This is a PLOS Computational BiologyMethods paper.

Introduction

With the advancement of single cell RNA-seq (scRNA-seq) technology a wealth of data has

been generated allowing researchers to measure and quantify RNA levels on large scales [1].

This is important to get valuable insights regarding the complex properties of cell type, which

is required for understanding the cell development and disease. A key goal of single cell RNA-

seq analysis is to annotate cells within the cell clusters as efficiently as possible. To do this, the

basic goal would be to select a few informative genes that can lead to a pure and homogeneous

clustering of cells [2, 3]. The task of selecting effective genes among all gene panel that can pre-

cisely discriminate cell type labels can be regarded as a combinatorially hard problem.

The usual approach for annotating cells is to cluster them into different groups which are

further annotated to determine the identity of cells [4, 5]. This is considered a popular and

unsupervised way of annotating different types of cells present in a large population of scRNA-

seq data [6–8]. The general pipeline of downstream analysis of scRNA-seq data typically goes

through several steps. Starting from the processing of the raw count matrix, the scRNA-seq

data is going through the following steps: i) normalization (and quality control) of the count

matrix ii) feature selection, and iii) dimensionality reduction [2, 9]. The first step is necessary

to adjust discrepancies between samples of individual cells. Several quality measures are also

applied to reduces the skewness of the data. The next step identifies the most relevant features/

genes from the normalized data. The relevant genes are either selected by identifying the varia-

tion (highly variable genes) [10] or can be selected by calculating the expression levels across

all cells which are higher than the average value (highly expressed genes).

The selection of top genes has a good impact on the cell clustering process in the later stage

of downstream analysis [2, 11]. A good clustering can be ensured by the following characteris-

tics of features/genes [12]: the features/genes should have useful information about the biology

of the system, while not including features containing any random noise. Thereby the selected

features/genes reduce the data size while preserving the useful biological structure, reducing

the computational cost of later steps.

The usual approach of gene selection is based on the high variability of the gene expression

label of scRNA-seq data. This process is simple and suffers from several disadvantages: i) as the

expression variability is dependent on pseudo-count, it can introduce biases in the data, ii)

Next, PCA is applied in downstream analysis for dimensionality reduction which is not suit-

able for sparse and skewed scRNA-seq data.

In this paper, we present a method for finding the most informative features/genes from

large scRNA-seq datasets based on a robust and equitable dependence measure called copula

correlation (Ccor). Although the major applications of copula can be found in the domain of

time series, finance, and economics, but it is now ripe for application in different domain of

bioinformatics such as for modeling directional dependence of genes [13], finding differen-

tially co-expressed genes [14] high dimensional clustering for identification of sub-populations

of patients selection [15] and many more. However, the application of copula in single cell

domain, particularly on gene selection is less explored.
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In this paper, we show that employing a simple l1 regularization term with the proposed

objective function, will improve the performance of any clustering/classification model signifi-

cantly. The objective function is utilized a new robust-equitable copula correlation (Ccor)

measure on one hand and a regularization term to control the coefficient on other hand. Thus

it is robust due to regularization and not susceptible to noise due to scale-invariant property

copula. RgCop has major advantages both in clustering/classifying unknown samples and in

the identification of meaningful marker detection. The latter point is addressed because novel

marker genes for different cell types are identified with the cell clusters. Biologically meaning-

ful marker selection is usually an important step in the downstream analysis of scRNA-seq

analysis. This depends on the homogeneity of the cell clusters identified after the gene selection

stage. Our proposed method selects the most informative genes that ultimately leads to a

homogeneous grouping of cells of the large scRNA-seq data.

Beyond selecting a good informative gene set that leads good clustering/classification of

cells, we also demonstrate that our method performs well in completely independent data of

the same tissue. We demonstrate this by evaluating the performance of the selected features in

completely unknown test samples. We observed that the selected features are equally effective

for clustering/classifying the unknown test samples. We further carry out a simulation study

on synthetic generated single cell data using splatter to establish the effectiveness of the pro-

posed method. The results show that the proposed method not only select genes with high

accuracy, but is also robust and less susceptible to noise.

Summary of contributions. The main contributions of the paper are summarized below:

• We provide first regularized copula correlation (Ccor) based robust gene selection

approaches from large scRNA-seq expression data. This robustness is a characteristic of our

proposed objective function. The method also works equally well for the small sample and

large feature scRNA-seq data.

• We derive a new objective function using the copula correlation and regularization term,

and theoretically prove that the selected feature set is optimal with respect to the minimum

redundancy criterion.

• The objective function of RgCop is designed to simultaneously maximize the relevancy crite-

rion and minimize the redundancy criterion among the two sets of features/genes. The regu-

larization term is also added with the objective function so as to control the large coefficient

of the relevancy term.

• RgCop is able to effectively cluster/classify unseen scRNA-seq expression data. Annotating

unknown cells is crucial and is the final goal of scRNA-seq data analysis. We demonstrate

the applicability of our framework in this case. We demonstrate that the selected features are

effective for clustering completely unseen test data. The annotation of cells can also be done

in a supervised way if one can train a classification model with the selected features.

• Our method is less sensitive (robust) against the noises present in the scRNA-seq data. The

objective function uses copula-correlation, a robust-equitable measure which has the advan-

tage of capturing the multivariate dependency between two sets of random variables.

Results

Workflow

Fig 1 provides a workflow of the whole analysis performed here. Following subsections dis-

cussed the important steps:
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A. Preprocessing of raw datasets. See -A of panel-‘RgCop framework for gene selection’

of Fig 1. Raw scRNA-seq datasets are obtained from public data sources. The counts matrix

M 2 Rc�g
, where c is number of cells and g represents the number of genes, is normalized

using a transformation method (Linnorm) [16]. We choose that cells which have more than a

thousand genes expression values (non zero values) and choose that genes which have the min-

imum read count greater than 5 in at least 10% among all the cells. log2 normalization is

employed on the transformed matrix by adding one as a pseudo count.

B. RgCop framework for feature selection. See -B of panel-‘RgCop framework for gene

selection’ of Fig 1. The preprocessed data is used in the proposed copula-correlation (Ccor)

Fig 1. The whole workflow of the methodology. RgCop framework for gene selection is provided in the top panel. Clustering and

classification is performed with the genes obtained from RgCop to validate the method (shown in the middle panel). RgCop is

validated for detection of unknown sample by splitting the data into train-test ratio of 8:2 (shown in the bottom panel). The test data

is utilized for validation of the selected genes by RgCop.

https://doi.org/10.1371/journal.pcbi.1009464.g001
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based feature/gene selection models. First, a feature ranking is performed based on the Ccor
scores between all features and class labels. We assume the feature having a larger Ccor value is

the most relevant one and we include it in the selected list. Next, Ccor is computed between

the selected relevant features and the remaining features. The feature with a minimum score is

called the most essential (and not redundant) feature and included in the selected list. The pro-

cess continued in an iterative way by including the most relevant and minimum redundant

features in each step every time in the list. Feature selection in this way ensures the list of genes

will be optimal (see proof of correctness). An l1 regularization term is added with the objective

function to penalize the large coefficient of relevancy term. The resulting matrix with selected

features is utilized for further downstream analysis.

C. Validation through clustering. See panel-‘validation-A’ of the Fig 1. We adopt the

conventional clustering steps of scanpy [17] package to cluster the resulting matrix obtained

from the previous step. We employed two clustering techniques (SC3 [4], and Leiden cluster-

ing [18]) for clustering the neighborhood graph of cells. To validate the clusters we utilize the

Adjusted Rand Index (ARI) metric which is usually used as a measure of agreement between

two partitions. We compare the ARI score of RgCop with different state-of-the-art unsuper-

vised feature selection method.

D. Validation through classification. See panel-‘validation-A’ of the Fig 1. We validate

the selected features by employing several classifiers to train the resulting matrix obtained

from step-B of the RgCop workflow. The features are selected by four widely used supervised

feature selection algorithm and the classification accuracy are compared with RgCop (see the

subsection Comparison with State-of-the-art).

E. Annotating unknown cells. See panel-‘validation-B’ of the Fig 1. The selected genes

obtained from RgCop is able to cluster/classify cells of unknown type. The filtered and prepro-

cessed data is divided into train-test ratio 8:2 and the train set is utilized to obtain the selected

features using RgCop. Several classifier models are trained on the train set with the selected fea-

ture set and applied to the test set. The test data with selected features are also used for cluster-

ing. This provides the validation of our approach to work in practice.

F. Marker identification. We detect highly differentially expressed (DE) genes within

each cluster obtained from step-C in the workflow. Here we utilize Wilcoxon Ranksum test to

identify DE genes in each cluster. The top five DE genes are chosen from each cluster accord-

ing to their p-values.

Performance on synthetic scRNA-seq data

For single-cell clustering the most common challenge is to discriminate samples between

major cell types and its sub-types. Samples of similar cell types tend to overlap within one clus-

ter, discriminating of which required sophisticated method that can extract features from over-

lapped samples. To explore whether RgCop can address this issue we apply it on simulated

data generated by a widely used method called Splatter [19]. We make four experimental setup

(S1 to S4) to comprehensively evaluate RgCop. Splatter is utilized to generate the data in each

case.

S1: generated four groups of 500 cells with the sample ratio of 10 : 10 : 10 : 70. Low dropout

rate is set (* 0.2) over 2000 genes.

S2: generated four equal-sized groups of cells, each group consisting 25% of the total (500)

cells, over 2000 genes at a high dropout rate (* 0.5).

S3: generated four groups of 500 cells, with the sample ratio 10 : 10 : 10 : 70 over 2000 genes

with a high dropout rate (* 0.5).
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S4: generated four equal-sized groups of 500 cells over 2000 genes at a low dropout rate

* 0.2.

The proportions of differentially expressed (DE) genes in S1 to S4 were selected as 40%,

40%, 10%, 10% respectively. The details of the simulation settings are shown in Table 1.

To tune the regularization parameter γ (see Eq 6), the feature selection process is repeated

for nine set of values ranging from 0 to 0.5 (γ = {0, 0.002, 0.005, 0.009, 0.02, 0.07, 0.09, 0.3, 0.5},

see Method section for explanation). We trained random forests classifier to measure overall

accuracy over 100 simulation replicates. Table 2 reports median accuracy for the nine γ-values

in four simulation setups. High accuracy is observed for the γ-parameter in the range of

γ 2 [0.07, 0.3] (see Table 2). The selected range of γ values are utilized for the later stage of

analysis.

Comparison with state-of-the-art

We compared the efficacy of RgCop by comparing with four well known techniques for identi-

fying highly dispersed genes in scRNA-seq data: Gini Clust [20], PCA Loading [21], CV2 Index
and Fano Factor [22]. We also compared the performance of RgCop with four widely used

supervised feature selection techniques: CMIM [23], JMIM [24], DISR [25], MRMR [26]. A

short description of competing methods and parameter settings is described in the S1 Text,

sec-1.

Clustering performance on real dataset using unsupervised method. Here single cell

Consensus clustering (SC3) method [4] is employed for clustering expression matrix with

selected features. Fig 2, panel-A illustrates the boxplots of ARI Values of the clustering results

on Yan, Muraro, and Pollen datasets. We vary the number of selected features in the range

from 500 to 1000 and compute the ARI scores for each method. It can be seen from the figure

that RgCop achieves high ARI values in almost all the three datasets. For the Yan dataset, while

the performance of other methods is relatively low, RgCop achieves a good ARI value, demon-

strating the capability of RgCop to perform in small sample data. We also create a visualization

of the clustering performance of RgCop in Muraro, yan, and Pollen datasets. Fig 2B, shows two

dimensional t-SNE plot of predicted clusters and their original labels. Fig 2C shows heatmaps

of cell × cell consensus matrix representing how often a pair of cells is assigned to the same

cluster considering the average of clustering results from all combinations of clustering

Table 1. Four setups for generating simulated datasets using Splatter [19].

Setups Group Proportions (%) Dropout rate DE Gene Proportion (%)

S1 (10, 10, 10, 70) 0.2 40

S2 (25, 25, 25, 25) 0.5 40

S3 (10, 10, 10, 70) 0.5 10

S4 (25, 25, 25, 25) 0.2 10

https://doi.org/10.1371/journal.pcbi.1009464.t001

Table 2. Classification accuracy are reported for different values of γ using RgCop.

Method Classifier Setups q-Values

0 0.002 0.005 0.009 0.02 0.07 0.09 0.3 0.5

RgCop Random Forest S1 0.85 0.90 0.90 0.90 0.91 0.93 0.94 0.95 0.95

S3 0.78 0.81 0.80 0.81 0.81 0.84 0.87 0.90 0.89

S2 0.96 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.98

S4 0.86 0.90 0.91 0.91 0.90 0.90 0.90 0.98 0.97

https://doi.org/10.1371/journal.pcbi.1009464.t002
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parameter [4]. Zero score (blue) means two cells are always assigned to different clusters, while

score ‘1’ (red) represents two cells are always within the same cluster. The clustering will be

perfect if all diagonal blocks are completely red and off-diagonals are blue. A perfect match

between the predicted clusters and the original labels can be seen from panel-B and panel-C of

Fig 2.

Classification performance on real dataset using supervised method. We compare

RgCop with four well known supervised feature selection methods and compute the

Fig 2. Figure shows the comparisons of clustering performance. Panel-A shows the boxplot of ARI values computed from the

clustering results of each competing method. Each box represents ten ARI scores of clustering results for selected 6 sets of features

ranging from 500 to 1000. Panel-B shows the 2 dimensional UMAP visualization of clustering results of three datasets for RgCop.

Panel-C shows the consensus clustering plots of obtained clusters from RgCop.

https://doi.org/10.1371/journal.pcbi.1009464.g002
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classification accuracy. Three widely used classifiers are considered in our work, Neural Net-

work (NNET), Support Vector Machine (SVM), and Gradient Boosting Machine (GBM) for

learning the expression matrix with selected features. Table 3 shows the average test accuracy

and the corresponding standard errors over 50 runs for each of the competing methods.

Table 3. Classification results on real datasets using supervised methods.

Classifier Dataset Name MRMR DISR JMIM CMIM RgCop (γ = 0.3)

GBM Muraro 0.81 ± 0.05 0.79 ± 0.04 0.78 ± 0.010 0.8 ± 0.02 0.88 ± 0.009

Pollen 0.87 ± 0.03 0.82 ± 0.01 0.8 ± 0.05 0.82 ± 0.02 0.94 ± 0.002

Yan 0.97 ± 0 0.96 ± 0.02 0.97 ± 0.02 0.96 ± 0 0.98 ± 0.01

NNET Muraro 0.72 ± 0.02 0.71 ± 0.01 0.71 ± 0.05 0.74 ± 0.03 0.79 ± 0.07

Pollen 0.81 ± 0.01 0.82 ± 0.003 0.89 ± 0.02 0.80 ± 0.01 0.91 ± 0.02

Yan 0.99 ± 0.01 0.98 ± 0.02 0.98 ± 0.03 0.98 ± 0.003 0.99 ± 0.02

SVM Muraro 0.77 ± 0.04 0.78 ± 0.01 0.77 ± 0.011 0.79 ± 0.01 0.85 ± 0.01

Pollen 0.84 ± 0.06 0.85 ± 0.03 0.80 ± 0.03 0.81 ± 0.01 0.93 ± 0.001

Yan 0.98 ± 0.03 0.98 ± 0.02 0.96 ± 0.01 0.98 ± 0.04 0.98 ± 0.003

https://doi.org/10.1371/journal.pcbi.1009464.t003

Fig 3. Figure shows the median of SimilarityScore (percentage) of five different competing methods. Five iterations (iter1,iter2, iter3, iter4, iter5) are performed

with 100 repetition in each iteration to compute the median of SimilarityScore.

https://doi.org/10.1371/journal.pcbi.1009464.g003
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Results demonstrate that RgCop outperforms the other existing supervised feature selection

methods.

Stability performance

Protocols for preprocessing of scRNA-seq data are complex and often suffer from technical

biases that vary across cells. This causes biases in the downstream analysis if the noise is not

properly handled. RgCop utilizes copula which is well known for its scale invariance property

that makes it robust against noise in the data. To show the performance of RgCop in noisy data,

white Gaussian noise with a mean (μ = 0) and standard deviation 1 is mixed to each gene/fea-

ture of a dataset. The function Add.Gaussian.noise of R package RMThreshold is used to gener-

ate Gaussian noise. Next, relevant 500 genes/features are chosen from each of the noisy

datasets, and the percentage of matching is computed with the original genes/feature sets. We

define a matching feature score (percentage) as follows SimilarityScore = ((N − D)/N) � 100,

where N represents the total number of features, andD represents the number of feature dis-

crepancies between the original and noisy dataset. We perform 5 iterations, each contains 100

such experiments. For a competing method, each trial gives 100 scores for one dataset and the

median of these scores are shown in Fig 3. Each row of the figure shows bar plots of the median

values for three scRNA-seq datasets. It can be observed from the figure that RgCop achieves bet-

ter SimilarityScore for all the datasets, particularly for small sample data.

Classifying test samples using the selected features

Classifying new cell samples is crucial for the scRNA-seq data analysis pipeline. Here, we

address this by performing an analysis to show how the selected genes are important for dis-

criminating the unknown cell samples. We first split the data in train-test ratio of 8:2 and use

RgCop to select 500 most informative genes from the training set. Next, we train a random for-

est classifier with this data and retain the trained model. Table 4 shows the classification per-

formance of the trained model on the test sample using the selected genes as the feature set.

The experiment is repeated 100 times with a random split of train-test data with 8:2 ratio in

each case. High classification accuracy demonstrates that the selected feature sets are equally

important for discriminating the cells of the completely independent test samples.

Marker gene selection

We have chosen marker genes (DE genes) for different cell types from the clustering results.

Differentially Expressed (DE) genes are identified from every cluster using Wilcoxon rank-

sum test. We use this to directly assess the separation between distributions of expression pro-

files of genes from different clusters. Fig 4 illustrates the top five DE genes from each cluster of

Pollen dataset (panel-A), and Yan dataset (panel-B). The higher expression values of the top

five DE genes (shown in the heatmap of panel-A, B) for a particular cluster suggests the

Table 4. Classification accuracy on test datasets using RgCop.

Datasets Classifier RgCop

Yan Random Forest 0.94 ± 0.05

Muraro 0.88 ± 0.01

Pollen 0.97 ± 0.01

PBMC 0.67 ± 0.05

https://doi.org/10.1371/journal.pcbi.1009464.t004

PLOS COMPUTATIONAL BIOLOGY Regularized copula based gene selection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009464 October 19, 2021 9 / 19

https://doi.org/10.1371/journal.pcbi.1009464.t004
https://doi.org/10.1371/journal.pcbi.1009464


presence of marker genes within the selected gene sets. The results are detectable from violin

plots of the expression profiles of top DE genes within each cluster (Fig 4A and 4B).

To know how the identified DE genes can be utilized to annotate the cell cluster we per-

formed an analysis. We matched the cluster specific DE genes of PBMC data with experimen-

tally verified cell markers downloaded from CellMarker [27] and annotate the cell clusters

with a specific type. Table 5 shows the overlaps between identified DE genes with markers of a

specific type. We utilized these genes to annotate the cell clusters and compute the accuracy of

annotation. As the original labels are known, so we can verify the annotations with the original

Fig 4. Figure shows marker analysis for Pollen dataset (panel-A), and Yan dataset (panel-B). The average expression values

of the top five DE genes are shown in heatmap of panel-A, and -B. The violin plots of the expression profiles of those top DE

genes within each cluster are shown in panel-A and -B.

https://doi.org/10.1371/journal.pcbi.1009464.g004
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cell labels. High accuracy (acc = 0.78) reveals a good and approximately accurate annotation of

cell clusters of PBMC data.

Rare cell identification

We designed an experiment to evaluate the performance of RgCop to detect rare cellular iden-

tities. For this we used two scRNA-seq datasets, the first one is comprising 293T and Jurkat

cells mixed in vitro [28] and the second one is PBMC68K. After applying RgCop, the selected

features are used for clustering the datasets. For PBMC68k we utilized a graph based clustering

technique (‘Leiden’ Algorithm) which is frequently used in most of the standard pipelines for

scRNA-seq data analysis like Seurat and scanpy. For the simulated data consisting of JurKat

and 293T cells we used a simple k-means algorithm with k = 2. We observed that the identified

genes have the ability to discover CD14+ monocytes (4.8% of the total cells) and Dendritic

subtypes (2.7% of the total cells) from PBMC68k (Fig 5A and 5B) and Jurkat cells (2.5% of the

total cells) (Fig 5C and 5D) from the simulated data. The higher adjusted rand index for the

PBMC68k clustering (see Fig 5E) also supports the efficacy of RgCop to use in single-cell

clustering.

RgCop is robust for data with different batches

To know the efficacy of RgCop in data of different batches we performed this analysis. We

downloaded two processed datasets from the github repository (https://github.com/

JinmiaoChenLab/Batch-effect-removal-benchmarking) of Tran et al. [29]. The first one con-

sists of human blood dendritic cell (DC) cells analyzed with Smart-Seq2 technology in two

batches. Both of the batches share 96 pDC and 96 double negative cells. Each batch has one

biologically similar unshared cell type: CD141 cells and CD1C cells present in the first batch

and second batch respectively. Both batches consist of 288 cells and 16,594 genes. We applied

RgCop in the first/second batch and cluster the second/first batch with the selected genes. In

both cases, we got high ARI scores (0.819 and 0.877 for two cases respectively). The CD141

cells and CD1C cells are correctly discovered in respective batch using the selected genes. For

each case, we select 500 genes for clustering.

The second data is composed of three batches: 2885 cells of 293T cells are present in batch-

1, 3258 jurkat cells are in batch-2, and batch-3 consists of a 50/50 mixture of Jurkat and 293T

cells. The gene expression data contains 16,602 genes obtained using the 10x Genomics plat-

form. We select genes from batch-3 data using RgCop and cluster batch-1 and batch-2 sepa-

rately. We got an ARI score of 0.891 and 0.816 for batch-1 and batch-2 clustering respectively.

Table 5. Overlaps of cluster specific DE genes with markers of specific cell type.

Dataset cell type markers (pubmed id)

PBMC Regulatory T cell IL32 (30093597)

CD8 T cell CCL5 (30093597)

NK cells NKG7 (8458737), GNLY (12884856)

Effector CD8+ memory T cell GZMH (28622514)

Plasmacytoid dendritic cells GZMB (19965634)

CD4+ cytotoxic T cell CST7 (28622514)

B cell CD79A (11396639), CD37 (24952935)

Monocyte derived dendritic cells CST3 (19956698)

Megakaryocyte progenitors PPBP (27084257), PF4 (30645026)

https://doi.org/10.1371/journal.pcbi.1009464.t005
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A case study on ultra large scRNA-seq data

RgCop is applied on large single cell dataset consisting of 690k cells of Adult Mouse Brain [30].

We downloaded the Digital Gene Expression (DGE) matrices of cells from http://dropviz.org/.

Cells were first assigned to clusters and sub-clusters according to the cell_cluster_outcomes.
RDS files. Annotation of cells are incorporated based on the assigned clusters and sub-clusters

downloaded from https://storage.googleapis.com/dropviz-downloads/static/annotation.

BrainCellAtlas_Saunders_version_2018.04.01.RDS. We pre-processed the data using the stan-

dard pipeline used by Seurat. After preprocessing the data, RgCop selects 500 genes which are

utilized for clustering. Leiden graph-clustering method [18] are utilized to cluster the cells

with selected genes (see Fig 6B). Among the 19 cell types (see Fig 5A), RgCop can capture the

clusters with minor cells e.g. endothelial tip/stalk, polydendrocyte-1/2, mural (Fig 6C). More-

over, the clustering achieves higher ARI scores (ARI = 0.78),which shows the efficacy of

RgCop for selecting the discriminative features from ultra-large single cell data.

Execution time

All experiments were carried out on a Linux server having 50 cores and X86_64 platform. As

our proposed method is a wrapper-based step wise feature selection method, so it takes more

time than any filter-based feature selection technique (e.g. CV2 index, Gini−clust). To check

how the competing methods scale with the number of cells (and classes) we performed an

analysis. We have generated simulated data (using splatter) by varying the number of cells

Fig 5. Results of RgCop applied in PBMC68k and a simulated dataset consisting of JurKat and 293T cells. A and C: The tSNE based 2-dimensional

embedding of PBMC68K and the simulated data. B and D: Rare clusters identified using the features selected by RgCop. E: Comparisons of ARI scores

among all the competing methods (all supervised and unsupervised methods) in PBMC68K data.

https://doi.org/10.1371/journal.pcbi.1009464.g005

PLOS COMPUTATIONAL BIOLOGY Regularized copula based gene selection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009464 October 19, 2021 12 / 19

http://dropviz.org/
https://storage.googleapis.com/dropviz-downloads/static/annotation.BrainCellAtlas_Saunders_version_2018.04.01.RDS
https://storage.googleapis.com/dropviz-downloads/static/annotation.BrainCellAtlas_Saunders_version_2018.04.01.RDS
https://doi.org/10.1371/journal.pcbi.1009464.g005
https://doi.org/10.1371/journal.pcbi.1009464


(and classes). Four simulated data are generated with the number of cells and classes as follows:

500 cells with two classes, 1000 cells with three classes, 1500 cells with four classes, and 2000

cells with five classes. All data are generated with equal group probabilities, 2000 number of

features, fixed dropout rate (0.2), and 40% DE gene proportion. 500 features are selected in

each case and the runtime is compared with different competing methods. The execution time

(minute) for each dataset is given in Table 6.

Conclusions

The selection of informative genes in scRNA-seq data is crucial and an essential step for the

downstream analysis. Because of the large feature/gene set of scRNA-seq data, selecting impor-

tant genes is a challenging task which has an immense effect in clustering and annotation

results in the later stage of downstream analysis. The proposed method RgCop addressed this

Fig 6. Results of RgCop applied on adult mouse brain data of Saunders et al. [30]. A. Clustering of cells with original annotation. B. 19 cell clusters

are identified by Leiden graph clustering algorithm. Clustering is performed with 500 selected genes of RgCop. C. Some clusters contain minor cell

subpopulations such as Endothelial tip/stalk, polydendrocyte-1/2.

https://doi.org/10.1371/journal.pcbi.1009464.g006
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task by employing a robust and equitable dependence measure called copula-correlation

(Ccor). It can accurately measure relevancy and redundancy simultaneously between two sets

of gene. RgCop also add simple l1 regularization technique with its objective function to control

the large coefficients of relevancy terms. Realistic simulations confirm the utmost accuracy of

the RgCop in simulated single cell data. We also demonstrated that RgCop results high accuracy

both in clustering and classification performance with the selected genes from real-life scRNA-

seq datasets. The identified marker genes can also be able to dissect cell clusters, suggesting the

inclusions of marker genes within the selected sets. RgCop also performed well in the datasets

which are coming with different batches.

RgCop introduces a stable feature/gene selection which is evaluated by applying it in noisy

data. By virtue of the important scale invariant property of copula, the selected features are

invariant under any transformation of data due to the most common technical noise present

in the scRNA-seq experiment. The range of tuning parameter (regularization coefficient (λ)) is

determined using RgCop on synthetic single cell dataset generated from Splatter [19]. RgCop
also produces accurate clustering/classification results on four sc-RNA seq datasets. The results

are validated using ARI score/classification accuracy. The stability of RgCop is evaluated by

applying it in noisy data and matching the resulting feature set with the original one. This was

performed multiple times with varying number of selected features. The resulting ARI scores

utilize a minimum deviation suggesting a robust and stable approach for feature selection.

It can be noted that although RgCop primarily detect variable genes from scRNA-seq data,

we extended the process by employing a clustering/classification technique with it to annotate

unknown cells. The efficacy of RgCop is demonstrated by applying it to cluster/group

unknown cells with the selected genes/features. A precise annotation of cell clusters also illus-

trates the applicability of RgCop to select the most variable genes in the early stage. The most

general classifiers trained with the selected features can accurately predict the cell types of an

unknown sample. Several genes are highlighted having a high expression level within clusters,

which are acting as markers.

Taken together, the proposed method RgCop not only outperforms in informative gene

selection but also able to annotate unknown cells/cell-clusters in scRNA-seq data. It can be

observed from the results that RgCop leads both in the domain of robust gene/feature selection

and type annotation of unknown cell in large scRNA-seq. The results prove that RgCopmay be

treated as an important tool for computational biologist to investigate the primary steps of

downstream analysis of scRNA-seq data.

Method

Datasets description

Single cell RNA sequence datasets. The study used the following single-cell RNA

sequence datasets: Yan [31], Pollen [32], Muraro [33] and PBMC68k [1] (see Table 7). A

detailed description of the data is provided in the following text.

Table 6. Execution time in minute for five competing methods.

Datasets # Selected Feature # Cells # Class Execution Time (in Minute)

RgCop Gini Clust CV2 Index Fano PCA Loading

Data1 500 500 2 9 2 1 1 3

Data2 1000 3 13 2 1 1 7

Data3 1500 4 17 3 1 3 11

Data4 2000 5 20 5 3 5 14

https://doi.org/10.1371/journal.pcbi.1009464.t006
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• Yan: The dataset consists of a transcriptome of 124 individual cells from a human preim-

plantation embryo and embryonic stem cell. The 7 unique cell types accommodates labelled

4-cell, 8-cell, zygote, Late blastocyst, and 16-cell.[GEO under accession no. GSE36552; [31]].

We downloaded the processed data from https://hemberg-lab.github.io/scRNA.seq.datasets/

human/edev/ which contains 20214 features and 90 samples.

• Pollen: Single cell RNA seq pair-end 100 reads from single cell cDNA libraries were quality

trimmed using Trim Galore with the flags. It contains 11 cell types. [GEO accession no

GEO1832359; [32]]

• Muraro: Single-cell transcriptomics was carried out on live cells from a mixture using an

automated version of CEL-seq2 on live, FACS sorted cells. It contains 2126 number of cells.

It is a human pancreas cell tissue with 10 cell types. The dataset was downloaded from GEO

under accession no GSE85241 [33].

• PBMC68k: The dataset [1], is downloaded from 10x genomics website https://support.

10xgenomics.com/single-cell-gene expression/datasets. The data is sequenced on Illumina

NextSeq 500 high output with 20,000 reads per cell.

Background theory that supports RgCop
Short description on Copula. The ‘Copula’ term [34] is originated from a Latin word

copulare, which joins multivariate distributions to its one dimensional distribution function.

The copula is considerably employed in high dimensional datasets to obtain joint distributions

using uniform marginal distributions and vice versa. See S1 Text sec-2 for a detailed descrip-

tions of copula and its related measures.

Copula correlation measure. Let, Y = {y1, y2} and Z = {z1, z2} are two bivariate random

variables and their joint and marginal distributions areHYZ, FY(y) and, FZ(z) respectively.

NowHYZ can be expressed as:HYZ(y, z) = C(FY(y), FZ(z)), where C is a copula function.

Kendall tau(τ), the measure of association, [35] can be expressed in terms of concordance

and discordance between random variables. Kendall tau is the difference between probability

of concordance and discordance of (y1, y2) and (z1, z2). It can be described as

tYZ ¼ ½Pðy1 � y2Þðz1 � z2Þ � 0� � ½Pðy1 � y2Þðz1 � z2Þ � 0� ð1Þ

According to Nelson [36] Kendall tau can be expressed using copula function:

tðCY;ZÞ ¼ tYZ ¼ 4

Z Zþ1

0

Cðu; vÞ dCðu; vÞ � 1 ð2Þ

Where, u 2 FY(y) and v 2 FZ(z). τ(CY,Z) is termed as copula-correlation (Ccor) in our

study.

Table 7. A brief summary of the real scRNA sequence dataset.

Dataset Name Features Instances Class

Yan 20214 90 7

Muraro 19127 2126 10

Pollen 23794 299 11

PBMC 32738 68793 11

https://doi.org/10.1371/journal.pcbi.1009464.t007
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A note on regularization. Regularization is a type of regression that penalizes the coeffi-

cient of redundant feature towards zero [37] (see S1 Text sec-3 for detailed description). The

simplest regularization is l1 norm or Lasso Regression, which adds “absolute value of magni-

tude” of coefficient as penalty term to the loss function. For any vector A 2 Rm, the l1 norm is

jjAjj1 ¼ g
Pm

i¼1
jAij, where γ is a tuning parameter, controls penalization. For γ = 0 regulariza-

tion effect is none. When γ value increases, it starts to penalizes the larger coefficients to zero.

However, after a certain value of γ, the model starts losing important properties, increasing

bias in the model and thus causes under-fitting. We tuned γ using simulated single cell datasets

generated by the well known algorithm Splatter [19].

Gene selection using RgCop algorithm

Max relevancy. A gene gi is more relevant to class labels CD than another gene gj, if gi has

higher Ccor score with CD than gj. This is called Relevancy test for the genes [38] and is used to

select most relevant gene from a gene set. Formally it can be described as: gi� gj if the follow-

ing is true,

tðCgi ;CDÞ > tðCgj;CDÞ; ð3Þ

Where τ[C(x, y)] represents copula correlation between two random variable X and Y. For esti-

mating the copula density we have used empirical copula. The maximum-relevancy method

choose the gene (feature) subset among gene set G as

Gmax� relevancy ¼ arg max
gi2G

1

jGj

X

gi2G

tðCgi ;CDÞ: ð4Þ

Gmax−relevancy may contains genes that are mutually dependent. This is because we only con-

sider the Ccor between a gene and class labels, overlooking the mutual dependency among the

selected and non-selected genes. This results spurious genes in the selected list.

Min redundancy. Redundancy is a measure that computes the mutual dependence among

set random variables. Here we used the same definition of Ccor to compute multivariate depen-

dency between selected gene (gi) and non selected gene sets (gs). Formally it can be expressed as

Gmin� redundancy ¼ arg min
s:gs2S

tðCgi;gsÞ ð5Þ

Objective function. RgCop utilizes a forward selection wrapper approach to select gene

iteratively from a gene set. It uses multivariate copula-based dependency instead of the classical

information measure. The objective function integrates the relevancy and the redundancy

terms defined using the Ccor. Mathematically, it can be expressed as follows.

Let us assume genes (g1, . . ., gi) are in the selected list Gs. The next gene gi+1 2 (G − Gs) in at

(i+1) iteration is using the objective function

f ¼ arg max
gi2ðG� GsÞ

½ðtðCgi;CDÞ � tðCgi;g1;g2;���;gs
ÞÞ

þ gjjtðCgi ;CDÞ � VarðgiÞjj1�
ð6Þ

Where, tðCgi ;gjÞ ¼ ½4
RRþ1

0

Cðgi; gjÞ dCðgi; gjÞ � 1� is Kendall tau dependency score of Empiri-

cal copula between two genes gi and gj. Here, γ represents the regularization coefficient. An

overview of the RgCop algorithm is given in algorithm-1

Algorithm 1 l1 Regularized Copula Based Feature Selection (RgCop)
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Input: Preprocessed Data Matrix D, Cell Type CD, Number of Selected
Features, d.
Output: Optimal Feature subset,(Gs).
Initialisation:
Gs = ;, {T will hold sub-set feature indices.}
g1s  argmaxgi τ(Cgi,CD), {Maximum Relevancy}
for all i = 0 to (d − 1) do
E = ;
R  τ(Cgi;CD), {Relevancy Criterion}
S  τ(Cgi;g1s;. . .;gds), {Redundancy Criterion}
E  (R − S)
Gs  {Gs

S
arg max (limgi {E})

G  G − {gi}
end for
return Gs
Proof of correctness. Suppose Gs = {g1, g2, . . ., gi, gi+1, . . .gd} denotes a subset of genes

obtained from a gene set G using RgCop. Here gi represents selected gene at iteration i. We

claim that the set Gs is optimal.

Proof. Let us prove this by the method of contradiction. If we assume the claim is not

true, then there should exist some another optimal gene set G0s. Without loss of generality, let

us assume G0s has a maximum number of initial genes (i number genes) common with Gs.
Now G0s can be written as G0s ¼ fg1; g2; . . . ; gi; gk; . . . ; gdg. So, G0s contains {g1, g2, . . ., gi}

from Gs, but not gi+1. Following our assumption gi+1 cannot be included in any of the optimal

gene lists (G0s has maximum i number of initial genes overlapped with Gs).
Now we claim that k> (i + 1). This is because k cannot be equal to i+1, otherwise G0s would

have (i+1) genes overlapped with Gs. Similarly, k ≰ i, because otherwise G0s will contains redun-

dant genes.

Now by the definition of our objective function (f) we can write: f(gk)< f(gi+1). So we can

substitute gk with gi+1 in the G0s list, and the list will be still optimal. This contradicts our

assumption that gi+1 cannot be included in any optimal list. This proves our claim.

Supporting information

S1 Text. Supporting text. sec-1 describes different competing methods and parameter set-

tings, sec-2 describes description of copula in detail, sec-3 describes a short description of reg-

ularization techniques.

(PDF)

Acknowledgments

We would like to thank Dr. Abhik Ghosh, Indian Statistical Institute, Kolkata for insightful

discussions. SB acknowledges support from J.C. Bose Fellowship [SB/S1/JCB-033/2016 to S.B.]

by the DST, Govt. of India.

Author Contributions

Conceptualization: Sumanta Ray.

Data curation: Snehalika Lall, Sumanta Ray.

Formal analysis: Snehalika Lall, Sumanta Ray.

Investigation: Sumanta Ray, Sanghamitra Bandyopadhyay.

Methodology: Snehalika Lall, Sumanta Ray, Sanghamitra Bandyopadhyay.

PLOS COMPUTATIONAL BIOLOGY Regularized copula based gene selection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009464 October 19, 2021 17 / 19

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009464.s001
https://doi.org/10.1371/journal.pcbi.1009464


Project administration: Sanghamitra Bandyopadhyay.

Resources: Snehalika Lall, Sumanta Ray.

Software: Snehalika Lall, Sumanta Ray.

Supervision: Sumanta Ray, Sanghamitra Bandyopadhyay.

Validation: Snehalika Lall, Sumanta Ray, Sanghamitra Bandyopadhyay.

Visualization: Snehalika Lall, Sumanta Ray.

Writing – original draft: Snehalika Lall, Sumanta Ray.

Writing – review & editing: Snehalika Lall, Sumanta Ray, Sanghamitra Bandyopadhyay.

References
1. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital tran-

scriptional profiling of single cells. Nature communications. 2017; 8:14049. https://doi.org/10.1038/

ncomms14049 PMID: 28091601

2. Lall S, Ghosh A, Ray S, Bandyopadhyay S. sc-REnF: An Entropy Guided Robust Feature Selection for

Single-Cell RNA-seq Data. bioRxiv. 2021;.

3. Lall S, Ray S, Bandyopadhyay S. Generating realistic cell samples for gene selection in scRNA-seq

data: A novel generative framework. bioRxiv. 2021;.

4. Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, et al. SC3: consensus clustering of

single-cell RNA-seq data. Nature methods. 2017; 14(5):483. https://doi.org/10.1038/nmeth.4236 PMID:

28346451

5. Ji Z, Ji H. TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic

acids research. 2016; 44(13):e117–e117. https://doi.org/10.1093/nar/gkw430 PMID: 27179027

6. Plass M, Solana J, Wolf FA, Ayoub S, Misios A, Glažar P, et al. Cell type atlas and lineage tree of a
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