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Simple Summary: Stereotactic ablative radiotherapy (SABR), which irradiates tumors with high-
dose radiation per fraction, promotes anti-tumor immunity by stimulating various immune processes.
SABR also induces vascular damage and obstructs blood flow, thereby increasing tumor hypoxia
and upregulation of hypoxia-inducible factors HIF-1α and HIF-2α, master transcription factors for
the cellular response to hypoxia. HIF-1α and HIF-2α are key players in the upregulation of immune
suppression in hypoxia. Therefore, the radiation-induced increase in anti-tumor immunity is masked
by the HIF-mediated immune suppression. Pre-clinical experiments show that inhibition of HIF-1α
effectively prevents immune suppression and improves anti-tumor immunity. A combination of
HIF-1α inhibitors with immunotherapy with checkpoint blocking antibodies may represent a novel
approach to boost anti-tumor immunity and enhance the efficacy of SABR.

Abstract: High-dose hypofractionated radiation such as SABR (stereotactic ablative radiotherapy)
evokes an anti-tumor immune response by promoting a series of immune-stimulating processes,
including the release of tumor-specific antigens from damaged tumor cells and the final effector
phase of immune-mediated lysis of target tumor cells. High-dose hypofractionated radiation also
causes vascular damage in tumors, thereby increasing tumor hypoxia and upregulation of hypoxia-
inducible factors HIF-1α and HIF-2α, the master transcription factors for the cellular response to
hypoxia. HIF-1α and HIF-2α are critical factors in the upregulation of immune suppression and
are the master regulators of immune evasion of tumors. Consequently, SABR-induced increase in
anti-tumor immunity is counterbalanced by the increase in immune suppression mediated by HIFα.
Inhibition of HIF-1α with small molecules such as metformin downregulates immunosuppressive
pathways, including the expression of immune checkpoints, and it improves or restores the anti-
tumor immunity stimulated by irradiation. Combinations of HIFα inhibitors, particularly HIF-1α
inhibitors, with immune checkpoint blocking antibodies may represent a novel approach to boost the
overall anti-tumor immune profile in patients and thus enhance outcomes after SABR.

Keywords: SABR; HIF-1α; HIF-2α; HIF-1α inhibitor; HIF-2α inhibitor; immunotherapy; tumor
hypoxia; immune checkpoints
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1. Introduction

Radiotherapy is a major treatment modality for controlling a variety of cancers. Con-
ventional radiotherapy comprises irradiating tumors with various total doses delivered in
1.5–2.0 Gy/day, 5 days a week. The major radiobiological rationale for treating the cancers
with multiple small radiation doses is to take advantage of the greater radiosensitivity
of actively dividing cancer cells relative to normal tissues so that tumors are eradicated
with acceptable normal tissue damage. In recent years, remarkable technological advances
in tumor imaging, radiation delivery, and tumor motion tracking have made it possible
to precisely deliver high-dose radiation to tumors with acceptable damage in adjacent
normal tissues [1]. During the last decade, an increasing number of cancer patients have
been treated with high-dose hypofractionated radiotherapy, which is known as stereotactic
radiosurgery (SRS) or stereotactic body radiotherapy (SBRT). Usually, the SRS is referred
to the treatment of cranial tumors with 15–25 Gy in a single dose, while SBRT delivers
15–60 Gy in 1–5 fractions to extracranial tumors. SRS and SBRT are collectively called
stereotactic ablative radiotherapy (SABR). The clinical outcome of SABR is excellent, with
initial local control rates of 80–90% in some tumor types [1]. Unfortunately, however, a
tumor may recur, and metastatic growth develops outside the treated area after SABR.
Increasing anti-cancer immunity has been suggested to be an approach to improve the
ultimate outcome of SABR.

Conventional fractionated radiotherapy with a small dose per fraction sterilizes cancer
cells by causing DNA double-strand breaks followed by chromosome aberrations. The
cell death mechanisms by SABR have been intensively debated in recent years [2–10].
Some investigators have asserted that DNA damage is the major mechanism for the cell
death by SABR, while radiobiological principles show that DNA damage alone cannot
account for the high efficacy of SABR. The recent accumulating pre-clinical and clinical
evidence shows that SABR may eradicate tumor cells through a combination of three
pathways: (i) Direct cell death via DNA double-strand breaks, (ii) Indirect cell death via
vascular damages, and (iii) Anti-tumor immune response [11–18] (Figure 1). The relative
importance of these pathways in eradicating tumor cells and controlling tumors depends
on the radiation dose delivered and the tumor type. Cell death due to DNA damage is
the major cell death mechanism when the delivered radiation dose per fraction is small,
e.g., <5–8 Gy [7,8]. When the radiation dose exceeds 8–10 Gy per fraction, significant
indirect cell death secondary to the vascular damage would occur [3,19–31]. SABR is highly
effective because it indirectly kills many radioresistant hypoxic tumor cells by causing
vascular occlusion [2–6]. The implication of anti-tumor immune response in the outcome
of SABR is unpredictable since the immunogenicity of tumors before irradiation exposure
significantly varies depending on tumor type, and high-dose irradiation is a double-edged
sword regarding tumor immunity as it can cause both immune stimulation and immune
suppression [11–18]. High-dose irradiation of tumors increases the anti-tumor immunity by
stimulating practically all known pro-immunologic processes, beginning with the release
of tumor-associated antigens (TAAs) from tumor cells and continuing to the final effector
phase of killing target tumor cells by activated cytotoxic T-cells [11,12,15,17,18]. However,
high-dose irradiation also induces immune suppression by causing vascular damage,
increasing tumor hypoxia, and upregulating hypoxia-inducible factor-1α (HIF-1α), the
master transcription factor for oxygen homeostasis and immune suppression [3,32–35].
Hypoxia also upregulates hypoxia-inducible factor-2α (HIF-2α), which has also been
known to play an important role in anti-tumor immunity. While the effect of high-dose
irradiation on the expression of HIF-1α in tumors has been well-documented, that on the
expression of HIF-2α is currently unknown. In this review, we discussed the radiation-
induced stimulation of anti-tumor immunity and the radiation-induced suppression of
anti-tumor immunity mediated mainly by HIF-1α. A potential approach to overcoming the
immune suppression using small-molecule HIF-1α inhibitors is also discussed.
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Figure 1. SBRT/SRS (SABR) kills tumor cells by three mechanisms; first—direct DNA damage,
second—indirect cell killing via vascular damage, third—promoting immunologic cell killing. The
vascular damage increases the expression of HIF-1α in tumor cells and stroma cells, which promotes
the proliferation of hypoxic tumor cells leading to recurrence and metastasis. HIF-1α also activates
various immune-suppressive pathways, thereby masking the radiation-induced increase in anti-
tumor immune response. Inhibition of HIF-1α may suppress the survival and proliferation of hypoxic
cells and also stimulate the anti-tumor immune response [3].

1.1. Vascular Damage in Tumors by SABR

The tumor vascular networks are initially formed through angiogenesis, characterized
by the sprouting of arteries and veins of neighboring normal tissues initiated and main-
tained mainly by vascular endothelial growth factor (VEGF), secreted from the tumor cells
and preexisting or convened inflammatory host cells [36–38]. Under certain circumstances,
circulating endothelial progenitor cells and bone marrow-delivered stem-like cells are
assembled to form tumor blood vessels, which is referred to as vasculogenesis [3,39,40].
The endothelial cells of the inner surface of the newly formed tumor blood vessels are
frequently disconnected with gaps between the endothelial cells which are occupied by
tumor cells and even pericytes [41]. The endothelial layers of tumor blood vessels are
supported by incomplete basement membranes and a fragile outer muscle layer. The tumor
blood vessels are irregularly constricted or dilated, sharply bent and tortuous [3,19,41].
The supply of essential nutrients including oxygen through such aberrant tumor blood
vessels is insufficient for the rapidly growing tumor cell population. Therefore, varying
fractions of tumor cells are hypoxic, which are 2–3 times more radioresistant than oxic
tumor cells. When tumors are treated with radiotherapy, the tumor blood vessels are also
irradiated, and dose-dependent vascular change occurs in the tumor blood vessels. It has
been shown that structurally immature tumor microvasculatures are extremely sensitive
to ionizing radiation [19]. Irradiation of tumors with doses higher than 8–10 Gy causes
dose-dependent vascular damage, resulting in a decline in functional vascularity and blood
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perfusion [2,19–31]. For example, in a rat tumor model, functional vascularity declined
immediately after irradiation with 2.5 or 5.0 Gy but recovered within 1–2 days, while
irradiation with doses greater than 10 Gy caused a severe and long-lasting shutdown of
blood perfusion [28]. A recent study using the noninvasive optoacoustic microangiography
method demonstrated that 12–18 Gy irradiation of murine tumors in a single dose induced
numerous vascular fragmentations and pronounced reductions in the functional vascular
density in 1–10 days [30]. Such radiation-induced vascular injuries would inevitably lead
to a decline in the supply of oxygen to tumor cells [19,22,30,31], and the resultant hypoxic
environment increases the expression of HIFs [2,3,42] (Figure 1).

1.2. Effects of High-Dose Irradiation on HIF Expression in Tumors

Hypoxia-inducible factors, HIFs, are heterodimeric transcription factors consisting
of labile α-subunits (HIF-1α and HIF-2α) and a stable HIF-1β subunit. HIFs transcribe
numerous hypoxia-responsive genes including those involved in energy metabolism, vas-
cularization, invasion, metastasis and immune escape of tumors. HIF-1α and HIF-2α are
highly homologous and they share many functional features overlapping, and yet they
also exhibit significant differences in tissue-specific expressions and some physiological
functions such as the regulation of anti-tumor immune responses [43–46].

HIF-α is persistently synthesized in the cells but rapidly disintegrates via a pathway
initiated by hydroxylation of proline residues by the oxygen-sensitive prolyl hydroxylase
domain (PHD) enzyme. This modification leads to ubiquitination of HIF-α and proteasome-
mediated degradation in the presence of oxygen [47–49]. When HIF-α in cytoplasm moves
into the nucleus and binds to nuclear HIF-1β, HIF-α is activated and functions as a master
transcription factor of stress responses.

There has been increasing evidence that high-dose irradiation per fraction markedly
upregulates the expression of HIF-1α in tumors by decreasing blood perfusion and increas-
ing tumor hypoxia [2,3,42]. For example, irradiation of FSaII fibrosarcoma of C3H mice
with 20 Gy in a single dose significantly increased the expression of HIF-1α in 1 day and
further increased to almost 4 times that in the control tumors on days 5 after irradiation
(Figure 2) [42]. The expression of CA9, a target gene of HIF-1α, and a hypoxia marker, also
increased in parallel with that of HIF-1α after irradiation, demonstrating the close asso-
ciation of hypoxia and HIF-1α expression [42]. However, it should be noted that HIF-1α
expression can be increased even under a normoxic environment when the proteasomal
degradation of HIF-1α is inhibited by physical stresses including reactive oxygen species
(ROS) [50,51]. It has been reported that ROS are formed when the hypoxic tumor cells
are reoxygenated after irradiation [50]. We have shown that irradiation of FSaII tumors
grown in the legs of C3H mice with 10–25 Gy in a single dose induced reoxygenation of
the surviving hypoxic cells in 1–5 days [42]. Therefore, the marked increase in HIF-1α
expression in the FSaII tumors after irradiation with 15–20 Gy may be attributed to two
mechanisms: first, the hypoxic tumor microenvironment (TME) resulting from the severe
vascular injuries inhibited the degradation of HIF-1α, and second, ROS generated during
the reoxygenation of hypoxic tumor cells prevented the degradation of HIF-1α, leading to
a sustained accumulation of functional HIF-1α in TME.

Little is known about the effect of radiation on HIF-2α expression in tumors. Irradia-
tion with 2 Gy increased HIF-2α expression in head-and-neck squamous cell carcinomas
(HNSCC) [52]. The expression levels of HIF-2α appeared to be implicated in the resistance
of HNSCC to radiotherapy in combination of EGFR inhibition [53]. To the best of our
knowledge, there have been no reports on the effect of high-dose-per-fraction irradiation
on the expression HIF-2α in tumors. However, it would be reasonable to expect that the
expression of HIF-2α in tumors increases, as HIF-1α does, after an exposure to high-dose
irradiation due to an increase in hypoxia in TME as a result of the radiation-induced
vascular damage.
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Figure 2. (Upper panel) (A). Immunohistochemical image of HIF-1α (magenta), CA9 (white), CD31
(green) and DAPI (blue) in FSaII tumors grown subcutaneously in the legs of C3H mice. (Lower
panel) (B). % Positive area for HIF-1α and CA9. Irradiation with 20 Gy markedly increased the
expression of HIF-1α and its target CA9 in 1–5 days post-irradiation [42]. *, p < 0.05; **, p < 0.01; ns,
not significant, One-way ANOVA.

1.3. Stimulation of Antitumor Immunity by High-Dose Irradiation

Conventional radiotherapy, which irradiates tumors 25–50 times with low daily ra-
diation doses for 5–10 weeks, has shown to be immunosuppressive, probably because
the immune lymphocytes infiltrated into the tumors are killed by the repeated radiation
exposures [11]. The 3D conformal SABR irradiates tumors only 1–5 times in 1–2 weeks,
and thus the immune cells in the tumors are less frequently exposed to radiation and thus
spared from radiation damage. It has been reported that many cancers are not immuno-
genic and thus cannot respond to immunotherapy, but the anti-tumor immune responses
in these tumors may be stimulated by high-dose irradiation [11–18]. The tumor cell death
due to DNA damage and also vascular damage followed by the massive lysis of the dead
tumor cells for several days after irradiation with high-dose per fraction may function as a
sustained in situ vaccination [3]. Irradiation of tumors increases the cell surface expression
of calreticulin and major histocompatibility complex class-1 (MHC class-1), which are
crucial for the immune recognition of tumor cells [12,14–16]. The heavily irradiated tumor
cells release tumor-associate antigens (TAAs), damage-associated Type 1 IFNs, ATP and
high-morbidity group box 1 (HMGB1) [16–18]. These damage-associated molecular pat-
terns (DAMPs) or “danger signals” are released not only from the tumor cells undergoing
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immunogenic cell death (ICD) but also from the irradiated tumor-associated host cells.
The DAMPs then recruit and activate antigen-presenting cells (APCs), including dendric
cells (DCs) by reacting with the associated receptors (Toll-like receptors) on the surface of
the APCs. The activated APCs expressing TAAs in the context of MHC migrate to nearby
draining lymph nodes and cross-present the TAA to the T-cell receptor (TCR) on the surface
of naïve CD8+ T-cells, priming the T-cells to cytotoxic CD8+ T-cells. The processes of
acquiring and presenting TAAs to T-cells by DCs require upregulation of HIF-1α in the
DCs. HIF-1α has been shown to enhance the synthesis of IFNs in DCs, which promotes
the T-cell priming by DCs [54,55]. Upregulation of HIF-1α in DCs was crucial also for the
activation of immunosuppressive regulatory T-cells (Tregs) in murine colitis [56]. The CD8+
T-cells are also stimulated (co-stimulated) through the ligation of the CD28 expressed on
the surface of the T-cells to the CD80/CD86 on the surface of APCs. The CD8+ T-cells
activated in the lymph nodes then migrate to tumors and infiltrate into the tumors. Various
cytokines such as IFN-γ, TNF-α, and IL-1β released from the irradiated tumor cells and
other immune cells promote the trafficking of the activated T-cells to the tumors. The
T-cells infiltrated into the tumors identify the target tumor cells expressing MHC-1 and
kill them through two pathways. First, the cytotoxic T-cells injure the membrane of tumor
cells by releasing perforin and granzyme, eliciting apoptotic death of tumor cells. Second,
the interaction of Fas ligand (FasL) on the CD8+ T-cells with the Fas on tumor cells, which
is upregulated by irradiation, activates a caspase cascade, leading to apoptosis of tumor
cells [57]. Natural killer cells (NK cells) play a critical role in innate anti-tumor immunity.
It has been reported that, whereas low-dose irradiation of tumors enhanced the effects of
NK cells, high-dose irradiation impaired NK cell functions [58].

1.4. Suppression of Antitumor Immunity by High-Dose Irradiation
1.4.1. Role of HIF-1α in Immunosuppression

It is becoming more and more apparent that the elevated anti-tumor immunity by
high-dose irradiation is often counterbalanced or negated by the overwhelming immuno-
suppressive TME enriched with HIF-1α [11,17,32–35]. The TME is intrinsically hypoxic
due to insufficient blood supply, and it becomes further hypoxic when tumors are exposed
to high-dose hypofractionated irradiation and blood vessels are occluded [3,19,30,31]. As
addressed before and shown in Figure 2, the increase in hypoxia because of vascular
occlusions leads to the accumulation of HIF-1α in the TME [2,3,12,42]. In addition, reoxy-
genation of fractions of hypoxic cells in tumors after irradiation may also contribute to
the increase in HIF-1α expression in tumors after high-dose irradiation [50,51]. Besides
promoting tumor cells to adapt to the hypoxic environment and proliferate, HIF-1α also
functions as the master regulator of immune escape by transcriptionally upregulating
multiple genes that suppress the innate and adaptive immune responses against cancer
cells (Figure 2) [16,17,32–35]. The expression of MHC class-1 is critical for the immune
recognition of tumor cells. Whereas irradiation enhances MHC class-1 expression (15),
hypoxia and HIF-1α suppress the expression of MHC class-1 [32,59], limiting the tumor
cell recognition by APCs. However, hypoxia may increase rather than decrease the expres-
sion of MHC class-1 in some cell lines [60]. A hypoxic TME in which HIF-1α is greatly
activated stimulates the cancer-associated fibroblasts (CAFs) to release stromal-derived
factor-1 (SDF-1), which in turn recruits immature myeloid cells into TME [61]. The recruited
myeloid cells then differentiate into tumor-associated macrophages (TAMs) or myeloid-
derived suppressor cells (MDSCs). In high-dose irradiated tumors, increasing numbers
of immunosuppressive MDSCs were present in avascular hypoxic regions [62], indicating
that the irradiation-induced increase in hypoxia and HIF-1α promoted the differentia-
tion of myeloid cells to MDSCs [63]. The transforming growth factor-β (TGF-β) released
from the MDSCs stimulates the polarization of TAM into immunosuppressive M2-type
macrophages, and also promotes the DC-instructed activation of Tregs [11,12,16,17,32–35].
Tregs play a major role in immune suppression by secreting immune-suppressive cytokines
such as TGF-β, IL-10, and IFN-γ, thereby attenuating the effector T-cell activation and also
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promoting the immune-suppressive function of MDSCs. The whole process of induction
of functional Tregs is closely regulated by HIF-1α [32–35,64]. NK cell activity is directly
influenced by several immune-suppressive cells such as Treg and MDSCs [65]. The NK cells
in the irradiated tumor microenvironment are exhausted, wherein the immunosuppressive
signals are highly activated by HIF-1α [58]. These results clearly show that HIF-1α plays a
critical role in the development of hypoxia-induced immune suppression in tumors treated
with SABR.

1.4.2. Role of HIF-2α in Immunosuppression

Contrarily to HIF-1α, relatively little has been revealed on the role of HIF-2α in tumor
immune response, although HIF-2α has been known to be implicated in the immuno-
suppressive functions of TAM. TAMs localize preferentially in hypoxic regions in tumors,
where they express HIF-1α and HIF-2α [44]. In a recent study, it was observed that TAMs
were polarized to M1 and M2 types by Th1 cytokine (IFN-γ) or Lipopolysaccharide (LPS)
and Th2 cytokines (IL-4 and IL-13), respectively, and that mainly HIF-1α was expressed in
M1 and mainly HIF-2α was upregulated in M2 macrophages [44]. Functionally, HIF-2α
has been shown to directly regulate the expressions of proinflammatory cytokines and
chemokine in TAMs and play an essential role in migration of TAMs in tumors [66]. Hy-
poxic cancer-associated fibroblast (CAFs) in pancreatic ductal adenocarcinoma (PDAC) of
mice significantly promoted M2 polarization of TAMs in an HIF-2α-dependent manner in
the PDAC, indicating that HIF-2α in CAFs plays a crucial role in hypoxia-related immuno-
suppression and tumor growth in pancreatic cancer [46]. It is of note that M2-polarized
TAMs expressing HIF-2α are a major source of CD86 and PD-L1 (programmed cell death
ligand-1), which inactivates cytotoxic CD8+ T-cells. In a recent study, HIF-2α was found
to be indispensable for Treg function [67]. Collectively, HIF-2α plays an important role in
immunosuppression mainly through controlling TAM-mediated immunosuppression in
hypoxic TME. Small-molecule HIF-2α inhibitors such as PT2399, PT2977 and 32–1340 have
been shown to poses significant anti-tumor properties and enhance the efficacy of immune
checkpoint inhibitors [43,68,69]. Clearly, further investigations are warranted for better
understanding of the role of HIF-2α in tumor immune responses.

1.5. Immune Checkpoints and HIF-1α

Immune checkpoints protect cancer cells from unregulated attacks by the cytotoxic
CD8+ T-cells. The major inhibitory checkpoint molecules are Cytotoxic T-Lymphocyte-
associated antigen (CTLA-4), Programed cell death protein 1(PD-1) and its ligand PD-
L1 [70]. The expression and activities of these checkpoints are directly and indirectly
increased by intratumor hypoxia and HIF-1α [64]. Figure 3A shows that incubation of
lung cancer cells in hypoxic environment markedly increased the expressions of HIF-1α
and PD-LI, suggesting that the expression of PD-L1 is related to that of HIF-1α. Figure 3B
demonstrates that the expressions of HIF-1α and PD-L1 in FSaII tumor cells in vitro in-
creased under chemically induced hypoxia (CoCl2), and knockdown of HIF-1α with siRNA
markedly reduced the expression of PD-L1. These results unequivocally demonstrate that
the expression of PD-L1 is under close control of HIF-1α activity.

The CTLA-4 is expressed on the activated CD8+ T-cells in HIF-1α dependent man-
ner [32,64]. As mentioned before, the co-stimulation of T-cells mediated by the interaction
of the CD28 of T-cells with CD80/CD86 on APC is obstructed by the interaction of the
CTLA-4 with the CD80/CD86, leading to T-cell exhaustion, anergy and apoptosis [71–73].
In preclinical studies, blockade of CTLA-4 with antibodies against CTLA-4 enhanced the
anti-tumor immunity by rejuvenating cytotoxic T-cells activity and also enhanced the re-
sponse of tumors to high-dose hypofractionated irradiation [72–75]. In clinical settings,
immunotherapy using antibodies against CTLA-4 markedly increased the efficacy of SABR
for controlling certain types of human tumors [11,13,17,74,75].



Cancers 2022, 14, 3273 8 of 16

Cancers 2022, 14, x FOR PEER REVIEW 8 of 16 
 

 

The CTLA-4 is expressed on the activated CD8+ T-cells in HIF-1α dependent manner 

[32,64]. As mentioned before, the co-stimulation of T-cells mediated by the interaction of 

the CD28 of T-cells with CD80/CD86 on APC is obstructed by the interaction of the CTLA-

4 with the CD80/CD86, leading to T-cell exhaustion, anergy and apoptosis [71–73]. In 

preclinical studies, blockade of CTLA-4 with antibodies against CTLA-4 enhanced the 

anti-tumor immunity by rejuvenating cytotoxic T-cells activity and also enhanced the 

response of tumors to high-dose hypofractionated irradiation [72–75]. In clinical settings, 

immunotherapy using antibodies against CTLA-4 markedly increased the efficacy of 

SABR for controlling certain types of human tumors [11,13,17,74,75]. 

PD-1 is highly expressed on the surface of activated CD8+ T-cells [11,17,76–78]. 

VEGF, which is a major downstream target of HIF-1α, has been shown to promote the 

expression of PD-1 in CD8+ T-cells [79]. TGF-β1, which is upregulated by HIF-1α, has also 

been reported to increase PD-1 expression on CD8+ T-cells [80,81]. The interaction of PD-

1 with its ligand PD-L1 on the surface of tumor cells and other immune cells such as 

MDSCs, macrophages, DCs induces T-cell exhaustion, anergy and apoptosis. Mounting 

evidence strongly indicates that the PD-1/PD-L1 pathway plays the most vital role in 

suppressing immune responses against cancers [77]. Indeed, blocking the PD-1/PD-L1 

pathway using antibodies against either PD-1 and PD-L1 alone or combined suppressed 

the growth of many preclinical experimental tumors and certain types of human tumors 

and enhanced the outcomes after treatment of tumors with SABR [11–18,32–35]. 

 

Figure 3. (A). Western blot analysis for expression of HIF-1α and PD-L1 in human lung cancer cell 

lines. A549, H522, and H1650 (obtained from American Type Culture Collection) were incubated 

under hypoxic conditions (0.5% oxygen) in an InvivO2 500 hypoxia workstation (The Baker 

Company, Sanford, ME, USA) for 24 and 48 h. Cells were lysed using ice-cold RIPA buffer 

containing a protease inhibitor cocktail (Roche Applied Science), sodium orthovanadate (Sigma-

Aldrich, St. Louis, MI, USA), and sodium fluoride (Sigma-Aldrich). Proteins in whole-cell lysates 

were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 

analyzed by immunoblotting. Signals were detected using enhanced chemiluminescence reagents 

(Pierce). The expressions of both HIF-1α and PD-L1 increased under the hypoxia. (Unpublished 

Figure 3. (A). Western blot analysis for expression of HIF-1α and PD-L1 in human lung cancer cell
lines. A549, H522, and H1650 (obtained from American Type Culture Collection) were incubated
under hypoxic conditions (0.5% oxygen) in an InvivO2 500 hypoxia workstation (The Baker Company,
Sanford, ME, USA) for 24 and 48 h. Cells were lysed using ice-cold RIPA buffer containing a protease
inhibitor cocktail (Roche Applied Science), sodium orthovanadate (Sigma-Aldrich, St. Louis, MO,
USA), and sodium fluoride (Sigma-Aldrich). Proteins in whole-cell lysates were resolved by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and analyzed by immunoblotting.
Signals were detected using enhanced chemiluminescence reagents (Pierce). The expressions of both
HIF-1α and PD-L1 increased under the hypoxia. (Unpublished results by H. Park). (B). Western
blot analysis for the expression of HIF-1α and PD-L1 expression in FSaII cells incubated in oxic
(DMSO) or hypoxia-mimic medium (250 µM CoCl2) for 8 h. Proteins in whole-cell lysates were
resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and analyzed
by immunoblotting. Hypoxia increased the expression of HIF-1α and PD-L1 and knocking out of
HIF-1α with siRNA downregulated the expression both HIF-1α and PD-L1. (Unpublished results by
M. Kim).

PD-1 is highly expressed on the surface of activated CD8+ T-cells [11,17,76–78]. VEGF,
which is a major downstream target of HIF-1α, has been shown to promote the expression
of PD-1 in CD8+ T-cells [79]. TGF-β1, which is upregulated by HIF-1α, has also been
reported to increase PD-1 expression on CD8+ T-cells [80,81]. The interaction of PD-1 with
its ligand PD-L1 on the surface of tumor cells and other immune cells such as MDSCs,
macrophages, DCs induces T-cell exhaustion, anergy and apoptosis. Mounting evidence
strongly indicates that the PD-1/PD-L1 pathway plays the most vital role in suppressing
immune responses against cancers [77]. Indeed, blocking the PD-1/PD-L1 pathway using
antibodies against either PD-1 and PD-L1 alone or combined suppressed the growth of
many preclinical experimental tumors and certain types of human tumors and enhanced
the outcomes after treatment of tumors with SABR [11–18,32–35].
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1.6. Suppression of PD-L1 Expression with HIF-1α Inhibitors

The expression of PD-L1, a transmembrane protein, is highly upregulated in hypoxic
regions in tumors where HIF-1α is also highly expressed [82,83]. HIF-1α has been shown
to bind to transcriptionally active hypoxia-response elements (HRE) in the PD-L1 proximal
promotor and to upregulate the expression of PD-L1 on tumor cells and MDSCs [84]. Given
the crucial role of HIF-1α on the expression of immune checkpoints, particularly PD-L1,
inhibition of HIF-1α may effectively suppress the PD-1/PD-L1 axis, rescuing the cytotoxic
T-cells from exhaustion, anergy and apoptosis. Consistently with such expectations, in a
recent study, inhibition of HIF-1α with echinomycin markedly abrogated PD-L1-mediated
immune evasion of experimental tumors [85]. Interestingly, inhibition of HIF-1α with echi-
nomycin promoted immune tolerance in normal tissues by increasing PD-L1 via increasing
IFN-γ production. Furthermore, the HIF-1α inhibition with echinomycin synergistically
increased the immunotherapeutic effects of anti-CTLA-4 antibodies in mouse tumor mod-
els [85]. It has also been reported that inhibition of HIF-1α with PX-478, an experimental
HIF-1α inhibitor, synergized with anti-PD-1 antibodies to suppress the growth of murine
tumors and prolonged the survival of host mice [86]. Taken together, it is highly likely that
a combination of HIF-1α inhibitors with immune checkpoint inhibitors would significantly
improve anti-tumor immunity [69].

Numerous compounds have been identified to be able to inhibit HIF-1α to date, but
none of them have been demonstrated to exclusively target HIF-1α [69,87–91]. We have
investigated the ability of metformin and PX-478 to inhibit HIF-1α and suppress PD-L1
expression on tumor cells in recent years. Metformin is one of the biguanides and is widely
used to treat type 2 diabetes. Interestingly, it has been found to possess considerable
anti-cancer properties and also to significantly increase the response of human tumors to
radiotherapy or chemotherapy [92,93]. Such anti-cancer properties of metformin have been
attributed to its ability to suppress numerous pathways in energy metabolism. Metformin
has also been found to significantly increase anti-tumor immunity by inhibiting HIF-1α
activities [94,95]. The mechanism underlying the metformin-induced downregulation of
HIF-1α has not been clearly understood, although the process was reported to be oxygen-
dependent since metformin suppressed HIF-1α expression in the hypoxic environment but
not in the anoxic environment [96]. Importantly, metformin has recently been shown to
suppress the expression of PD-L1 [97–99]. Because metformin effectively inhibits HIF-1α
and that HIF-1α directly controls the expression of PD-L1, it would be rather reasonable to
attribute the metformin-induced downregulation of PD-L1 expression to the metformin-
induced inhibition of HIF-1α activity. The effects of metformin on the expression of HIF-1α,
PD-L1 and PD-1 in FSaII tumors are shown in Figure 4. The expressions of HIF-1α and PD-
L1 in FSaII tumors in vivo showed a marked increase 3 days after 20 Gy irradiation, and the
daily treatment of host mice with metformin completely abrogated the radiation-induced
upregulation of HIF-1α and PD-L1 expression. The expression of PD-1 in the control tumors
was considerable, but, unlike the PD-L1 expression, the PD-1 expression decreased 3 days
after irradiation, probably because of the death of CD8+ T-cells. However, the number of
PD-1-expressing cells in the tumors increased later after irradiation. As shown in Figure 5A,
the combined treatment of FSaII tumors with irradiation and daily treatment of host mice
with metformin was far more effective than either treatment alone in suppressing the tumor
growth. The metformin-induced tumor growth delay and enhancement of the radiation-
induced tumor growth delay may be attributable, at least in part, to the suppression of the
HIF-1α/PD-L1 pathway and increase in T-cell-mediated anti-tumor immunity.
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Figure 4. Immunohistochemical protein expression of HIF-1α, PD-L1, and PD-1 in FSaII tumors on
day 3 after 20 Gy irradiation. Irradiation markedly increased HIF-1α and daily administration of
metformin (150 mg/kg/day) abrogated the radiation-induced increase in HIF-1α. The PD-1 level
decreased by irradiation was probably due to death of T-cells expressing PD-1. At least five images
per section were captured and the percentage of positive areas was calculated with Image J. The
means of tumors± SD are shown. The scale bars represent 100 µm. ****, p < 0.0001, one-way ANOVA.
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Figure 5. (A). Effects of irradiation (15 Gy) and metformin (150 mg/kg/day) alone and combined
on the growth of FSaII tumors. (B). Effects of irradiation (15 Gy) and PX-478 (35 mg/kg, on days
0, 3, 18, 21) alone and combined on the growth of FSaII tumors. FSaII tumor cells (1 × 105) were
subcutaneously injected into the hind legs of C3H mice. When the tumors grew to 0.5–0.7 cm in
diameters, they were irradiated with 15 Gy in a single dose using 250 Kv X-rays while the animal
were lightly anesthetized with an i.p injection of a mixture of 100 mg/kg ketamine and 10 mg/kg
xylazine. Tumor diameters were measured using calipers. The data represent the mean volume of
5–10 tumors ± SE.

PX-478 (s-2-amino-3-[4′-N, N, -bis (chloroethyl) amino] phenyl propionic acid N-oxide
dihydrochloride) is a recently developed experimental anti-cancer drug that inhibits HIF-1α
expression at multiple levels including decreasing mRNA levels and inhibition of HIF-1α
translation [100–102]. PX-478 has been shown to effectively downregulate both HIF-1α and
PD-L1 in experimental glioma cells [82]. As mentioned before, a combination of PX-478
with anti-PD-1 antibody effectively suppressed the growth of murine tumors and prolonged
the survival of host mice [86]. Figure 5B shows that PX-478 delayed the growth of FSaII
tumors and significantly enhanced the effect of radiation to suppress the tumor growth,
which may be attributed, in part, to the suppression of the HIF-1α/PD-L1 pathway.

Taken together, HIF-1α plays a cardinal role in the development of immune suppres-
sion in tumors, particularly in the tumors irradiated with high-dose irradiation, and that
inhibition of HIF-1α expression with small molecules may be a potentially effective way
to prevent immune-suppressive pathways, particularly by preventing the PD-1/PD-L1
pathway (Figure 6). The potential effectiveness of the combination of HIF-1α inhibitors with
immune-checkpoint-blocking antibodies to augment anti-tumor immunity in irradiated
tumors warrants further investigation.

Cancers 2022, 14, x FOR PEER REVIEW 11 of 16 
 

 

 

Figure 5. (A). Effects of irradiation (15 Gy) and metformin (150 mg/kg/day) alone and combined on 

the growth of FSaII tumors. (B). Effects of irradiation (15 Gy) and PX-478 (35 mg/kg, on days 0, 3, 

18, 21) alone and combined on the growth of FSaII tumors. FSaII tumor cells (1 × 105) were 

subcutaneously injected into the hind legs of C3H mice. When the tumors grew to 0.5–0.7 cm in 

diameters, they were irradiated with 15 Gy in a single dose using 250 Kv X-rays while the animal 

were lightly anesthetized with an i.p injection of a mixture of 100 mg/kg ketamine and 10 mg/kg 

xylazine. Tumor diameters were measured using calipers. The data represent the mean volume of 

5–10 tumors ± SE. 

PX-478 (s-2-amino-3-[4′-N, N, -bis (chloroethyl) amino] phenyl propionic acid N-

oxide dihydrochloride) is a recently developed experimental anti-cancer drug that inhibits 

HIF-1α expression at multiple levels including decreasing mRNA levels and inhibition of 

HIF-1α translation [100–102]. PX-478 has been shown to effectively downregulate both 

HIF-1α and PD-L1 in experimental glioma cells [82]. As mentioned before, a combination 

of PX-478 with anti-PD-1 antibody effectively suppressed the growth of murine tumors 

and prolonged the survival of host mice [86]. Figure 5B shows that PX-478 delayed the 

growth of FSaII tumors and significantly enhanced the effect of radiation to suppress the 

tumor growth, which may be attributed, in part, to the suppression of the HIF-1α/PD-L1 

pathway. 

Taken together, HIF-1α plays a cardinal role in the development of immune 

suppression in tumors, particularly in the tumors irradiated with high-dose irradiation, 

and that inhibition of HIF-1α expression with small molecules may be a potentially 

effective way to prevent immune-suppressive pathways, particularly by preventing the 

PD-1/PD-L1 pathway (Figure 6). The potential effectiveness of the combination of HIF-1α 

inhibitors with immune-checkpoint-blocking antibodies to augment anti-tumor immunity 

in irradiated tumors warrants further investigation. 

 

Figure 6. High-dose-per-fraction irradiation causes vascular damage in tumors, thereby increasing
hypoxia. Consequently, the expressions of HIF-1α and its downstream targets PD-L1 and PD-1 are
increased. HIF-1α inhibition may abrogate the irradiation-induced increases in HIF-1α, PD-L1 and
PD-1 expression.
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2. Conclusions

SABR markedly increases anti-tumor immunity by promoting a cascade of immune
responses, beginning with the release of tumor-associated antigens from tumor cells to the
final effector phase of killing target tumor cells by cytotoxic T-cells. Unfortunately, such
radiation-induced increases in anti-tumor immunity are counterbalanced by an increase in
immunosuppression mediated by HIFα levels (HIF-1α and HIF-2α), which are significantly
upregulated in SABR-treated tumors because of increased tumor hypoxia as a result of
radiation-induced stress and vascular damage. Therefore, it seems reasonable to expect that
effective inhibition of HIFα may enhance the anti-tumor immunity and promote the overall
efficacy of SABR in controlling the primary tumor and recurrence and metastatic spread. At
present, using antibodies against immune checkpoints PD-1, PD-L1 or CTLA-4 is the main
type of immunotherapy available to cancer patients. Unfortunately, however, only a fraction
of cancer patients responds to immunotherapy targeting the immune checkpoints. It must
be realized that there are other numerous innate and adaptive immune pathways beside the
immune checkpoints involved in immune evasion of tumors. In light of the accumulating
evidence that HIFα are directly and indirectly involved in many of the innate and adaptive
immune pathways including the expression of immune checkpoints, a combination of drugs
able to inhibit HIFα, particularly HIF-1α, with antibodies against immune checkpoints
may represent a novel and more reliable approach to cancer immunotherapy, especially for
patients whose tumors are treated with SABR.
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