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A B S T R A C T

Background: Myopia is one of the most common eye diseases globally, and has become an increasingly serious
health concern among adolescents. Understanding the factors contributing to the onset of myopia and the stra-
tegies to slow its progression is critical to reducing its prevalence.
Main text: Animal models are key to understanding of the etiology of human diseases. Various experimental
animal models have been developed to mimic human myopia, including chickens, rhesus monkeys, marmosets,
mice, tree shrews, guinea pigs and zebrafish. Studies using these animal models have provided evidences and
perspectives on the regulation of eye growth and refractive development. This review summarizes the charac-
teristics of these models, the induction methods, common indicators of myopia in animal models, and recent
findings on the pathogenic mechanism of myopia.
Conclusions: Investigations using experimental animal models have provided valuable information and insights
into the pathogenic mechanisms of human myopia and its treatment strategies.
1. Introduction

Myopia, also known as nearsightedness, is a common refractive error,
characterized by the inability of the crystalline lens to accurately focus
parallel light on the retina in a relaxed state, leading to visual problems.1

Myopia tends to develop primarily and progress fastest during childhood
and early adulthood, affecting a board age range.2 In the past three de-
cades, the prevalence of myopia has continued to rise. Holden et al.
estimated 1.406 billion people had myopia (22.9% of the world popu-
lation) and 163 million people had high myopia (2.7% of the world
population) in 2000. By 2050, the number of myopia cases is projected to
rise to 4.758 billion (49.8% of the global population), and high myopia
cases will increase to 938 million (9.8% of the global population).3

The vast majority of myopia is associated with excessive axial eye
growth, hence the term axial myopia. In rare cases, myopia may be
caused by an overly curved cornea and/or a lens with increased optical
power, associated with other diseases such as keratoconus, cataracts, and
intraocular inflammation.4–6 Visual regulation plays an important role in
eye growth and refractive development.7 Retinal defocus and visual
deprivation lead to blurred retinal imaging, which triggers compensatory
axial growth and the scleral remodeling, thereby promoting the
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development of myopia.7–9

Myopia is a multifactorial disease. It is widely recognized that myopia
results from a combination of environmental and genetic factors. Human
genetic linkage studies have identified 27 loci across the genome linked
to myopia (MYP1-28, Online Mendelian Inheritance in Man data-
base).10,11 Large genome-wide association studies (GWAS) in myopia
patients have identified hundreds of loci associated with refractive
error.12–15 Furthermore, metabolomics and proteomics studies have
suggested several dozen potentially involved metabolic pathways, most
of which were carried out on animal models.16,17 However, the epidemic
of myopia in recent decades may be related to environmental factors, as
genetic susceptibility has not substantially changed.

Myopia is not merely a refractive error; it often involves pathological
changes such as elongation of the eyeball, enlargement of the eye, and
thinning of the sclera.18,19 As the degree of myopia increases, high
myopia is prone to serious complications, including retinal detachment,
cataracts, glaucoma, posterior staphyloma, myopic maculopathy, and in
severe cases, it can lead to blindness.20,21 Pathological myopia may
become the second leading cause of visual impairment.19–22

Since the 1970s, researchers have successively established various
animal models for myopia by manipulating the visual condition during
024

niversity Press. This is an open access article under the CC BY-NC-ND license

mailto:zyliao@wzu.edu.cn
mailto:jianzou@zju.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aopr.2024.06.001&domain=pdf
www.sciencedirect.com/science/journal/26673762
http://www.journals.elsevier.com/advances-in-ophthalmology-practice-and-research
https://doi.org/10.1016/j.aopr.2024.06.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.aopr.2024.06.001
https://doi.org/10.1016/j.aopr.2024.06.001


L. Zheng et al. Advances in Ophthalmology Practice and Research 4 (2024) 173–181
early development, either by depriving the eye of clear vision or by using
defocusing lenses.23 Although there are differences between animal
models and humans, analyzing the characteristics of pathological myopia
developed in animal models alongside features observed in myopic pa-
tients has provided scientists with insights into the regulation of eye
growth and refractive development. In this review, we summarize the
characteristics of the common myopia models, the induction methods,
measurable indicators of myopia in these models, and discuss the recent
progress in understanding the pathogenic mechanisms of myopia.

2. Experimental models for myopia

The general structure of the eye, the role of photopic vision in
emmetropization, and the visual signaling circuitry, as well as the types
and patterning of retinal neurons, are highly conserved among verte-
brates, making it possible to simulate human myopia in animal models.
Indeed, induced myopia and the visual regulation of eye growth have
been demonstrated in a wide variety of species, from primates to fish
(Fig. 1). However, due to the differences in evolutionary routes and
habits, there are considerable variations between species.
Fig. 1. The common experimental myopic an
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2.1. Chicken

The chick is the most common animal model for studying refractive
development. Chick eyes exhibit highly sensitive control of refractive
status, excellent optical performance, active accommodative ability, and
high visual acuity. However, there are significantly differences between
chick and human eyes in aspects such as scleral structure, refractive
adjustment system, and photoreceptor organization.24 Chicks have a
more cartilaginous sclera and possess an active accommodative system
achieved through changes in both corneal and lens surface curvatures.25

Chick retinas contain rods, four single cone photoreceptors, and one
double cone photoreceptor.26,27 Chick retinas do not have a fovea, but
have a largely rod photoreceptor-free area centralis.28 Unlike mammals,
where the lens becomes more spherical through the relaxation of the
suspensory ligament, in birds, the ciliary body compresses the lens
against the "annular pad" to regulate lens shape. Moreover, the avian
ciliary body is composed of striated muscle, possibly mediating the rapid
and brief adjustment responses observed in birds and some reptiles,
while mammals have smooth muscle. The avian ciliary muscle contains
nicotinic receptors instead of muscarinic receptors, making atropine
imal models and induction approaches.
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ineffective for paralyzing the chick ciliary muscle.29

2.2. Monkey

Monkeys, including marmoset monkeys and rhesus macaques, have
been used in myopia studies. Monkeys share the highest similarity with
humans in many aspects, such as accommodative system, the ciliary
muscle and its pharmacology, and photoreceptor organization.30,31 The
monkey retina is rod-dominated with a cone-dominated fovea, and its
ocular structure and developmental characteristics are closest to those of
humans.32,33 Similar to the humans, the rhesus monkey retina possesses
three types of cones with short-, middle- and long-wavelength sensitiv-
ities. The marmoset retina exhibits a polymorphism of visual pigments,
either dichromatic or trichromatic. The high similarity between monkeys
and humans allows the monkey model to better study the mechanisms of
myopia, the visual regulation of eye growth, and reactions to medicine.
Zeng et al. suggested that elderly monkeys could serve as a model for
pathological features similar to age-related macular degeneration and
high myopia in humans.34 However, the limitations of the monkey
model, including long experimental cycles, high costs, poor compliance,
and difficulties in conducting experiments with large scale sample,
restrict its application.

2.3. Mouse

The mouse is a well-established animal model for human diseases.
Similar to other vertebrate species, mice developed experimental myopia
in response to both visual form deprivation and imposed optical defo-
cus,35 and photopic visual input is necessary for mouse emmetropiza-
tion.36 Both the guinea pig and mouse are rodents. Like the guinea pig,
the mouse retina is dichromatic and lacks a fovea.37 Unlike diurnal
guinea pigs, mice are classified as nocturnal animals, although they are
also active during the day.38 97% of photoreceptors in the mouse retina
are rods.39 Mice have poor optical performance, lack of accommodative
ability, and do not have a fovea in the retina.40 Compared to chickens and
guinea pigs, changes in refractive power and eye growth due to visual
experience in mice are slow.41,42 Additionally, mice have relatively poor
spatial vision, at least 60 times worse than humans.43 Mouse eyes are
small (approximately 3.3 mm in axial length), making accurate mea-
surements of axial length and refractive power challenging without high
resolution.41,44

2.4. Rabbit

Rabbits also serve as a common animal model for myopia through the
application of form-deprivation or defocusing lenses.45 The rabbit retina
is dichromatic and lacks of fovea.46 The size and anatomy of rabbit
eyeballs are similar to those of humans. Ophthalmic surgery and exam-
ination methods used for humans can be directly applied to rabbits. The
cost is affordable and these features facilitate the frequent use of rabbits
in the preclinical assessment of ophthalmic drugs and surgical
strategies.47,48

2.5. Fish

Teleost fish offer a unique vertebrate model for studying eye diseases
and development. Unlike mammals, fish eyes and retinas can continu-
ously grow throughout life. The fish cornea is essentially nonrefractive
due to the aquatic environment. The refractive power of the fish eye is
provided by moving the lens along the pupillary plane or pupillary axis,49

rather than by deforming the lens in birds and mammals. Furthermore,
fish exhibits significant differences from human in photoreceptors.
Zebrafish have tetrachromatic vision. The four types of cones are orga-
nized into precise two-dimensional arrays called cone mosaics across
almost the entire retina,50,51 which is associated with the fish visual
acuity and distance perception.52,53 Despite these differences from
175
humans, fish offer numerous advantages as a vertebrate model with eyes
similar to human in structure and function. These advantages include
rapid growth and regeneration, transparent eye structures, the feasibility
of large-scale screening, the availability of genetic and gene-editing tools,
and low cost. These features make fish models widely used in ophthalmic
research.

Refractive errors can be induced in tilapia fish through both form-
deprivation and imposed defocus, and these errors can be reversed
when the inducing conditions are discontinued.54 Currently, there is
limited literature on induced myopia models in zebrafish. However, a
series of zebrafish genetic models demonstrate myopia-like features.
Knockout of genes in zebrafish, such as lrpap1, lrp2, bugeye, and lumican,
leads to increased eye axial length and disorders in the sclera.55–57

Disruption of cone mosaics caused by crb2b gene knockout induces
myopia phenotypes in zebrafish.52 A zebrafish model with excessive
expansion of sclera, generated bymorpholino injection targeting lumican,
has been successfully used for drug screening.58 GWAS studies have
identified hundreds of genes potentially associated with myopia. The
ease of genetic manipulation in zebrafish makes it possible to analyze the
function of these genes in myopia using this model. Quint et al. have
tested nine genes identified by GWAS and showed that three of them
(LAMA2, LRRC4C, and KCNQ5) play roles in refractive development.59

2.6. Other species

Myopia has been induced in other species, such as tree shrew,60,61

guinea pig,62,63 grey squirrel,64 and cat,65 dog,66–68 and sheep.69

Tree shrews can develop myopia under conditions of visual depri-
vation.61 Tree shrews are dichromatic, possessing cones sensitive to short
and long wavelengths.70 The tree shrew retina does not have a central
fovea. The central region of the retina mainly consists of cones, with rods
accounting for about 1%–14% of the total photoreceptors.71 Further-
more, the breeding limitation of tree shrews also restricts their use as a
model organism.

Guinea pigs develop fast from deprivation myopia and corneal cur-
vature regulation, and their ocular growth and refractive error are
visually regulated in response to imposed myopic and hyperopic defo-
cus.63 Guinea pigs have the advantage of high reproductive capacity and
cost-effective. Compared to other animal models like chickens and mice,
guinea pigs have a larger body size, making them easier to handle sur-
gically. However, the guinea pig model has its limitations. Guinea pigs
are dichromatic and do not have a fovea.72 They may not exhibit an
active accommodative response, and their vision is relatively weak.73

The domestic dog is a dichromatic vision animal,66 and has been
proven to be an important large animal model for many human genetic
retinal diseases.67 It has been reported that spontaneous myopia is very
common in certain breeds of dogs. However, the cause of the myopia
appears to be refractive, stemming from a steeper, more powerful crys-
talline lens and an elongated vitreous chamber depth, rather than from
excess axial elongation. The axial length and corneal curvature of myopic
eyes did not differ significantly from non-myopic eyes.68

A recent study reported a spontaneous myopia and loss of cone
function in a sheep model of achromatopsia caused by CNGA3mutation.
The day-blind sheep had a significantly longer vitreous axial length
compared to WT.69

3. Induction of myopia in animal models

Since 1970s, researchers have developed several methods to induce
myopia in animal models. The classic methods are form-deprivation
myopia (FDM) and lens-induced myopia (LIM).

3.1. Form-deprivation myopia (FDM)

Form-deprivation myopia develops when light is blocked from
reaching the retina through the use of eyelid sutures, diffusion eyepieces,



L. Zheng et al. Advances in Ophthalmology Practice and Research 4 (2024) 173–181
headgear, or lenses, thus preventing the formation of a clear image. The
FDM model was first established by Wiesel et al., in 1977 by suturing the
eyelids of young monkeys23 and has since been widely applied in various
animal models, such as chick,74 monkey,75 mouse,35 rabbit,45 tree
shrew,61 guinea pig63 and tilapia fish.76 Eyelid suturing may lead to
eyelid adhesion, corneal compression, infections, and other adverse re-
actions, affecting experimental outcomes and making it challenging to
create a model of myopia recovery. In contrast, diffuser goggles do not
compress the cornea, are easy to use, and are widely applied in FDM
models.
3.2. Lens-induced myopia (LIM)

Lens-induced myopia develops by placing negative lenses on animals,
causing images to form behind the retina and inducing compensatory
elongation of the eye axis. In 1983, Williams et al. successfully estab-
lished the LIM model by fitting negative lenses on marmosets.77 More
recently, methods such as laser surgery,78 wearing concave lenses,79 and
others have been used to defocus the retina, leading to the development
of LIM.

In recent years, multiple studies suggest that peripheral hyperopic
defocus can stimulate eye growth and is one of the risk factors for the
onset and progression of myopia.80 Lenses with special peripheral optical
designs or bifocal lenses are used in animal models to investigate the
roles of peripheral defocus in myopia. These studies indicate that pe-
ripheral hyperopic defocus induces a decrease in central refractive power
and an increase in eye axial length, whereas peripheral myopic defocus
slows myopia progression.81–83
3.3. Light induction

Myopia models can also be induced by rearing animals in dim light
conditions. Epidemiological studies and experiments in animal models
support the association between light intensity and myopia.84 Chicks
reared under continuous dim light developed the eye enlargement and
suppressed corneal growth.85 In primates, She et al.75 suggested that dim
light was not a strong myopia stimulus by itself, but it can impair the
optical regulation of refractive development. In mice, Landis et al.86

showed that animals exposed to either scotopic or photopic lighting
developed significantly less severe myopic refractive shifts than mice
exposed to mesopic lighting.

Several animal studies show that monochromatic light of different
wavelengths regulates eye growth and development. She et al.61 reported
that long-wavelength monochromatic light inhibited myopia develop-
ment in tree shrews. Strickland et al.87 discovered that short-wavelength
ultraviolet light could slow down the development of mouse eye refrac-
tion, producing hyperopic responses, and also inhibit lens-induced
myopia. Tian et al.88 reported that green light at lower temporal fre-
quency led to myopia and longer axial length, while blue light at a higher
temporal frequency resulted in hyperopia and shorter axial length in
guinea pigs. Quint et al.89 reported exposure to cyan or red light inhibited
the axial growth of zebrafish.
3.4. Behavior induction

Near-work is considered as an important factor for myopia develop-
ment.90 Fu et al.62 established a near-work behavior animal model for
myopia using guinea pigs. Animals were placed in cylindrical cages with
vertical square wave gratings, providing an average viewing distance for
short, medium, and long distances, while maintaining the same light
intensity for 14 days of treatment. The results showed that guinea pigs in
the near-work group exhibited a shift towards myopia. However, there
are currently few established behavioral animal models for myopia.
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3.5. Genetic models

Given the importance of genetic factors in myopia, the genetic models
are irreplaceable for the functional analysis of candidate genes for
myopia. Genetic linkage studies have identified a series of myopia
associated genes.91–98 Genetic evidence in animals has confirmed the
roles of certain genes in myopia, including lumican (MYP3),99 VIPR2
(MYP17),100 ZNF644 (MYP21),101 and LRPAP1 (MYP23).57 Mutations in
genes associated with complete congenital stationary night blindness
(cCSNB), such as GPR179, NYX, LRIT33, TRPM1 and GRM6, present with
high myopia. Loss of these genes in mice promotes susceptibility to
myopia induction.102 Mutations in genes causing disorders in photore-
ceptors, such as OPN1LW (MYP1),103 ARR3 (MYP26),104 GNAT1105 and
GNAT2,106 and GLRA2,107 can also be associated with high myopia in
humans and mice by impairing photoperception and visual transmission.
Depletion of matrix metalloproteinases (MMPs), which mediate scleral
extracellular matrix (ECM) degradation and scleral thinning, relieved
FDM-induced myopia in mice, and vice versa.108 Knockout of TGF-β
regulators such as A2AR109 and LRPAP1110 promotes development of
myopia with increased axial length and altered scleral collagen fiber
structure in mice. More genes have been identified as myopia-associated
genes by GWAS. Knockout of a portion of these genes presents a myopic
phenotype and can serve as genetic models for myopia. For example,
depletion of myopia-associated genes LAMA2, LRRC4C, and KCNQ5
identified by GWAS affected the refractive development in zebrafish.59

4. Common measurable indicators for myopia

Refraction is determined by the coordinated contributions of ocular
biometric components such as axial length, anterior chamber depth,
vitreous chamber depth, corneal curvature, and lens shape and thickness.
Thus, these ocular biometric components are used as the indicators for
myopia in animal models.

Typically, the axial distance from the cornea to the retina is referred
to as the axial length of the eye. The distance from the posterior corneal
surface to the anterior lens surface is referred to as anterior chamber
depth. The distance from the posterior lens surface to the vitreous-retina
interface is referred as vitreous chamber depth. Optical coherence to-
mography, as well as A- or B- scan ultrasonography technologies, is
frequently employed for imaging the eyeball and measuring ocular
biometry in experimental myopic animals.17,52,89,111–113 Autorefractor
keratometry is usually used to measure the corneal curvature in myopic
animals. Blood flow within the choroid can be assessed using laser
doppler velocimetry and flowmetry, laser interferometry, and laser
speckle flowgraphy.114 The ultrastructure of the corneal extracellular
matrix can be visualized using a transmission electron microscope. In
zebrafish, methods to measure visual acuity and visual distance have
been established.52,115 Furthermore, a series of studies has identified
dopamine in the retina as an important neurotransmitter regulating the
ocular refractive development in humans and animals.116–119 Levels of
dopamine and its primary metabolite, 3,4-dihydroxyphenylacetic acid,
are used as a molecular indicators in myopic animals.

5. Cellular and molecular biology of myopia

Although myopia can be triggered by an overly curved cornea and
other factors,4,5,120 which have been also observed in some animal
models of myopia,7 axial myopia is primarily caused by excessive axial
growth of the eyeball under visual accommodation. The signaling for eye
growth and refractive development in visual accommodation appears to
be located within the eye. Surgical or pharmacologic blockade of vision,
such as transection of the optic nerve, bilateral surgical removal of the
striate cortices, and sensory deafferentation by sectioning the trigeminal
nerve, did not prevent induced myopia or its recovery when the induc-
tion was terminated in multiple animals.7 It is currently believed that the
shape and size of the eyeball are primarily determined by the sclera,18
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with a possible contribution from the choroid.121

The sclera is a layer of dense connective tissue that forms the outer-
most layer of the eyeball. Human scleral tissue is composed of collagen
fibrils embedded in a matrix of elastin, proteoglycans and non-
collagenous glycoproteins.18 The sclera is a dynamic tissue. The com-
ponents, thickness, and ultrastructure of the scleral ECM undergo
remodeling to adapt to the state of the eye. ECM remodeling leads to
changes in scleral biomechanical properties, which in turn define the eye
size and refraction. ECM loss and scleral thinning (especially at the
posterior pole) are observed in both in highly myopic human eyes and
experimental myopic animal eyes.18,122–124 ECM loss and scleral thinning
result in an increase of viscoelasticity and an decreased tensile strength of
the sclera, allowing for the elongation of the eye axis.

Scleral remodeling is a dynamic process involving the continuous
synthesis and degradation of the ECM. Any alterations in the scleral ECM
components or the regulation of scleral ECM synthesis and degradation
may lead to changes in scleral shape, which in turn could dramatically
affect vision. Indeed, mutations in collagen genes, including COL1A1,125

COL2A1,126 COL18A1127 have been identified as high risk factors for
myopia. Transforming growth factor β (TGF-β), MMPs and tissue in-
hibitors of metalloproteinases (TIMPs) play a central role in scleral
remodeling. TGF-β is a multipotent growth factor that plays a critical role
in embryo development and tissue homeostasis by regulating cell growth,
inflammation, apoptosis, and extracellular matrix synthesis.128 TGF-β is
essential in regulating the production of the scleral extracellular ma-
trix.129,130 TGF-β is also known to modulate the expression of MMPs,
which can cleave collagens and degrade ECM, resulting in scleral
remodeling.131 Clinical and animal studies have shown increased
expression of TGF-β2, MMPs and TIMPs in myopic eye tissues.108,132,133

More signaling pathways have been identified as the critical regula-
tors of myopia (Fig. 2).134 Dopamine is widely known as a key neuro-
transmitter regulating ocular refractive development in humans and
animals.116 Other transmitters and signaling molecules are involved in
eye growth and refractive development include GABAb,135 nitric
oxide,136 and adenosine.137 Cytokines, including fibroblast growth factor
Fig. 2. The regulators of scleral ECM remodeling and myopia development. TGF-β
represents causal relationships supported with published evidences. Dasharrwos rep
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(FGF),138 insulin like growth factor (IGF),139 bone morphogenetic pro-
tein (BMPs),140 vascular endothelial growth factor (VEGF),141 retinoic
acid (RA),142 and WNT143 are also known to participate in the process.
Cellular responses, such as scleral hypoxia,144,145 oxidative stress,146 and
endoplasmic reticulum stress147–149 are also involved in the regulation of
scleral remodeling and myopia development. Lin et al. have reported that
augmentation of scleral glycolysis promotes myopia via the scleral
glycolysis-lactate-histone lactylation pathway.150 Pan et al. has reported
that dietary ω-3 polyunsaturated fatty acids play a protective role against
myopia.151 Moreover, miRNAs, circRNAs and epigenetic regulation have
been shown to regulate scleral remodeling.150,152–157 These signaling
molecules are primarily derived from retina, RPE, choroid and sclera.

The choroid is a highly vascularized connective tissue located be-
tween the RPE and the sclera.158 It is a dynamic structure, and its
thickness is modulated in response to various cues, including physio-
logical and pharmacological influences, circadian rhythm and optical
defocus.112,159,160 Choroidal thickness has been shown to predict myopia
development. Thinner choroids are always associated with higher degree
the myopia.8 Anti-myopia treatments have induced significant increases
in choroidal thickness in several clinical studies.161,162 The choroid
provides nutrients and oxygen to the sclera and retina, influences their
metabolism. Increased choroidal blood perfusion induced by the vaso-
dilator prazosin treatment inhibited FDMmyopia in guinea pigs, and vice
versa.163,164 Choroidal thickness and choroidal blood perfusion were
significantly decreased in both spontaneous and induced myopic guinea
pigs.165 Pharmacological anti-myopia treatments or intense light signif-
icantly inhibited myopia development and the decrease in choroidal
blood perfusion in FDM-induced myopic eyes in guinea pigs.163 More-
over, the choroid can secrete a variety of factors involved in scleral
remodeling during myopia development, including TGF-β, VEGF, hepa-
tocyte growth factor (HGF), RA, FGF, nitric oxide, dopamine, MMPs and
TMIPs, and acetylcholine.

The first signals that visually regulate eye growth may originate from
the retina since the retina is the only organ that senses light. Evidences
have shown that the retina plays an important role in the development of
and MMPs/TIMPs are the key regulators of scleral ECM remodeling. Arrows
resents possible causal relationships without evidence yet.
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myopia through various mechanisms. It is widely accepted that light
conditions, such as light intensity, light wavelength, and intermittent/
continuous light exposure, affect on eye axis growth and myopia devel-
opment.166–168 Outdoor exposure and repeated low-level red-light
treatment are effective therapeutic approaches for the retardation of
myopia.168–170 Impaired photoperception and visual transmission are
risk factors of high myopia. Photoreceptor disorders caused by dysfunc-
tion of genes, including OPN1LW (MYP1),103 ARR3 (MYP26),104

PRGR,171 GNAT1105 and GNAT2,106 GLRA2,107 PDE4B,172 PDE6B,173 and
EGR1,174 are also associated with high myopia in humans and mice.
Mutations in cCSNB associated genes, such as GPR179,175 NYX,176

LRIT3,175 TRPM1175 and GRM6,177 presents ON-biplaor cells dysfunction
with high myopia. Loss of these genes in mice promotes susceptibility to
myopic induction.102 Disruption of amacrine cells using colchicine sup-
presses axial growth of the eye in chicks.178 Intrinsically photosensitive
retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin
have been identified as novel photosensitive cells in the retina.179,180

Ablation of ipRGC or melanopsin attenuated FDM induced myopia in
mice, and vice versa.181,182 Additionally, it has been reported that Müller
cells and astrocytes, which can secrete a variety of factors, are activated
in myopic eyes.183 Omics studies in human and animal myopic eyes have
shown that the expression patterns of hundreds of genes are significantly
altered, with both up-regulated and down-regulated expression.16

However, the causal relationships between gene expression alterations
and myopia development need further investigated.

6. Conclusions

In summary, visual regulation plays an important role in eye growth
and refractive development, and myopia can be effectively induced by
FDM and LIM in all these animal models. These animal models offer re-
searchers a controlled experimental platform to gain deeper insight into
the development of myopia. Studies in experimental myopic animals
have provided valuable insights into the mechanisms, risk factors, and
treatment for myopia. However, each animal model has its own advan-
tages and disadvantages due to species differences. For example, chicks
and rabbits exhibit excellent optical performance and are frequently used
in the preclinical assessment of ophthalmic drugs and surgical strategies.
Monkeys can serve as the best model for pathological features similar to
humans. Mouse model is widely used to explore the cellular and mo-
lecular mechanism of myopia. Zebrafish model is suitable for the large
screening of candidate genes and drugs. It is worth to note that the
findings from animal models may sometimes differ significantly from
those observed in human myopia.
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