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Abstract The adenosine A2A receptor (A2AR) is a prototypical G protein-coupled receptor

(GPCR) that couples to the heterotrimeric G protein GS. Here, we determine the structure by

electron cryo-microscopy (cryo-EM) of A2AR at pH 7.5 bound to the small molecule agonist NECA

and coupled to an engineered heterotrimeric G protein, which contains mini-GS, the bg subunits

and nanobody Nb35. Most regions of the complex have a resolution of ~3.8 Å or better.

Comparison with the 3.4 Å resolution crystal structure shows that the receptor and mini-GS are

virtually identical and that the density of the side chains and ligand are of comparable quality.

However, the cryo-EM density map also indicates regions that are flexible in comparison to the

crystal structures, which unexpectedly includes regions in the ligand binding pocket. In addition, an

interaction between intracellular loop 1 of the receptor and the b subunit of the G protein was

observed.

DOI: https://doi.org/10.7554/eLife.35946.001

Introduction
The adenosine A2A receptor (A2AR) is an archetypical Class A G-protein-coupled receptor (GPCR)

(Venkatakrishnan et al., 2013). A2AR is activated by the endogenous agonist adenosine and plays a

prominent role in cardiac function, the immune system and central nervous system, including the

release of the major excitatory neurotransmitter glutamate (Fredholm et al., 2001; Fredholm et al.,

2011). Given the widespread tissue distribution and physiological relevance of A2AR, it is a validated

drug target for many disorders (de Lera Ruiz et al., 2014), including Parkinson’s disease

(Hickey and Stacy, 2012) and cancer (Leone et al., 2015). A2AR is one of the most stable GPCRs

and structures have been determined of A2AR in an inactive state bound to inverse agonists

(Doré et al., 2011; Jaakola et al., 2008; Congreve et al., 2012; Hino et al., 2012; Liu et al., 2012;

Segala et al., 2016; Sun et al., 2017), an active intermediate state bound to agonists (Lebon et al.,

2015; Lebon et al., 2011; Xu et al., 2011) and the fully active state bound to an agonist and cou-

pled to an engineered G protein, mini-GS (Carpenter et al., 2016). In addition, structure-based

drug design has been applied to inactive state structures of A2AR to develop potent and subtype

specific inverse agonists with novel scaffolds (Congreve et al., 2012) and these are currently in clini-

cal trials. Comparison of the structures has led to an understanding of the molecular determinants

for an inverse agonist compared to an agonist (Lebon et al., 2011), the conformational changes

induced by agonist binding to convert the inactive state to the active intermediate state

(Lebon et al., 2012), and the role of the G protein in stabilising the fully active state

(Carpenter et al., 2016). The active state was determined by crystallizing the receptor coupled

solely to mini-GS, an engineered G protein with eight point mutations and three deletions, including

the whole of the a-helical domain (Carpenter and Tate, 2016). Although pharmacologically mini-GS

recapitulates the ability of a heterotrimeric G protein to increase the affinity of agonist binding to
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the receptor (Carpenter et al., 2016), the roles for the bg subunits could not be described. In terms

of the interactions between a heterotrimeric G protein and a Class A GPCR, the vast majority of

interactions are made by the a subunit, in particular the C-terminal a5 helix (Rasmussen et al.,

2011). However, there was an interaction between the b subunit and the b2-adrenoceptor

(Rasmussen et al., 2011) and also between the b subunit and the class B receptors for calcitonin

(Liang et al., 2017) and glucagon-like peptide (Zhang et al., 2017; Liang et al., 2018). In addition,

there is mutagenesis data suggesting that the a2-adrenergic receptor directly interacts with the b

subunit (Taylor et al., 1994; Taylor et al., 1996). We therefore determined the structure of A2AR

coupled to an engineered heterotrimeric G protein.

There are now two choices in how to determine the structure of a GPCR coupled to a heterotri-

meric G protein, which are X-ray crystallography and electron cryo-microscopy (cryo-EM). The disad-

vantage of X-ray crystallography lies in the difficulty of producing good quality crystals of a GPCR

coupled to a heterotrimeric G protein. The only successful strategy so far has been to use lipidic

cubic phase composed of the lipid MAG7:7 and to crystallise a GPCR fusion protein with T4 lyso-

zyme at the N-terminus, but there is only a single structure published to date (Rasmussen et al.,

2011). The other option is to use cryo-EM and single particle reconstruction techniques. This is now

possible given the recent developments in the field over the last few years (Fernandez-Leiro and

Scheres, 2016) together with the improved contrast provided by the recently developed Volta

phase plate (VPP) (Danev et al., 2014), which enhances the probability of getting structural data of

small proteins (Khoshouei et al., 2017). The recent structure determination of two Class B receptors

coupled to GS also shows the potential of this methodology (Liang et al., 2017; Zhang et al., 2017;

Liang et al., 2018). We thus decided to use cryo-EM to determine the structure of A2AR coupled to

an engineered heterotrimeric G protein. This would provide insights about the role of the b subunit

in coupling to A2AR, but would also provide an opportunity to directly compare the structure of the

receptor determined in the active state by X-ray crystallography and cryo-EM.

Results

Preparation of an A2AR-GS complex
In this work, we used a construct of A2AR that contained thioredoxin at the N-terminus of the recep-

tor (Nehmé et al., 2017). This was originally designed with a rigid linker between the thioredoxin

and the receptor to generate a large hydrophilic surface to A2AR to improve crystallisation, although

this proved unsuccessful. The presence of thioredoxin did not significantly affect the pharmacology

of A2AR, as assessed by determination of its apparent KD for the inverse agonist ZM241385 or in

agonist shift assays (Figure 1). It could also be purified to homogeneity and coupled effectively to

both mini-GS (Nehmé et al., 2017) and to the heterotrimer containing mini-GS, b1, g2 and Nb35 (Fig-

ure 1). Detergent-solubilised A2AR coupled to the heterotrimer had a molecular weight (excluding

the detergent micelle of LMNG) of approximately 135 kDa (Nehmé et al., 2017).

The impact of the Volta Phase Plate on the cryo-EM A2AR-G-protein
complex map
Initial micrographs for the A2AR complex were collected on a FEI Titan Krios microscope using a K2

Summit detector in the absence of a Volta-potential phase plate (VPP) (Figure 2a). Data processing

showed the characteristic 2D class averages of a GPCR coupled to a heterotrimeric G protein

(Figure 2a). After 3D classification and refinement, the best model (containing 72,486 particles)

reached 6.7 Å resolution and showed clearly defined a-helices in both the receptor and G protein

(Figure 2a). We then collected data using the VPP on a FEI Titan Krios microscope using either a K2

Summit detector or a Falcon III detector in electron counting mode (Figure 2b and c). The K2 data-

set consisted of micrographs pooled from different days and collected with slight variations regard-

ing total dose and doses rates (see Materials and methods for details), while the Falcon III dataset

was collected in a single session over 48 hr. Both datasets were processed in an equivalent manner

to the non-VPP data, with only few minor exceptions (see Materials and methods). Since images col-

lected with a VPP possess higher contrast (Figure 2b and c), the auto-picking feature in RELION

that uses a Gaussian blob as a reference resulted in optimal particle picking without the need for

specific ‘auto-picking’ references (Fernandez-Leiro and Scheres, 2017). After 2D and 3D
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classification (see Materials and methods for details), refinement yielded models with overall resolu-

tion of 4.88 Å and 4.45 Å for the K2 Summit and Falcon III detector, respectively (Figure 2b and c).

The Falcon III model was later improved to 4.11 Å with further processing (see below) showing

details for most amino acid side chains after B factor sharpening. The effect of the VPP for this par-

ticular dataset was therefore essential to make ‘side-chain’ resolution accessible. A B-factor plot
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Figure 1. Pharmacological analyses of A2AR. (a) Saturation binding of the inverse agonist 3H-ZM241385 to A2AR

constructs gave the following apparent KDs: A2AR (circles), 0.5 ± 0.1 nM; TrxA-A2AR (squares), 0.8 ± 0.2 nM. (b)

Competition binding curves measuring the displacement of 3H-ZM241385 with increasing concentrations of NECA

gave the following Kis for NECA; A2AR (filled circles), 1.0 ± 0.5 mM; A2AR + mini-GS (open circles, dashed line),

2.6 ± 1.8 nM; TrxA-A2AR (filled squares), 1.1 ± 0.4 mM; TrxA-A2AR + mini-GS (open squares, dashed line), 1.8 ± 1.2

nM. Data plotted are the average from two independent experiments performed in duplicate with error bars

shown as the SD.

DOI: https://doi.org/10.7554/eLife.35946.002

The following source data is available for figure 1:

Source data 1. Raw data for A2aR competition binding curves.

DOI: https://doi.org/10.7554/eLife.35946.003
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Figure 2. Cryo-EM of the A2AR complex in the presence and absence of a VPP. (a-c) Each panel contains three

sections, with the left-hand section showing a representative micrograph obtained on a Titan Krios, the central

section depicting 2D class averages and the right-hand section the refined 3D reconstruction obtained from the

data collected. (a) Data collected without using a VPP on a K2 Summit detector. (b) Data collected using a VPP on

Figure 2 continued on next page
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(assessing the number of particles vs resolution) was used to assess the impact of the VPP

(Figure 2e). It is observed that, in the presence of the VPP, the A2AR map not only has a better reso-

lution for the same number of particles, but the B-factor improves significantly from 426 to 170

(when comparing K2 Summit with and without VPP). This becomes essential when trying to reach

high-resolution information in a reasonable time scale (especially important for high-throughput

structure determination in drug discovery). As an example, to obtain the same resolution of 4.88 Å

using the K2 Summit detector without the VPP, one would have needed about 5 million particles,

that would require ~65 days of data collection at a Titan Krios electron microscope (in comparison to

145,169 particles collected in 48 hr with a VPP).

All cryo-EM grids were plunge-frozen from a single batch of A2AR–G protein complex and most

of the duplicate grids were made in a single freezing session. Data collection was performed at

higher magnification for the non-VPP data (magnification 200,000x and 0.66 Å/pixel) than for the

VPP dataset (1.14 Å/pixel and 1.07 Å/pixel for the K2 Summit and Falcon III detectors, respectively),

positioning the high-resolution information of the non-VPP data at a better location in the detector

DQE range (Nyquist being 1.32 Å vs 2.14 Å/2.28 Å for the non-VPP vs the VPP K2/Falcon III, respec-

tively). The VPP resolution enhancement therefore could potentially be higher if equivalent magnifi-

cations were used. Data processing was carried out as equivalent as possible for all datasets in order

to make them comparable. We therefore believe that the comparison between the VPP and non-

VPP datasets is as fair as possible, although if anything we are favouring the non-VPP data.

Comparisons of data with and without VPP had only been previously been published for samples

that readily reached high resolution without VPP. Although in our experience, the improvement is

sample dependent, these data show the potential to which the VPP can be useful in certain cases

and more comparisons will be needed in order to understand the variability in enhancement

between samples. Although we see a significant difference between the K2 and Falcon III perfor-

mance, data for the K2 with VPP was a result of merging data with different dose rates and total

doses. We therefore do not have an absolutely identical comparison of the two detectors.

Structure determination of the A2AR–GS complex
The highest resolution data set corresponded to micrographs collected on a Falcon III detector in

electron counting mode using a VPP, therefore this map was used for further processing, model

building and subsequent analysis. Data collection parameters and processing are described in the

Materials and methods section. In summary, 837 movies were collected and corrected for stage drift,

beam induced movement and dose weighting with MotionCor2 (Zheng et al., 2017). CTF fitting,

defocus and phase estimation were performed with Gctf-v0.1.06 (Zhang, 2016). Particle picking was

performed using a Gaussian blob, as implemented by RELION (Scheres, 2012). 3D classification was

performed with an ab initio model and refinement of the best classes with clear GPCR-like features

(128,002 particles) attained an overall resolution of 4.45 Å (using gold standard FSC of 0.143)

(Rosenthal and Henderson, 2003). Attempts to improve the model included further 3D classifica-

tion, which revealed that around 50% of the particles contained a heterogeneous g subunit. How-

ever, the resolution and quality of the overall model suffered when removing these particles, so we

therefore compromised on having poor quality density for the g subunit, but having higher resolution

for the rest of the complex.

In further attempts to improve the model, during refinement, the low-pass filter effect of the Wie-

ner filter in the regularised likelihood optimisation algorithm was relaxed through the use of a regu-

larisation parameter (T = 5). This allowed the refinement algorithm to consider higher spatial

frequencies in the alignment of the individual particles yielding a map of higher quality. Neverthe-

less, both half-reconstructions were kept completely separately, and the final resolution estimate (at

the post-processing stage in RELION) was based on the standard FSC between the two unfiltered

Figure 2 continued

a K2 Summit detector. (c) Data collected using a VPP on a Falcon III detector in electron counting (EC) mode. (d)

Gold-standard FSC curves for the three 3D reconstructions with resolutions estimated at 0.143. (e) Difference in

B-factors between the three datasets.

DOI: https://doi.org/10.7554/eLife.35946.004
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half-reconstructions. Although resolution did not improve, the quality of the map improved

noticeably.

Calculation of the local resolution in RELION showed that although the overall resolution was esti-

mated to be 4.5 Å the core of the complex was ~3.8 Å with most of the map at 4.0 Å resolution or

higher, with clearly visible density for the majority of amino acid side chains. As shown in Figure 3,

the regions that showed poorer resolution were the thioredoxin and the detergent micelle (a signifi-

cant fraction of the small complex), which hinders a realistic overall resolution estimation.

In order to accurately estimate the resolution of the A2AR complex map and to eliminate noise

from refinement, the detergent micelle and thioredoxin moiety needed to be excluded. Excluding

the micelle by simply tightening the mask did not yield optimal results with artefacts produced at

the interface between the model and the mask. Such a strong signal might be specific to LMNG

since, in our experience, the signal from other detergents can be masked out in this manner. We

a b

c d
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Figure 3. Local resolution cryo-EM map. (a) Local resolution map of the Falcon III + VPP model prior to refinement with signal subtracted particles as

calculated with RELION. (b) Local resolution of the same model after refinement of signal subtracted particles (also calculated with RELION) (c) A2AR

complex displayed as putty cartoons, where B-factor of the coordinates relates to the thickness of the tube. (d) Fourier shell correlation of the refined

model versus the map.

DOI: https://doi.org/10.7554/eLife.35946.005
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then decided to perform a double signal subtraction protocol where initial coordinates were used to

create a tight mask around the protein component excluding thioredoxin (A2AR, mini-GS, b, g,

Nb35), which was then subtracted from the original particles. The resulting particles were used to

produce an accurate map of the micelle and thioredoxin, which was then used to perform signal sub-

traction of the original particles, leaving them devoid of micelle or thioredoxin. Refinement of these

particles yielded an improved map at 4.11 Å resolution. However, it appeared that the refinement

process focused primarily on the intracellular G protein heterotrimer complex leaving a lower quality

map at the receptor region. In order to circumvent this problem, we performed refinement with the

original particles and then exchanging them for their signal subtracted equivalent (without micelle

and thioredoxin) only in the last iteration of refinement. This resulted in the best overall map at 4.11

Å resolution with quality density throughout (Table 1).

Attempts to remove particles with low phase shift and poor contrast (~22,000 particles

with <0.25p) decreased resolution and map quality. We therefore kept low phase shift data in the

final model.

Overall structure of the NECA-bound A2AR mini heterotrimeric G
protein complex
The A2AR cryo-EM complex structure provides insights into its structure in solution, in the absence

of crystal contacts and at more physiological conditions (pH 7.5) than the X-ray structure (pH 5.7 or

below for inactive structures). The density map of the A2AR–G protein heterotrimer displayed a local

resolution varying from 3.3 Å to 6.4 Å (Figure 3). Side chain densities were observed for most amino

acid residues (Figure 4), which were of similar quality to those in the X-ray crystallographic map of

the A2AR–mini-GS structure (Figure 5). The lowest resolution was found at the C-terminus of the b

subunit and most of the g subunit, which had very poor density. Signal subtraction and 3D classifica-

tion protocols have been used to isolate different protein conformations of small regions (Bai et al.,

2015). Upon implementation of these strategies, we did not find any other discrete conformations

of the heterotrimeric G protein, suggesting that the C-terminus of the b subunit and most of the

g subunit region are flexible. Within the cryo-EM structure of A2AR, there are two regions that lack

density and are therefore also probably disordered and flexible, namely the N-terminal section of

ECL2 (G147 to Q163) and the whole of ICL3 (E212 to S223). These regions are ordered in some crys-

tal structures, but this usually correlates with these regions forming lattice contacts. Sections of the

cryo-EM density map for which there is poor quality density and high B-factors of the refined coordi-

nates include TM1, helix 8, the second section of ECL2 that contributes relevant residues for ligand

binding (see below), ECL1 and ECL3 (Figures 3 and 4).

The overall architecture of the A2AR–heterotrimeric G protein complex is similar to the heterotri-

meric GS-coupled complexes for the b2-adrenergic receptor (Rasmussen et al., 2011), GLP1

(Zhang et al., 2017, Liang et al., 2018) and the calcitonin receptor (Liang et al., 2017). The recep-

tor and mini-Gs portions of the A2AR–G protein complex are very similar to the crystal structure of

the A2AR–mini-GS complex, with the RMSD of Ca atoms for the receptor and mini-GS components

being 0.5 Å and 0.6 Å, respectively. The largest differences are found at the interface between mini-

GS and the b subunit, which have a different conformation when bg is bound. This may contribute to

a minor difference in curvature of the a5 helix in mini-GS when it is in the heterotrimer complex com-

pared to when it is bound to the receptor alone (Figure 5). However, this does not have any major

impact on the interface between the receptor and mini-GS, thus further validating the use of mini G

proteins as a surrogate for G protein heterotrimers (Carpenter et al., 2016; Carpenter and Tate,

2016; Nehmé et al., 2017).

Cryo-EM map at the ligand binding pocket
The A2AR orthosteric binding pocket is described by two crystal structures of A2AR bound to NECA,

with one structure of A2AR in an active intermediate conformation (PDB code 2ydv) (Lebon et al.,

2011) and the other structure in the active state coupled to mini-GS (PDB code 5g53)

(Carpenter et al., 2016). The extracellular half of A2AR does not undergo any major structural

changes in the transition from the active intermediate to the mini-GS coupled active state, with the

volume of the binding pocket remaining constant and the interactions to NECA being identical

(Carpenter et al., 2016). The orthosteric binding site in the cryo-EM map has well-defined density,
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although the map has lower resolution towards the extracellular surface. The density for NECA is of

sufficient quality to allow an unambiguous orientation of NECA and the same interactions to the

receptor are observed as present in the crystal structures (Figures 5 and 6).

Despite the similarities between the orthosteric binding site observed in the cryo-EM and X-ray

structures, small differences were found in ECL2 that forms part of the binding pocket. The C-termi-

nal half of ECL2 in the X-ray structures forms a helical turn that caps the pocket and contributes side

chains that interact with NECA (Phe168 and Glu169). In the cryo-EM structure this region is more dis-

ordered. As a consequence, there is no significant side chain density for Phe168 and Glu169 in the

cryo-EM map. The fact that there is clear density for NECA and His264 excludes the possibility that

the whole of this region has poor resolution that is the extracellular portion of the receptor is not

moving as a rigid body. This is consistent with ECL2 being dynamic.

Table 1. Data collection and refinement statistics

Data collection

Microscope FEI titan krios FEI titan krios FEI titan krios

Detector Falcon III + VPP K2 Summit + VPP K2 Summit

Pixel size (Å) 1.07 1.14 0.66

Voltage (kV) 300 300 300

Total electron dose (e-/Å2) 30 40/40/30 50

Micrographs collected 827 906 2800

Number of frames 75 40/23/30 40

Exposure time (s) 60 10/4.6/6.5 10

Electron dose per frame (e-/Å2) 0.4 1/1.7/1 1.25

Dose rate (e-/pixel/s) 0.5 5.2/9/6 2

Frame exposure (s) 0.8 0.25/0.115/0.216 0.25

Total number of particles
(after 2D classification)

232,739 313,879 166,313

cryo-EM 3D Refinement

Resolution (Å) 4.11 4.88 6.71

Map sharpening B-factor (Å2) �130 �150 �529

Fourier shell correlation criterion 0.143 0.143 0.143

Particles used in final 3D refinement 128,002 145,169 72,487

Defocus (mm) �0.2 to �1 �0.3 to �1.2 �1.2 to �3.5

Coordinate Refinement and Validation

R.m.s. deviations

Bonds (Å) 0.07

Angles (˚) 0.984

Ramachandran Favoured (%) 94.6

Ramachandran Allowed (%) 4.89

Ramachandran Outliers (%) 0.51

Molprobity score 1.36

Clashcore, all atoms 0.79

Favoured rotamers 91.12

EMRinger score 1.93

FSC (model vs map - 0.5 cut-off) (Å) 4.08

PDB and map deposition

PDB ID 6GDG

EMDB ID 4390

DOI: https://doi.org/10.7554/eLife.35946.006
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A second difference between the NECA-bound X-ray structures and the cryo-EM structure is a

likely absence of an interaction between Glu169 and His264. This ionic bridge affects small molecule

binding kinetics (Segala et al., 2016) and in most of the crystal structures caps the binding pocket.

Although the cryo-EM map in the region is poorer than in the rest of the molecule, it suggests a

rotamer for the imidazole group of His264 that points away from the orthosteric binding pocket (Fig-

ure 6). This might be a consequence of the pH in which the respective structures were determined.

7   AVYITVELAIAVLAILGNVLVCWAVWLNSNLQNVTNYFVVSLAAADIAVGVLAIPFAITI  66 
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127 ICWVLSFAIGLTPMLGWNNC VACLFEDVVPMNYMVYFNFFACV  186 

187 LVPLLLMLGVYLRIFLAARRQLKQM TLQKEVHAAKSLAIIVGLFALCW  246 

247 LPLHIINCFTFFCPDCSHAPLWLMYLAIVLSHTNSVVNPFIYAYRIREFRQTF   306 

307 

GQPKEGKAHSQGCGEGQ

ESQPLPGERARS

RKIIRSH

VLRQQEPFKA  316 

a

b

Figure 4. Modelling quality of the A2AR structure. (a) Amino acid sequence of A2AR used in the cryo-EM structure determination. Residues are

coloured according to how they have been modelled: black, good density allows the side chain to be modelled; red, limited density for the side chain

present and therefore the side chain has been truncated to Cb; blue, no density observed and therefore the residue was not modelled. Regions

highlighted in grey represent the transmembrane a-helices and amphipathic helix eight is highlighted in yellow. Cys residues involved in the formation

of disulphide bonds are in bold. In the cryo-EM structure densities for the disulphide bonds Cys74-Cys146 and Cys77-Cys166 are observed. Densities

corresponding to the disulphide bonds Cys71-Cys159 and Cys259-Cys262 are not observed in the cryo-EM data. The sequence of A2AR is from residue

8–316, with the initial Ala residue at position seven being part of the linker between the N-terminal thioredoxin fusion and A2AR. (b) Model of A2AR

showing the Ca positions of amino acid residues with poor density (spheres) and regions unmodelled (dotted lines).

DOI: https://doi.org/10.7554/eLife.35946.007
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The pKa of the histidine side chain is ~6 and most crystal structures have been obtained at lower pH

(~pH 5), favouring protonation of His264 and the formation of the ionic bridge. At a more physiolog-

ical pH of 7.5 that was used for the cryo-EM structure, His264 would be predominantly deproto-

nated and unable to form the ionic bridge. Although the rotamer for Glu169 cannot be assigned in

the cryo-EM map, His264 adopts a similar rotamer as seen in crystal structures obtained at higher

pH, such as the complexes with caffeine, XAC and ZM241385 (~pH 8), all showing a broken ionic

bridge. Therefore, it is likely that in the physiological state (represented by the cryo-EM map) this

ionic bridge is also absent, unless the surrounding pH is momentarily lowered for specific functions

(e.g. the release of high concentrations of glutamate in glutamatergic synapses).

Comparison of the G-protein–receptor interface between the crystal
and cryo-EM structures
The interface between mini-GS in the heterotrimeric G protein and A2AR in the cryo-EM structure is

very similar to the interface between mini-GS and A2AR in the X-ray structure (PDB code 5g53). The

interface in the cryo-EM structure has a buried surface of 1135 Å2 compared to 1048 Å2 for the

X-ray structure 5g53; the slight increase is due to interactions between ICL1 of A2AR (residues

Leu110 and Asn113) and the N-terminal helix of mini-GS (residues His41 and Arg38). The near full

length N-terminal helix was present in the mini-GS construct in the cryo-EM structure, because this is

required for the stable interaction between the a subunit and the bg subunits, whereas it was trun-

cated and disordered in the X-ray structure. The main interactions between A2AR and mini-GS in

both the cryo-EM and X-ray structures are made predominantly by the C-terminal a5 helix in mini-GS

and amino acid residues in H3, H5, H6, H7, H8 and ICL2 of A2AR (Carpenter et al., 2016). The amino

acid residues that make these interactions are identical, but the rotamers sometimes differ between

the cryo-EM and X-ray structures. This may be a reflection of the different chemical environments in

Crystal map Cryo-EM map

H387 H387
L394

L394

E392
E392

Cryo-EM map

A2AR

Mini-GS

Nb35

βγ

Crystal map Cryo-EM map

NECA NECA

His250 His250

ECL2 ECL2

Met177
Met177

Crystal map Cryo-EM map

TM3

F93

F93

R102
R102

I98
I98

S91 S91

TM3

Tyr105

Phe
151

Trp99

Met101

Tyr145

Figure 5. Comparison of map densities from the cryo-EM data and X-ray diffraction data. The structure of the A2AR–heterotrimeric G protein complex

determined by cryo-EM is depicted as a cartoon. The four panels show regions of the structure and the associated density maps from the cryo-EM data

and, where present, electron density (2Fo-Fc) from the X-ray structure of the A2AR–mini-GS (PDB code 5g53). Densities for the maps shown in the panels

were sharpened using the following B factors (resolution of filtering in parentheses): b subunit and A2AR, �170 Å2 (3.7 Å); mini-GS–A2AR interface, �130

Å2 (3.7 Å); NECA, �130 Å2 (4.1 Å).
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which the structures were determined or the slight difference in curvature of the a5 helix in mini-GS.

In addition, some interactions may be transient and are captured in one structure and not another.

For example, Arg291 at the intracellular end of H7 of A2AR adopts a different conformation in the

cryo-EM structure compared to the crystal structure. This results in the absence of interactions

between the Arg291 side chain and mini-GS, although the backbone carbonyl can still makes poten-

tial interactions with Glu392 and the adjacent residues in H8 are still sufficiently close to mini-GS to

make interactions. This region is also the main difference to the b2AR-GS complex where the a5 helix

in GS does not interact with H7 and H8 of the receptor (Rasmussen et al., 2011).

The major difference between the structure determined by cryo-EM of the A2AR-heterotrimeric G

protein complex and the X-ray structure of the A2AR-mini-GS complex was the presence of the bg

subunit in the cryo-EM structure. No interactions were observed between A2AR and the g subunit,

but potential interactions were observed between ICL1 (residues Ser35, Asn36 and Gln38) of A2AR

and the b subunit (Arg52, Asp312, Asp333 and Phe335). This interface between A2AR and the b sub-

unit is considerably more extensive than that observed in the b2AR complex (Figure 7), where inter-

actions occur exclusively at Asp312. However, ICL1 shows higher B-factors than the rest of the A2AR

cryo-EM structure, which may suggest that the interaction is fairly weak. The recently reported cryo-

EM structures of the Class B Calcitonin receptor (Liang et al., 2017) and Glucagon-like peptide-1

receptor (Zhang et al., 2017; Liang et al., 2018) bound to heterotrimerc GS also show a similar

interaction between ICL1 and the b subunit where only Asp312 in the b subunit apparently interacts

with ICL1 of the receptor. Therefore, the larger interface between the b subunit and A2AR appears

at the moment unique to this receptor, although the physiological implications are unclear.

Mini-Gs

A2AR

βγ

Nb35

H264

F168

E169

NECA

F335

R52

D333

D312

N36
S35

Q38

a
b c

d

Figure 6. Structure of A2AR–heterotrimeric GS. (a) Superposition of A2AR (pale green) coupled to mini-Gs (pale blue) with A2AR (dark green) coupled to

mini-GS (dark blue), bg (red) and Nb35 (yellow). (b) Superposition of NECA bound to A2AR in the cryo-EM and X-ray structures after alignment of A2AR

(PyMol). (c) The position of His264 in the cryo-EM structure (dark green, density shown by black mesh), differs from its position in the X-ray structure

(light green). No density is observed for the side chain of Glu169 in the cryo-EM structure, but when modelled it would be too far away to make a

contact with His264. (d) The interface between ICL1 of A2AR (dark green) and the b subunit (red) is depicted, with density shown as a black mesh.
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Discussion
The structure determination of A2AR in complex

with mini-GS, b, g and Nb35 at a physiologically

relevant pH has highlighted a number of differen-

ces to the structure determined by X-ray crystal-

lography of A2AR coupled to mini-GS

(Carpenter et al., 2016). Firstly, contacts

between A2AR and the heterotrimeric G protein

were identified between ICL1 and the b subunit,

and between ICL2 and part of the N-terminal a-

helix of the a subunit; these regions of the G pro-

tein were either absent or disordered, respec-

tively, in the crystal structure. Secondly, the

difference in pH under which the cryo-EM struc-

ture was determined (pH 7.5) compared to many

X-ray structures (pH <6) led to ECL2 being more

dynamic, as the potential salt bridge between

His264 and Glu169 was absent, and consequently

Phe168 was disordered. The implications of these

observations are discussed more below.

There are now two Class A receptors whose

structures have been determined coupled to het-

erotrimeric GS, b2AR (Rasmussen et al., 2011)

and A2AR, and after this work was completed,

two Class B structures coupled to GS were also

published (Liang et al., 2017; Zhang et al.,

2017; Liang et al., 2018). As expected the over-

all architecture of the receptors coupled to GS

are conserved, but the details differ. The biggest

difference between coupling of Class A receptors

to Class B receptors is that the position of H8 in

the Class B receptors is angled towards the G

protein by ~30˚compared to the Class A recep-

tors. This results in extensive contacts between

H8 and the G protein b subunit that are absent in

Class A receptors. All the receptor structures

coupled to GS show the majority of the contacts

between the a5 helix of the a subunit and H3, H5

and H6 of the receptor, with receptor-dependent

contacts in H2, H7 and H8. The differences may

arise partially from the subtle difference in bend-

ing of the C-terminal part of the a5 helix and the

different positions of the a5 helix within the

receptor, both presumably arising from the differ-

ent amino acid sequences of the respective

receptors. The interactions observed here

between A2AR and the b subunit are also

observed in the Class B receptors, but are absent

from the crystal structure of the b2AR-GS structure, although a shift of the b subunit by only a few

ångstroms would be sufficient for interactions to occur.

The poor density of ECL2 in the cryo-EM map of A2AR coupled to the heterotrimeric G protein,

suggests that this region is more dynamic than suggested from the X-ray structures, maybe due to a

pH effect that breaks the salt bridge between His264 and Glu169. This salt bridge has been sug-

gested to be highly important in modulating the kinetics of ligand binding (Segala et al., 2016).

Interestingly, a recent structure (Sun et al., 2017) of A2AR bound to compound-1 was crystallised at

H5

H6

H4

α5

HN

H8

H1

H2

S35
Q38N36

D312

D333 F335

R52
HN

a

b

Figure 7. Comparison of A2AR and b2AR coupled to

heterotrimeric GS. (a) A2AR (dark green) and b2AR (dark

grey) were aligned using regions of the receptors

predicted to be within the cytoplasmic leaflet of the

lipid bilayer. The position of mini-GS (pale green)

coupled to A2AR is compared to the position of the

GTPase domain of the a subunit (pale grey) coupled to

b2AR. The bg subunits and Nb35 have been omitted for

clarity. (b) Transmembrane region H1 and ECL1 in A2AR

(dark green) extends closer to the b subunit (pale

green), whereas b2AR (dark grey) is too far away from

the b subunit (pale grey) to make extensive contacts.
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pH 6.5, and no crystal contacts were formed by ECL2. In this structure, the N-terminal section of

ECL2 lacked density as we observed in the cryo-EM map and, in the latter region, Phe168 adopts

two conformations. In one conformation, Phe168 stacks against the ligand and in the other confor-

mation Phe168 points towards the extracellular surface (Figure 6). The ionic bridge between Glu169

and His264 seems to be present in this structure, so the two conformations of Phe168 may be a con-

sequence of the ligand. The cryo-EM structure thus adds support to the contention that ECL2 is flex-

ible and may be important in modulating the accessibility of the orthosteric binding site to ligands.

The cryo-EM structure presented here allows for the first time a direct comparison of the struc-

ture of a GPCR bound to an identical ligand in the same conformation as determined by cryo-EM

and X-ray crystallography. This is highly interesting with respect to drug discovery where tractability

and speed of the structure determination are balanced by the resolution required for a particular

aspect of any given project. Cryo-EM offers a relatively fast route to the structure of a GPCR in an

active conformation coupled to the heterotrimeric G protein GS. The quality of most of the cryo-EM

map was very similar to the electron density map from the X-ray structure, despite the reported res-

olutions being 4.1 Å and 3.4 Å, respectively. This highlights the importance of the local resolution vs

the global resolution in cryo-EM maps. In both cases, the ligand density was unambiguous, but

adenosine is an asymmetric molecule and difficulties would have been encountered if the ligand was

more symmetrical, such as caffeine. However, there is no doubt that cryo-EM is preferred in terms of

overall speed; extensive protein engineering is required to obtain crystals of GPCRs (Tate and

Schertler, 2009), through adding fusion proteins, deletions of flexible regions, removal of post-

translational modifications and thermostabilisation. In theory, none of these modifications will be

required for a cryo-EM structure, particularly as mild detergents, amphipols and nanodiscs are all

compatible with structure determination of membrane proteins by cryo-EM and will maintain often

quite unstable membrane proteins in a functional state (Tate, 2010). However, once a crystal struc-

ture has been determined, they can often attain much higher resolution than structures of membrane

proteins obtained so far, although high-resolution cryo-EM structures are possible from single mole-

cule imaging (Bartesaghi et al., 2015). Another current advantage of X-ray crystallography is the

possibility of soaking crystals to get multiple structures of a receptor bound to different ligands

through molecular replacement (Rucktooa et al., 2018). Finally, there is still a size limitation of the

molecule imaged by cryo-EM for structure determination (Henderson, 1995) and experimentally this

is now at about 65 kDa (Khoshouei et al., 2017). However, given the continued drive towards

improving the technology of cryo-EM, there is no doubt that this technique will play a pivotal role in

structure-based drug design in future years (Vinothkumar and Henderson, 2016).

Materials and methods

Expression and purification of the human adenosine A2A receptor
Construction of the thioredoxin-A2AR fusion protein and C-terminally truncated A2AR (1-317), both

containing the N154A mutation, is described elsewhere (Nehmé et al., 2017). The constructs were

expressed using the baculovirus expression system as described previously (Carpenter et al., 2016;

Carpenter and Tate, 2017a). Cells were harvested by centrifugation 72 hr post-infection, resus-

pended in hypotonic buffer (20 mM HEPES pH 7.5, 1 mM EDTA, 1 mM PMSF, cOmplete (Roche)

protease inhibitor cocktail), flash-frozen in liquid nitrogen and stored at –80˚C until use. The purifica-

tion of the thioredoxin-A2AR fusion protein was performed in the detergent LMNG in the presence

of 100 mM NECA using Ni2+-affinity chromatography followed by SEC as described previously

(Carpenter et al., 2016; Carpenter and Tate, 2017a).

Preparation of mini-Gs heterotrimer
The mini-GS construct (399) used in single particle cryo-EM reconstructions is based on the construct

393 that was used in the structure determination of the A2AR- mini-GS crystal structure

(Carpenter et al., 2016; Carpenter and Tate, 2016). However, unlike construct 393, mini-GS399

binds bg (Nehmé et al., 2017). The expression and purification of the respective components and

assembly to make the complex containing mini-GS-b1g2, and the preparation of nanobody Nb35,

were all performed following the protocols described previously (Carpenter and Tate, 2016;

Rasmussen et al., 2011; Carpenter and Tate, 2017b).
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Preparation of the A2AR-mini-GSb1g2-Nb35 complex
Thioredoxin-A2AR, mini-GS-b1g2 and Nb35 were mixed in a molar ratio of 1:2:4, to yield a final thiore-

doxin-A2AR concentration of 1 mg/ml. 0.1 U of apyrase was added and the mixture was incubated

overnight at 4˚C. Excess G protein and nanobody were removed by SEC on a Superdex 200 Increase

column (running buffer 20 mM HEPES pH 7.5, 100 mM NaCl, 0.1% LMNG, 100 mM NECA). Peak

fractions with an absorbance value at 280 nm of 1.5–2 were used immediately for grid preparation

or flash frozen in liquid nitrogen and stored at –80˚C until use.

Radioligand binding assays
Insect cells expressing A2AR were resuspended in 1 ml of assay buffer (25 mM HEPES pH 7.5, 100

mM KCl, 1 mM MgCl2, protease inhibitor cocktail) at a final concentration of 3 � 106 cells/ml. Cells

were sheared by 10 passages through a bent 26G syringe needle. Cell membranes were diluted 50-

fold to 100-fold in assay buffer and aliquots prepared as appropriate. In saturation binding assays,

cell membranes containing A2AR were incubated with 3H-ZM241385 (0.1–40 nM) for 2 hr at 21˚C.
Non-specific binding was determined in the presence of 10 mM unlabelled ZM241385. In competi-

tion binding assays, cell membranes were incubated with NECA (1 nM - 1 mM) for 2 hr at 21˚C, in
the presence or absence of 25 mM mini-GS393. 5 nM 3H-ZM241385 was added followed by a 2 hr

incubation. Assays were terminated by filtering through PEI-treated 96-well glass fibre GF/B filter

plates (Merck Millipore, Ireland) and washing with ice-cold assay buffer. Filters were dried, placed

into scintillation vials and incubated overnight in 4 ml Ultima Gold scintillant (Perkin Elmer). Radioac-

tivity was quantified by scintillation counting using a Tri-Carb counter (Perkin Elmer). Apparent KD

and apparent Ki values were determined using GraphPad Prism version 6.0 (GraphPad Software, San

Diego, CA).

Cryo-EM grid preparation and data collection
Cryo-EM grids were prepared by applying 3 ml of sample (total protein concentration 1 mg/ml) on

glow discharged holey gold grids (Quantifoil Au 1.2/1.3 300 mesh). Excess sample was removed by

blotting with filter paper for 4–5 s prior to plunge-freezing in liquid ethane using a FEI Vitrobot Mark

IV at 100% humidity and 4˚C. In all cases, data was collected on a FEI Titan Krios microscope at

300kV. Data without VPP and initial VPP images were acquired using a Gatan K2-Summit detector

and a GIF-quantum energy filter (Gatan) with a 20 eV slit and zero loss mode to remove inelastic

scattering. For the initial non-VPP dataset, EPU automatic data collection software (FEI) was used

while the VPP date set of the K2-summit detector was collected using SerialEM automatic data col-

lection software (Mastronarde, 2005).

The non-VPP data set contained a total of 2800 micrographs, collected as 40 movie frames at a

dose rate of 2 e-/pixel/sec (1.25 e-/Å2 per frame) for 10 s, with a total accumulated dose of 50 e-/Å2.

The magnification was 200,000x yielding 0.66 Å/pixel at the specimen level.

The K2-VPP dataset was the result of merging three datasets with slightly different collection

parameters: (a) 213 micrographs collected as 40 movie frames at 5.2 e-/pixel/s over 10 s for a total

dose of 40 e-/Å2; (b) 232 micrographs collected as 23 frames at 9 e-/pixel/s over 4.6 s for a total

accumulated dose of 30 e-/Å2; (c) 461 micrographs collected as 30 movie frames at a dose rate of 6

e-/pixel/s over 6.5 s for a total dose of 30 e-/Å2. In all cases the magnification was set to obtain a

pixel size of 1.14 Å.

One data set was acquired using a Falcon III detector in electron counting mode by recording 75

movie frames (0.8 s per frame) at a dose rate of 0.5 e-/pixel/s (0.4 e-/Å2 per frame) for a total accu-

mulated dose of 30 e-/Å2 acquired over a period of 60 s. Pixel size at the specimen was calibrated

to be 1.07 Å. A total of 827 images were incorporated into the dataset.

Data processing and model building
All data processing were performed using RELION-2 (Kimanius et al., 2016). Good quality images

were selected manually and drift correction, beam induced motion and dose weighting was per-

formed for each of the datasets with MotionCor2 (Zheng et al., 2017), using 5 � 5 patches and the

corresponding dose per frame. CTF fitting and phase shift estimation were performed using Gctf-

v0.1.06 (Zhang, 2016). In all cases, auto-picking (Scheres, 2015) was performed with a Gaussian

blob as a template (Fernandez-Leiro and Scheres, 2017). Elimination of false positives or ‘bad
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particles’ was performed over two rounds of reference-free 2D classification. 10,000 random par-

ticles were used for ab initio model generation using the Stochastic Deepest Descent (SDG) algo-

rithm incorporated in RELION-2.1. The resulting model was used as input for the initial 3D

classification. After a single round of 3D classification, particles in quality models were pooled

together for refinement. The Falcon III-VPP data was divided into three classes, where two of them

presented clear structural features resembling a GPCR-G-protein heterotrimer complex. During

refinement of the Falcon III + VPP data, the low-pass filter effect of the Wiener filter in the regular-

ised likelihood optimisation algorithm was relaxed through the use of a regularisation parameter

(T = 5). This allowed the refinement algorithm to consider higher spatial frequencies in the alignment

of the individual particles yielding a map of higher quality. Nevertheless, both half-reconstructions

were kept completely separately, and the final resolution estimate (at the post-processing stage in

RELION) was based on the standard FSC between the two unfiltered half-reconstructions. Signal

subtraction of the micelle was performed as described in the results section and were used only in

the last iteration of refinement. Application of ‘particle polishing’ in RELION (corrects for beam

induced motion and performs experimental dose-weighting) did not improve the quality of the den-

sity. Local resolution was calculated with RELION.

Model building and refinement was carried out using the CCP-EM software suite (Burnley et al.,

2017). The activated A2AR and mini-GS coordinates were taken as starting models (PDB code 5g53)

together with the bg coordinated from the b2AR complex structure (Rasmussen et al., 2011). Jelly-

body refinement was performed in REFMAC5 (Murshudov et al., 2011) followed by manual modifi-

cation and real space refinement in Coot (Emsley and Cowtan, 2004). Refinement with restraints

(generated in ProSMART [Nicholls et al., 2012]) was performed in REFMAC5 in order to maintain

the secondary structure in regions with poorer map quality. Validation of the model was performed

in Coot, Molprobity (Chen et al., 2010) and EMRinger (Barad et al., 2015). The goodness of fit of

the model to the map was carried out using Phenix (Adams et al., 2010), using a global model-vs-

map FSC correlation (Figure 3).
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determined with the volta phase plate. Nature Communications 8:16099. DOI: https://doi.org/10.1038/
ncomms16099, PMID: 28665412

Kimanius D, Forsberg BO, Scheres SH, Lindahl E. 2016. Accelerated cryo-EM structure determination with
parallelisation using GPUs in RELION-2. eLife 5:e18722. DOI: https://doi.org/10.7554/eLife.18722, PMID: 27
845625

Garcı́a-Nafrı́a et al. eLife 2018;7:e35946. DOI: https://doi.org/10.7554/eLife.35946 17 of 19

Research article Biochemistry and Chemical Biology Structural Biology and Molecular Biophysics

https://doi.org/10.1038/nmeth.3541
https://doi.org/10.1038/nmeth.3541
http://www.ncbi.nlm.nih.gov/pubmed/26280328
https://doi.org/10.1126/science.aab1576
https://doi.org/10.1126/science.aab1576
http://www.ncbi.nlm.nih.gov/pubmed/25953817
https://doi.org/10.1107/S2059798317007859
https://doi.org/10.1107/S2059798317007859
http://www.ncbi.nlm.nih.gov/pubmed/28580908
https://doi.org/10.1038/nature18966
http://www.ncbi.nlm.nih.gov/pubmed/27462812
https://doi.org/10.1093/protein/gzw049
http://www.ncbi.nlm.nih.gov/pubmed/27672048
https://doi.org/10.21769/BioProtoc.2234
http://www.ncbi.nlm.nih.gov/pubmed/28660236
http://www.ncbi.nlm.nih.gov/pubmed/28660236
https://doi.org/10.21769/BioProtoc.2235
http://www.ncbi.nlm.nih.gov/pubmed/28480316
https://doi.org/10.1107/S0907444909042073
http://www.ncbi.nlm.nih.gov/pubmed/20057044
https://doi.org/10.1021/jm201376w
https://doi.org/10.1021/jm201376w
http://www.ncbi.nlm.nih.gov/pubmed/22220592
https://doi.org/10.1073/pnas.1418377111
https://doi.org/10.1073/pnas.1418377111
http://www.ncbi.nlm.nih.gov/pubmed/25331897
https://doi.org/10.1021/jm4011669
http://www.ncbi.nlm.nih.gov/pubmed/24164628
https://doi.org/10.1016/j.str.2011.06.014
http://www.ncbi.nlm.nih.gov/pubmed/21885291
https://doi.org/10.1107/S0907444904019158
http://www.ncbi.nlm.nih.gov/pubmed/15572765
https://doi.org/10.1038/nature19948
http://www.ncbi.nlm.nih.gov/pubmed/27629640
https://doi.org/10.1107/S2059798316019276
https://doi.org/10.1107/S2059798316019276
http://www.ncbi.nlm.nih.gov/pubmed/28580911
http://www.ncbi.nlm.nih.gov/pubmed/11734617
https://doi.org/10.1124/pr.110.003285
http://www.ncbi.nlm.nih.gov/pubmed/21303899
https://doi.org/10.1017/S003358350000305X
https://doi.org/10.1017/S003358350000305X
http://www.ncbi.nlm.nih.gov/pubmed/7568675
https://doi.org/10.1007/s11910-012-0279-2
http://www.ncbi.nlm.nih.gov/pubmed/22585137
https://doi.org/10.1038/nature10750
https://doi.org/10.1038/nature10750
http://www.ncbi.nlm.nih.gov/pubmed/22286059
https://doi.org/10.1126/science.1164772
http://www.ncbi.nlm.nih.gov/pubmed/18832607
https://doi.org/10.1038/ncomms16099
https://doi.org/10.1038/ncomms16099
http://www.ncbi.nlm.nih.gov/pubmed/28665412
https://doi.org/10.7554/eLife.18722
http://www.ncbi.nlm.nih.gov/pubmed/27845625
http://www.ncbi.nlm.nih.gov/pubmed/27845625
https://doi.org/10.7554/eLife.35946


Lebon G, Edwards PC, Leslie AG, Tate CG. 2015. Molecular determinants of CGS21680 binding to the human
adenosine A2A receptor. Molecular Pharmacology 87:907–915. DOI: https://doi.org/10.1124/mol.114.097360,
PMID: 25762024

Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AG, Tate CG. 2011. Agonist-bound adenosine
A2A receptor structures reveal common features of GPCR activation. Nature 474:521–525. DOI: https://doi.
org/10.1038/nature10136, PMID: 21593763

Lebon G, Warne T, Tate CG. 2012. Agonist-bound structures of G protein-coupled receptors. Current Opinion in
Structural Biology 22:482–490. DOI: https://doi.org/10.1016/j.sbi.2012.03.007, PMID: 22480933

Leone RD, Lo YC, Powell JD. 2015. A2aR antagonists: next generation checkpoint blockade for Cancer
immunotherapy. Computational and Structural Biotechnology Journal 13:265–272. DOI: https://doi.org/10.
1016/j.csbj.2015.03.008, PMID: 25941561

Liang YL, Khoshouei M, Glukhova A, Furness SGB, Zhao P, Clydesdale L, Koole C, Truong TT, Thal DM, Lei S,
Radjainia M, Danev R, Baumeister W, Wang MW, Miller LJ, Christopoulos A, Sexton PM, Wootten D. 2018.
Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor-Gs complex. Nature 555:121–
125. DOI: https://doi.org/10.1038/nature25773, PMID: 29466332

Liang YL, Khoshouei M, Radjainia M, Zhang Y, Glukhova A, Tarrasch J, Thal DM, Furness SGB, Christopoulos G,
Coudrat T, Danev R, Baumeister W, Miller LJ, Christopoulos A, Kobilka BK, Wootten D, Skiniotis G, Sexton PM.
2017. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546:118–123. DOI: https://
doi.org/10.1038/nature22327, PMID: 28437792

Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, IJzerman AP,
Cherezov V, Stevens RC. 2012. Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:
232–236. DOI: https://doi.org/10.1126/science.1219218, PMID: 22798613

Mastronarde DN. 2005. Automated electron microscope tomography using robust prediction of specimen
movements. Journal of Structural Biology 152:36–51. DOI: https://doi.org/10.1016/j.jsb.2005.07.007,
PMID: 16182563

Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA. 2011.
REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica Section D Biological
Crystallography 67:355–367. DOI: https://doi.org/10.1107/S0907444911001314, PMID: 21460454
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