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Abstract: Crop breeding faces the challenge of increasing food demand, especially under climatic
changes. Conventional breeding has relied on genetic diversity by combining alleles to obtain desired
traits. In recent years, research on epigenetics and epitranscriptomics has shown that epigenetic and
epitranscriptomic diversity provides additional sources for crop breeding and harnessing epigenetic
and epitranscriptomic regulation through biotechnologies has great potential for crop improvement.
Here, we review epigenome and epitranscriptome variations during plant development and in re-
sponse to environmental stress as well as the available sources for epiallele formation. We also discuss
the possible strategies for applying epialleles and epitranscriptome engineering in crop breeding.

Keywords: epigenetics; epitranscriptomics; epigenome editing; epitranscriptome engineering;
crop improvement

1. Introduction

Since the birth of agriculture, human beings have never stopped domesticating plants.
For thousands of years, we have selectively bred crops with desirable traits, such as high
yield, nutritious, biotic- and abiotic resistance, etc. Most modern crop varieties, including
rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays), are obtained from
conventional breeding approaches, which rely on the selection and collection of favorable
alleles from the offspring of crossed varieties. Although modern varieties provide nutritious
crops with high yields, the global human population is predicted to reach 10 billion by 2050
and will exceed our ability to meet the nutritional needs of humans around the world [1].

Breeders and plant scientists have been applying different strategies to accelerate the
breeding process. For example, by extending photoperiods and controlling temperatures,
the so-called “speed breeding”, the generation times of wheat, barley (Hordeum vulgare),
chickpea (Cicer arietinum), pea (Pisum sativum), and canola (Brassica napus) have been
significantly shortened [2,3]. The explosion in available reference pangenomes allow
breeders to use marker-assisted selection and genome selection easier, facilitating efficient
phenotyping and genotyping plant materials [4]. The automated and machine-learning-
assisted high-throughput phenotyping systems enable the efficient screening, selection,
and evaluation of large populations [5,6].

Crop genetic engineering by adding or editing genetic information can increase yield
and improve crops in adverse environments. For instance, overexpression of OsDREB
genes leads to enhanced drought tolerance in rice [7]. Higher expression of OsIPA1 by
overexpression or mutation at the miR156 and miR529 target sites has improved grain
yield and immunity in rice [8]. Increased OsGRF4 abundance elevates grain yields of
rice and wheat grown in moderate nitrogen-supply [9]. Genetic variation generated
through genome editing such as CRISPR/Cas can be indistinguishable from naturally
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occurring variation and thus should be readily accessible for commercialization. Using
the CRISPR-Cas9 system, multiple endogenous genes that function in plant architecture,
plant immunity, nitrogen use, and other pathways have been manipulated to improve
crops directly. Many genes have been targeted by using genome editing platforms to
engineer disease resistance [10]. Double knockout of Microrchidia MORC1 and MORC6a
using CRISPR/Cas9 significantly increases the resistance of barley to biotrophic (Blumeria
graminis) and necrotrophic (Fusarium graminearum) plant pathogenic fungi [11]. Knockout
of FAD2 genes by CRISPR/Cas9 leads to increases in oleic acid and total monounsaturated
fatty acid composition with concurrent decreases in undesirable polyunsaturated linoleic
and linolenic fatty acid content [12]. CRISPR/Cas9-mediated gene editing of GmJAGGED1
increased yield in a low-latitude soybean variety [13]. With the help of genome editing, a
remarkable work to domesticate wild allotetraploid rice de novo into a new staple cereal
has been reported recently. Six agronomically important traits were rapidly improved
by editing O. alta homologs of the genes controlling these traits in diploid rice [14]. Such
strategies described above will greatly accelerate the breeding process and strengthen
world food security.

Thus far, plant breeding has made use of genetic variation, but epigenetic factors,
such as DNA methylation, can also be heritable and can contribute to breeding. Epige-
netics is the study of heritable changes in genome function that are not attributed to
alterations of the DNA sequence but involve the control of DNA packaging to switch genes
on or off. In plants, many biological processes are associated with epigenetic regulation,
such as vernalization, paramutation, transgenic silencing, imprinting, etc. Epitranscrip-
tomics has revealed that RNA modifications are critical posttranscriptional regulators of
gene expression affecting that cell differentiation and development [15]. Knowledge on
epigenetic and epitranscriptomic control for plant development and biotic and abiotic
resistance is accumulating, and epigenetic and epitranscriptomic editing for crop breeding
is emerging [16–19]. In this review, we summarize recent progress on understanding the
contribution of epigenomic and epitranscriptomic variations to plant traits and discuss the
potential applications for crop breeding.

2. Epigenetics and Epitranscriptomics

Epigenetic mechanisms play essential roles in all kingdoms of life and these mech-
anisms generally include DNA and histone modifications, histone variants, and some
non-coding RNAs (ncRNAs) [20] (Figure 1). It is known that each of the four DNA bases
could be chemically modified and at least 17 DNA modifications have been discovered,
among which 5-methylcytosine (5mC) is the best characterized [21]. In plants, de novo
DNA methylation is established by the RNA-directed DNA methylation (RdDM) pathway
and DNA methylation on the sequence contexts CG, CHG (where H = A, C or T), and
CHH is maintained by different DNA methyltransferases [22]. 5mC can be actively re-
moved by 5-methylcytosine DNA demethylases, a kind of DNA glycosylase/lyase family
enzymes [22]. 5mC is dynamically regulated and tightly associated with other chromatin
elements, exerting widespread effects on gene expression during plant development and in
response to environmental factors. The effects highly depend on the location of the methy-
lation relative to the gene. 5mC present over the transcription start site often leads to gene
silencing while the gene body 5mC has minimal effects on gene expression [23,24]. Recently,
N6-methyladenine (6mA) modification has also been identified as a new epigenetic mark
in plants [25–27]. Unlike the silencing function of 5mC in gene promoters, the distribution
of 6mA on genomes is divergent among species and its effect needs to be investigated.
Though information on 6mA is less known, the available evidence suggests that it functions
in plant development, tissue differentiation, and gene expression regulation [26,27].
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Figure 1. Schematic of epigenome and epitranscriptome. Epigenome is mainly composed of modifications of DNA and
histone proteins. Epitranscriptome is composed of all biochemical RNA modifications.

Modifications at histone residues mainly include methylation, acetylation, phosphory-
lation, and ubiquitination. These covalent modifications on histones called the “histone
code” can alter chromatin structure or recruit interaction effectors, influencing transcrip-
tional activity. The different types of histone modifications play different roles in specifying
chromatin function. For example, histone H3 with tri-methylation on lysine 4 (H3K4me3)
and 36 (H3K36me3) is often distributed on actively expressed genes and associated with eu-
chromatin, whereas H3K27me1 and H3K9me2 are usually present within heterochromatic
regions [28]. In addition to histone methylation, other histone marks such as acetylation,
phosphorylation, and ubiquitination are also associated with gene expression regulation.
Acetylation can occur at many lysine residues of H2A, H2B, H3, and H4 [29]. Histone
acetylation relaxes the chromatin structure and leads to transcriptional activation, while
histone deacetylation condenses the chromatin structure, often resulting in transcriptional
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repression [30]. Histone marks are established, recognized, and removed by specific pro-
teins or protein complexes that are referred to as the writers, readers, and erasers, respec-
tively [28,31]. For example, H3K4me3 deposition is catalyzed by the methyltransferases
Arabidopsis Trithoras-like Protein1 (ATX1) and ATX2 in Arabidopsis [32]. H3K27me3 is
catalyzed by the polycomb repressive complex 2 (PRC2) via the histone methyltransferases
Curly Leaf (CLF), Swinger (SWN), and Medea (MEA), and can be recognized by the PRC1
complex through the reader proteins Like Heterochromatin Protein 1 (LHP1), Early Bolting
in Short Day (EBS), and Short Life (SHL) [33,34]. The removal of histone lysine methy-
lation is catalyzed by jumonji C (JmjC) domain-containing proteins and lysine-specific
demethylase1 (LSD1)-like proteins [28].

In addition to DNA and histone modifications, three main types of RNA are also
subjected to biochemical modifications (Figure 1). Although it was revealed long ago that
chemical modifications are critical for ncRNAs to facilitate their full function, modifica-
tions on mRNA are recently disclosed to be important for RNA metabolism [35]. So far,
about 160 chemical modifications have been discovered in RNA, and N6-methyladenosine
(m6A) is one of the most abundant modifications on mRNA. m6A amount is estimated
to account for 0.1–0.4% of the total adenosine in cellular mRNA, approximately 2–3 sites
per transcript [36]. m6A mRNA modification is catalyzed by a conserved multicomponent
methyltransferase complex in eukaryotes. In Arabidopsis, mRNA adenosine methyltrans-
ferase MTA, MTB, Fkbp12 Interacting Protein 37KD (FIP37), Kiaa1229/Virlizer (VIR), and
Hakai have been reported to have adenosine methyltransferase activity, and knockout or
knockdown any of these factors result in decreased m6A levels [37–40]. ALKBH family
proteins were identified as m6A demethylases to remove methyl groups [41,42]. YTH
domain-containing proteins were identified as reader proteins that bind to m6A-modified
mRNA in vivo and affect mRNA stability in Arabidopsis [43]. Another mRNA modi-
fication, 5-methylcytosine (m5C), has been detected in different eukaryotes, including
Arabidopsis [44]. The distribution of m5C on mRNA is still unclear. RNA bisulfite sequenc-
ing (RNA-BisSeq) analysis revealed that m5C is abundant in 3’UTRs while m5C-RIP-seq
analysis showed that m5C is enriched in coding sequence [44,45]. RNA (C5-cytosine)
methyltransferase (RCMT) family proteins have been identified as m5C mRNA methyl-
transferases in Arabidopsis. So far, there has been no m5C-binding protein identified in
plants [46]. Recently, the N4-acetylcytidine modification (ac4C) has been identified as a
new reversible RNA modification present in tRNA, rRNA, and mRNA, and plays a vital
role in mRNA stability and translation fidelity [47]. In humans, ac4C is catalyzed by the
N-acetyltransferase 10, and SIRT7 has been identified as a deacetylase [48]. However, noth-
ing is known about ac4C mRNA modification in plants. Several other RNA modifications
such as N6,2′-O-dimethyladenosine (m6Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), and
pseudouridine (Ψ) have also been shown to influence the mRNA stability and consequently
affect translation efficiency [49].

3. Epigenomic and Epitranscriptomic Changes during Development

Much evidence has indicated that epigenetic and epitranscriptomic modification pro-
files vary in plant-specific organs and cell types. DNA methylation in the CHH context
displays significant differences among leaves, flowers, and ovules, in line with small RNA
abundance at corresponding sites [50]. The DNA methylation variations could be partially
attributed to the tissue-specific expression of Classy (CLSY) genes, which encode chromatin
remodelers that are involved in the RNA-directed DNA methylation (RdDM) pathway by
facilitating RNA polymerase IV (Pol IV) recruitment and small RNA generation [50]. A
comparison of DNA 5mC methylomes of the shoot apical meristem revealed that CHG
methylation and CHH methylation were increased after the transition from vegetative to
reproductive growth in Arabidopsis and rice, respectively [51,52]. Although most root
cell types have similar 5mC landscapes, columella displayed genome-wide hypermethy-
lation in the CHH context [53]. The increased mCHH in columella is mainly distributed
in transposable elements, and this might be a mechanism to keep the neighboring stem
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cells silenced during the root development [54]. Several studies identified 5mC changes
in the male reproductive cells [55–57]. Some regions gain methylation in the sex cells in
the CHH context via RdDM, and genes within these regions are upregulated in an RdDM
mutant in meiocytes but not in leaves. This suggests RdDM is required for the silencing
of these genes, specifically in the male sex lineage [57]. Transposable elements (TEs) have
reduced 5mC DNA methylation in the vegetative nucleus (VN) but not in sperm cells
(SC), resulting in the generation of 21 nucleotide siRNAs from Athila retrotransposons in
VN. The VN-generated siRNAs could further target TEs in gametes and ensure gamete
TEs are silenced, which is essential for the silencing of TE in the next generation [55].
Similarly, the meiocytes’ nurse cells generate TE-derived small RNAs that can distribute
into meiocytes and lead to TE silencing by RdDM [56]. DNA methylation alteration in
gametes could be significant for the inheritance of DNA methylation and may provide
potential targets for generating DNA methylation variation in crop species. In addition,
DNA methylome alterations have been documented in soybean development and during
tomato fruit ripening [58,59]. The level of 6mA also shows a dynamic pattern in plant devel-
opment. In Arabidopsis, 6mA accumulation during vegetative development is significantly
correlated with the upregulation of gene expression [26]. In rice, the mutation of Deficient
in DNA Methylation 1 (DDM1) that significantly decreased the level of 6mA resulted in
downregulation of gene expression [27]. These results suggest 6mA is associated with
actively expressed genes, which is in contrast to 5mC. However, 6mA is also enriched on
transposable elements and over the pericentromeric heterochromatin regions [26,27].

Some histone marks also show dynamic changes in plant development. For example,
the profile of H3K27me3 varies among different tissues of maize [60], and genes of Ara-
bidopsis are differentially marked by H3K27me3 during cell type transitions [61]. Knockout
of components of the polycomb group (PcG) chromatin remodeling complex responsible
for catalyzation of H3K27me3 results in abnormal development [62], suggesting H3K27me3
plays an essential role in defining plant cell fate. H3K27me3, H3K4me3, and gene expres-
sion profiling in Arabidopsis in different root cells and guard cells demonstrated that
H3K27me3 dynamics regulate cell identity [61,63]. A comparison between young and
mature leaves revealed a relationship between gene expression changes and H3.3 content
on the affected genes [64].

Measurement of the level of mRNA modifications by using different approaches
revealed that mRNA modifications display dynamic patterns in plant development. In
Arabidopsis, transcriptome-wide m6A-seq revealed that 33.5% of transcripts showed differ-
ential m6A methylation between leaves, flowers, and roots [65]. Thin-layer chromatography
analysis showed m6A levels differ among different tissues, with a high ratio (1.5%) in
young seedlings and relatively lower ratios in leaf (0.9%) and root (0.6%) [37]. Analysis by
liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) revealed
m5C levels ranged from 0.01% in rosette leaves to 0.036% in siliques, with m5C abun-
dance slightly increasing from 3-day-old (0.027%) to 15-day-old (0.033%) seedlings [44].
RNA bisulfite sequencing of siliques, shoots, and roots tissues of Arabidopsis showed
that most m5C sites were tissue specific, and only 15 sites were commonly methylated
between all three tissue types [45]. In rice, 1792 and 6508 tissue-specific m6A-modified
genes were identified in callus and leaves, respectively [66]. Dynamic changes of mRNA
m6A modification have also been observed during tomato fruit ripening [67]. Consistently,
the transcript levels of writer, eraser, and reader coding genes vary in different tissues and
during plant development [37,38,44]. Disruption of the components of writers, erasers, or
readers would alter mRNA decay rates and often cause severe developmental problems.
For example, the knockout of the genes encoding core m6A writer components results
in embryonic lethality [37,68]. Loss of function of the m6A reader ECT2 affects mRNA
stability degradation of the trichome development-related transcripts and leads to more
extensively branched trichomes [43]. Mutations in TRM4B, encoding an m5C methyltrans-
ferase, display primary and lateral root development defects and decreased m5C levels on
root development-related genes [44].
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4. Epigenomic and Epitranscriptomic Changes in Response to Abiotic and
Biotic Stresses

In the past decade, examining epigenomic changes upon various abiotic and biotic
stress treatments has become a hot topic. Studies have revealed that epigenetic mark
dynamics are associated with abiotic and biotic stress responses. Drought stress treat-
ment globally changed the 5mC DNA methylation levels of the P. trichocarpa genome
and altered the expression profiles of many drought-stress-responsive genes [69]. In rice,
drought-induced genome-wide 5mC DNA methylation changes accounted for ~12.1%
of the total site-specific methylation differences and 29% of the drought-induced DNA
demethylation/methylation changes remain even after recovery [70]. On the contrary,
other studies showed that the DNA methylome is stable in response to drought and excess
light stress, in which a few 5mC DNA methylation changes were detected upon the stress
treatment [71,72]. Studies also have shown that drought stress-induced gene expression is
related to the alteration of histone modification dynamics. A recent study showed that the
PRC1 complex negatively regulates drought resistance through H3K27me3 deposition on
transcription factors of ANAC019 and ANAC055 and causes transcriptional repression of
the TFs and their target genes such as Vegtative Storage Protein 1 (VSP1) [73].

High-salinity treatments enrich the active histone marks H3K9K14ac and H3K4m3 but
decrease repressive marks H3K9m3 and H3K27me3 on salt stress-responsive genes [74,75].
A rapid increase in H3 Ser-10 phosphorylation, a histone mark related to chromatin density,
was also observed in Arabidopsis leaves subjected to high salinity [76]. High-affinity
K+ Channel 1(HKT1) controls Na+ entry and high-affinity K+ uptake and is associated
with plant salt tolerance [77]. Expression of the Arabidopsis HKT1 is activated by salt
treatment. A decrease in the repressive mark H3K27me3 on the gene body of HTK1 may be
the cause of the salt induction [78]. In wheat, the expression of TaHKT2;1 and TaHKT2;3
was downregulated under NaCl stress in shoot and root tissues. The downregulation was
correlated with the increase in cytosine methylation on the coding regions of TaHKT2;1
and TaHKT2;3 [79]. Similarly, the expression of another salt stress-induced transcription
factor MYB74 was regulated epigenetically. Under normal conditions, heavy cytosine
methylation was observed in a region around the transcription initiation site of MYB74 and
this region is targeted by 24-nt siRNAs. However, methylation of this region was decreased
to an undetectable degree when plants were exposed to salt stress, and the expression of
MYB74 was upregulated consequently [80].

Several studies have revealed that cold and heat stress also have impacts on epigenetic
marks. Heat stress can decrease DNA methylation and increase chromatin accessibility at
some transposons and DNA repeats [81]. The Arabidopsis Suppressor of DRM1 DRM2
CMT (SDC) that regulates the expression of a number of long-term heat-stress-responsive
genes is epigenetically silenced by the RdDM pathway under normal conditions but is
activated by heat stress [82]. Heat stress induces the deposition of H3K4me3 and H3K9Ac
on several heat shock proteins encoding genes, HSP18, HSP22.0, and HSP70, which play
a crucial role in conferring heat tolerance. Kwon et al. found that cold stress leads to a
decrease in H3K27me3 deposition in some cold-responsive genes, including C repeat binding
factor-cold responsive (COR15A) and Galactinol synthase 3 (GOLS3) [83]. Another study found
cold treatment induces histone acetylation in the promoter regions of some COR genes,
accompanying the expression activation of these genes [84]. Long-term cold treatment in
rubber trees (Hevea brasiliensis) induced DNA demethylation on promoters of cold-related
genes HbICE1 and HbCBF2 and elevated their transcriptional activities [85].

Epigenetic variations in response to biotic stress have also been reported. DNA
methylation and histone modification dynamics have been monitored upon plant exposure
to pathogens and changes in plant–pathogen interactions of some DNA methylation
and histone modification factor mutants [86–88]. Pathogen-induced DNA demethylation
occurs in promoters, gene bodies, and nearby TEs of defense-related genes, and the DNA
demethylation is generally correlated with transcriptional activation of these genes [88].
For instance, Arabidopsis mutants (met1 and ddc), which cause global cytosine methylation
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depletion, are more resistant to the bacterial pathogen Pseudomonas syringae pv. tomato
DC3000 (Pst), suggesting that active demethylation is required for maintaining the genome
methylome state in plant pathogen defense and DNA demethylation might be required
for expression activation of defense genes. Pst treatment induces changes in cytosine
methylation throughout the genome, and an analysis of all DMR (differentially methylated
regions)-associated genes revealed that these genes are associated with plant defense
and their demethylation is correlated with increased gene expression [86]. In addition
to the DNA methylation dynamic changes, histone modifications are also involved in
plant defense. Wheat histone deacetylase TaHDA6 interacts with the WD40-repeat protein
TaHOS15, which promotes histone deacetylation of defense-related genes and suppresses
wheat defense responses to the fungal pathogen Blumeria graminis f. sp. tritici (Bgt) [89]. The
cytoplasmic effector PsAvh23 secreted by the soybean pathogen Phytophthora sojae PsAvh23
suppresses H3K9 acetylation on defense genes mediated by disrupting the assembly
of the histone acetyltransferase (HAT) complex and increases plant susceptibility [90].
Infection by bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) causes global
H3 methylation on multiple lysine sites in the plant genome and induces JmjC domain-
containing protein-encoding genes, which function as histone lysine demethylases. JmjCs
further reduce H3K4me2/3 at promoters of the rice defense negative regulator genes such
as NRR, Os-11N3, and OsWRKY62, thereby potentiating the rice defense response against
Xoo infection [91].

Reports on epitranscriptomic dynamic changes in plant response to abiotic and biotic
stress are emerging. Expression analysis revealed that m6A and m5C writer encoding
genes are nearly constantly expressed upon different abiotic stress, indicating m6A and
m5C methylation play a fundamental role in plant stress responses [92]. However, it was
found that m6A is dynamically deposited on transcripts encoding proteins required for
salt and osmotic stress responses, reducing RNA secondary structure, and thus stabilizing
the transcripts and eventually increasing the protein levels [93,94]. m6A reader proteins
ECT1 and ECT2 are found to be involved in the signaling transduction of various external
stimuli by interacting with CIPK1 (Calcineurin B-Like-Interacting Protein Kinase1) [95].
ECT2 controls the cytosol mRNA fate by recognition of the m6A motif and allows it to
relocate mRNA to stress granules upon heat exposure [96]. In Arabidopsis, the lack of
the m6A eraser protein ALKBH9B decreases m6A removal from the alfalfa mosaic virus
(AMV) genome and impairs viral accumulation and systemic invasion [42].

5. Sources for Epiallele Formation

The epiallele refers to a genetic locus with specific DNA or histone modifications
that can arise from either genetic source or non-genetic factors [97]. Naturally occurring
epialleles that are associated with agriculturally important phenotypes, including organ
genesis [98], fruit ripening [99], and environmental adaptation [100], have been identified
from different plant species. The exact origin of these epialleles is still unclear, and current
knowledge suggests they are primarily generated from spontaneous epimutations through
gains or losses of DNA methylation or histone modification stochastically [101]. The Linaria
cycloidea-like gene (Lcyc) epimutation is the first example of a natural epiallele discovered
in Linaria vulgaris, in which the fundamental symmetry of the flower is changed from
bilateral to radial. There was no sequence change in the Lcyc epiallele, but the Lcyc locus is
extensively methylated and transcriptionally silent in the mutant. The DNA methylation
pattern is heritable and co-segregates with the mutant phenotype. However, the mutant
phenotype occasionally reverts to the wild type during somatic development, correlating
with the demethylation of Lcyc, which indicates epimutations can occur naturally and cause
significant phenotypic changes in plants [102]. However, the exact causal factor of the Lcyc
has not been investigated, probably due to the dysfunction of the normal demethylation
pathway. Large-scale epigenetic changes can also result from genetic alterations such as
through crossing or transposable element mobilization [103,104]. The Wassilewskija (WS)
ecotype of Arabidopsis has four phosphoribosylanthranilate isomerase (PAI) genes, two of
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which are located together and form an inverted repeat. All four PAI genes of WS are
methylated, whereas the Columbia (Col) ecotype has three singlet PAI genes with no methy-
lation. All three Col PAI genes in the crossed offspring of WS and Col-0 gain methylation,
and the methylation is stable over multiple generations even when the inverted repeat has
segregated away. Such natural epialleles that convert the wild-type (paramutable) allele to
a paramutagenic allele are also known as paramutations. It is assumed that paramutagenic
alleles could generate small RNAs and convert other alleles to a repressed state through the
RdDM pathway and the converted allele becomes paramutagenic itself when it encounters
a paramutable allele [105].

Like genetic mutations, spontaneous somatic epimutations are common and the
epimutation rate at CG dinucleotides is much higher than the genetic mutation rate [101].
The region-level epimutation rate is not linked to genetic mutations but depends on the
chromosomal location, where chromosome arms and the centromere display the highest
and lowest epimutation rates, respectively [106]. Genetic changes could lead to large-scale
epigenetic changes and the resulting epimutation can be maintained even after the genetic
change is lost [103]. Epigenetic changes could also result from the mistargeting of epige-
netic modifiers, such as the acquisition of gene-body DNA methylation [107]. However,
gene-body methylation usually does not have a functional influence on plants [24]. Trans-
posable elements strongly influenced non-CG DNA methylation acquisition on its flanking
sequence, indicating genetic variations determine natural DNA methylation variation [108].
A comparison of epimutation rates between Populus trichocarpa and Arabidopsis showed
that the rates of epimutations per year in P. trichocarpa were lower than in Arabidopsis.
However, the epimutation distribution patterns on genomic regions of the two species are
similar. The lower epimutation rate of P. trichocarpa could be attributed to the few meris-
tematic cell divisions during the tree lifespan. However, epimutations were accumulated
year by year, suggesting the epimutations were accumulated from mitosis [109].

Chemical treatment can also trigger global epigenetic changes. For example, DNA
demethylating compounds 5-AzaC (5-Azacytidine) and Zebularine can be incorporated
into DNA and inhibit DNA methylation by trapping the DNA methyltransferases and
mediating their degradation [110]. Many biological processes such as embryogenesis, shoot
regeneration, and flowering require the expression activation of specific genes. Treatment
with these demethylating compounds changes the hypermethylated gene promoters to the
hypomethylated status and activates gene expression. 5-AzaC treatment has been widely
used in tissue culture because it can induce somatic embryogenesis [111]. The treatment of
5-AzaC promotes the initiation of flowering and causes a profound influence on flower
bud morphogenesis in Salix viminalis, which is correlated with the decrease in DNA methy-
lation [112]. Other studies also showed 5-AzaC treatment increases transposon activity,
reactivates silenced transgenes, and diminishes stress-induced transgenerational mem-
ory [113–115]. Histone deacetylase inhibitors such as Trichostatin A have also been used as
epigenetically active substances for inducing somatic embryogenesis [116]. Although these
epigenetically active chemicals could change the status of DNA methylation or histone
acetylation and result in plant phenotypic or response alterations, the disadvantage of the
chemical treatment is that their influence is global and does not specifically modify the
locus of interest.

The creation of epiRILs (epigenetic recombinant inbred lines) is a good way to obtain
epigenetic variations and link epialleles to phenotypes. In Arabidopsis, epiRILs have been
created by crossing the met1 mutant with wild-type plants. Crossing the progeny for several
generations could cause each epiRIL to become a homozygote but with different DNA
methylation patterns between epiRILs [117]. These epiRILs constitute a valuable library of
epialleles and display extensive phenotypic variations, including altered flowering time
and improved disease resistance [117]. Identifying the artificial epialleles associated with
the specific phenotypes will provide a novel epigenomic source for breeding, especially
for crops low in genetic diversity. However, it is challenging to create such an epiallele
library for other plants. Attempts in rice and maize have shown they are sensitive to
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severe genome-wide DNA methylation alterations and cause deleterious phenotypic ef-
fects [118,119]. Therefore, new methods for moderately perturbing the DNA methylomes
need to be developed for crops [120].

Clonal plant propagation through tissue culture is used widely for maintaining ideal
varieties. However, it is known that tissue culture experiences dedifferentiation and
redifferentiation and could induce epigenetic variation [121,122]. In maize, many stress-
responsive loci were differentially methylated in tissue-culture-generated plants, implying
tissue culture may act as natural stress [122]. Therefore, tissue culture could also provide
an epiallele library with identical genetic information. Mostly, tissue culture-induced
epialleles are deleterious. Clonal propagation of high-performing hybrid oil palm via
tissue culture can generate many clones with the same phenotype at the vegetative stage,
but some clones displayed abnormal floral phenotypes and destroyed the oil productivity
years later. An epigenome-wide association study revealed a DMR that is correlated with
the deleterious trait. The loss of DNA methylation of a transposable element within the
intron of the EgDEF1 gene leads to aberrant transcripts of a floral identity gene [123]. Thus,
understanding the epigenetic mechanism underlying the phenotype helps identify novel
beneficial epialleles and avoid deleterious epialleles.

6. Epigenome and Epitranscriptome Engineering for Crop Improvement

Recently, epigenome editing tools that specifically target a genome locus to change epige-
netic modifications (cytosine de/methylation or histone tail de/methylation, de/acetylation,
etc.) have been developed, enabling precise generation of artificial epialleles. These ap-
proaches were designed by fusing epigenetic modifiers or an interacting platform that can
recruit the epimodifiers to nuclease-deficient genome editing tools, which guides the fused
functional module to a predefined site and directly cause localized epigenome changes
(Figure 2A,B). The zinc-finger (ZF) protein, transcription activator-like effector protein,
and nuclease-dead CRISPR-associated protein 9 (dCas9) were commonly used for specific
DNA sequence targeting. A chemically inducible dCas9 system has been successfully
used in human cells [124] (Figure 2C), and a light-inducible dCas9 system was proposed
to be adapted for epigenome editing [125] (Figure 2D). Successful applications of these
epigenome editing tools have been shown at the FWA locus in Arabidopsis. The Flowering
Wageningen (FWA) is a flowering repressor, and its promoter has tandem repeats that can
be methylated or demethylated, resulting in gene silencing or activation, respectively [126].
The demethylated epiallele fwa displayed a delayed flowering phenotype. The ZF protein
fused with RdDM components such as SUVH2, SHH1, NRPD1, RDR2, DMS3, or RDM
and directed to the FWA promoter induces DNA methylation at the target sites [127,128].
Interestingly, co-targeting of ZF–DMS3 and ZF–NRPD1 enhanced the targeted methylation,
suggesting multiple silencing factors have a synergistic effect when they are simultaneously
recruited to a defined site [128]. Fusing a ZF or a dCas9 with the catalytic domain of the
human DNA demethylase TET1 also led to efficient demethylation of the targeted FWA
promoter [129]. Induced methylation or demethylation at the FWA promoter, which results
in the creation of early or late phenotypes, are heritable traits, even when the epigenome
editing module was segregated away, suggesting the stable creation of the epialleles [130].
Besides the FWA locus, when the fusion protein ZF-TET1 targeted the methylated regions
of the CACTA1 transposon, this also resulted in targeted demethylation and changes in
expression [129].
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fused to SunTag epitopes and the single-chain variable fragment (scFv) is fused to epigenome modifiers. Multiple copies of
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epigenome editing. ABA mediates the interaction of ABI and PYL to direct epigenome to dCas9-gRNA-targeting sites
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epigenome modifiers to dCas9-gRNA-targeting sites for epigenome editing.
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Some RNA modifications have indispensable roles in plant development and tol-
erance to various environmental stresses, which are closely associated with agricultural
traits [131]. For instance, m6A mRNA modification regulates strawberry fruit ripen-
ing [132]. OsNSUN2-mediated m5C mRNA modification has been shown to enhance rice
adaptation to high-temperature stress [133]. m6A mRNA modification plays a vital role
in salt-stress tolerance in Arabidopsis [134]. Thus, epitranscriptome manipulation has
great potential for improving crop traits. Recent studies revealed that harnessing m6A
regulation could remarkably improve economically important traits in crops [16,132,135].
Transgenic expression of a human RNA demethylase FTO (fat mass and obesity associ-
ated) in rice and potato stimulates root meristem cell proliferation, tiller bud formation,
promotes photosynthetic efficiency, and results in ~50% increases in yield and biomass.
Mechanistically, FTO causes substantial m6A demethylation of both mRNA and repeat
RNA in the transgenic plants. m6A demethylation of plant repeat RNA further induces
chromatin openness and subsequently causes a global transcriptional upregulation of
tissue-specific genes encoding proteins that play functional roles in root cell proliferation,
tiller formation, and photosynthetic efficiency [16]. Overexpression of PtrMTA encoding
a component of the m6A methyltransferase complex that participated in the formation
of m6A methylation exhibits enhanced poplar tolerance to drought stress. Poplar plants
that overexpression of PtrMTA displayed an increased density of trichomes and a more
developed root system than that of the wild type [135]. In strawberry, the overexpression
of FveMTA or FveMTB, encoding m6A methyltransferases, accelerates fruit ripening, while
the suppression of either delays fruit ripening, providing a good example of fruit matu-
rity control through epitranscriptome manipulation [132]. Strategies for epitranscriptome
engineering have been proposed from different angles (Figure 3): (1) Manipulating the
activities of RNA modification-related proteins, including writers, readers, and erasers,
by generating gain-of-function or loss-of-function mutants [136]; (2) specific RNA editing
using fusions of catalytically inactivated dCas13 and RNA modification enzymes to create
or remove RNA modifications on target sites [137]; and (3) eliminating specific RNA modi-
fication by manipulation at the DNA level, which requires precise base editors to generate
synonymous mutation [138]. So far, only the first strategy has been applied in plants. The
prerequisite for applying the other strategies needs a comprehensive understanding of the
epitranscriptome at a single-base resolution and the associations with phenotypic outputs.
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or inhibiting the RNA modification writer or eraser proteins or manipulating the RNA modification reader proteins to
trigger global RNA modification changes. (B) Direct epitranscriptome editing. Fusions of RNA modification proteins
(RMP) to deactivated Cas13 (dCas13) can be directed to specific transcripts and cause epigenetic changes of interest.
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7. Conclusions and Perspectives

Both epigenome and epitranscriptome are plastic and vary during plant development
and in response to environmental cues, and some agronomic traits have been known to
be associated with epigenetic changes. Therefore, harnessing epigenetic and epitranscrip-
tomic regulation may provide new additions to the crop breeding toolbox. However, the
prerequisite for the application of epigenetic- and epitranscriptomic-based technologies in
crop improvement is a deep understanding of epigenome and epitranscriptome regulation
mechanisms. So far, our understanding of epigenetic and epitranscriptomic machinery in
plants is mainly derived from model species. Delivering fundamental knowledge about
epigenetic- and epitranscriptomic-mediated plant development and adaptability to environ-
mental stress will significantly help to harness epigenetic variation for crop improvement.
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Integrating epigenetics into crop improvement requires the induction of epigenetic
variation, epiallele identification, and evaluation. Epigenome editing or epi-genomic selec-
tion may be required for epiallele creation and identification. The validated epialleles could
then be introduced into elite cultivars through a breeding program (Figure 4). To discover
and evaluate economic trait-associated epialleles is a major restriction for applying epige-
netics to crop breeding. Identifying and establishing the relationships between epigenetic
variations and associated plant phenotype changes is a challenge that requires excluding
the effect from the underlying genetic variation. Furthermore, a detailed understanding of
the stability and heritability of epigenetic variants is required for the stable improvement
of agronomic traits. Nevertheless, the emerging technologies will greatly advance the
process of application of epigenetics in crop breeding. Precise epigenome information
obtained from the emerging single-cell profiling technology [139,140] and predictive tools
based on deep learning [141] will allow for a better understanding of the dynamics of
epigenome changes during plant development and response to the environment. The tar-
geted epigenome editing tools allow efficient validation about whether specific epigenetic
changes are causative for a phenotype.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW  14  of  20 
 

 

 

Figure 4. Routes for application of epialleles in crop breeding (A) and for application of epitranscriptome engineering in 

crop breeding (B). 

Author Contributions: Q.H. conceived and wrote the review. X.W. revised the review. All authors 

have read and agreed to the published version of the manuscript. 

Funding:  This  research  was  funded  by  the  National  Natural  Science  Foundation  of  China 

(31900610), the Fundamental Research Funds for the Central Universities (No. 06500060), and the 

Beijing Nova Program (Z201100006820114). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Hickey, L.T.; Hafeez, A.N.; Robinson, H.; Jackson, S.A.; Leal‐Bertioli, S.C.M.; Tester, M.; Gao, C.; Godwin, I.D.; Hayes, B.J.; Wulff, 

B.B.H. Breeding crops to feed 10 billion. Nat. Biotechnol. 2019, 37, 744–754, doi:10.1038/s41587‐019‐0152‐9. 

2. Watson, A.; Ghosh, S.; Williams, M.J.; Cuddy, W.S.; Simmonds, J.; Rey, M.‐D.; Hatta, M.A.M.; Hinchliffe, A.; Steed, A.; Reynolds, 

D.;  et  al.  Speed  breeding  is  a  powerful  tool  to  accelerate  crop  research  and  breeding.  Nat.  Plants  2018,  4,  23–29, 

doi:10.1038/s41477‐017‐0083‐8. 

3. Song, Y.; Duan, X.; Wang, P.; Li, X.; Yuan, X.; Wang, Z.; Wan, L.; Yang, G.; Hong, D. Comprehensive speed breeding: A high‐

throughput and rapid generation system for long‐day crops. Plant Biotechnol. J. 2021, doi:10.1111/pbi.13726. 

4. Xu, Y.; Crouch, J.H. Marker‐Assisted Selection  in Plant Breeding: From Publications to Practice. Crop. Sci. 2008, 48, 391–407, 

doi:10.2135/cropsci2007.04.0191. 

Figure 4. Routes for application of epialleles in crop breeding (A) and for application of epitranscriptome engineering in
crop breeding (B).

To integrate epitranscriptomics into crop improvement, breeders must determine the
influence of specific mRNA modification changes and then perform the epitranscriptome
engineering using the strategies described above. Profiling modification sites at a single-
base resolution, disclosing detailed involved components and regulatory mechanisms,
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and applying robust predictive tools and genome and epitranscriptome editing tools will
help form a better understanding of the epitranscriptome and apply epitranscriptomics to
crop breeding.
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