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Cocaine dependence is associatedwith increased impulsivity in humans. Both cocaine dependence and impulsive
behavior are under the regulatory control of cortico-striatal networks. One behavioral laboratory measure of im-
pulsivity is response inhibition (ability to withhold a prepotent response) in which altered patterns of regional
brain activation during executive tasks in service of normal performance are frequently found in cocaine depen-
dent (CD) subjects studied with functional magnetic resonance imaging (fMRI). However, little is known about
aberrations in specific directional neuronal connectivity in CD subjects. The present study employed fMRI-
based dynamic causal modeling (DCM) to study the effective (directional) neuronal connectivity associated
with response inhibition in CD subjects, elicited under performance of a Go/NoGo task with two levels of NoGo
difficulty (Easy andHard). The performance on theGo/NoGo taskwas not significantly different between CD sub-
jects and controls. The DCM analysis revealed that prefrontal–striatal connectivity was modulated (influenced)
during the NoGo conditions for both groups. The effective connectivity from left (L) anterior cingulate cortex
(ACC) to L caudate was similarly modulated during the Easy NoGo condition for both groups. During the Hard
NoGo condition in controls, the effective connectivity from right (R) dorsolateral prefrontal cortex (DLPFC) to L
caudate became more positive, and the effective connectivity from R ventrolateral prefrontal cortex (VLPFC) to
L caudate became more negative. In CD subjects, the effective connectivity from L ACC to L caudate became
more negative during the Hard NoGo conditions. These results indicate that during Hard NoGo trials in CD sub-
jects, the ACC rather than DLPFC or VLPFC influenced caudate during response inhibition.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cocaine dependence is associated with increased impulsivity
(Chamberlain and Sahakian, 2007; Moeller et al., 2001a) in humans
(Colzato et al., 2007; Feil et al., 2010; Fillmore and Rush, 2002;
Kaufman et al., 2003; Lane et al., 2007; Li et al., 2006b; Verdejo-Garcia
et al., 2007) and animals (Anastasio et al., 2011; Anker et al., 2009;
lcohol Studies, Department of
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Paine et al., 2003; Paine and Olmstead, 2004; Winstanley et al., 2010).
Impulsivity may serve as a premorbid trait that confers vulnerability to
cocaine dependence (Buckholtz et al., 2010; Cunningham and Anastasio,
2014; Verdejo-Garcia et al., 2008;Winstanley et al., 2010). In addition, co-
caine dependent (CD) subjects with higher baseline impulsivity predict
reduced retention in outpatient treatment trials for cocaine dependence
than CD subjects with lower baseline impulsivity (Moeller et al., 2001b).
Both cocaine dependence and impulsive behavior are under the regulato-
ry control of cortico-striatal networks (Aron, 2011; Cunningham and
Anastasio, 2014; Dalley et al., 2011; Ersche et al., 2011; Fineberg et al.,
2010; Ghahremani et al., 2012; Robbins et al., 2012; Volkow et al., 2011;
Winstanley, 2007) with the theories of addiction (Bickel et al., 2007)
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positing that impulsivity and maladaptive drug-taking result from insuf-
ficient communication between frontocortical behavioral control centers
and subcortical (striatal) incentive-motivational circuitry. However, there
is nodirect evidence for this putative disruptionof directional information
flow in cortico-striatal networks in humans, either in cocaine use disorder
research or impulsivity research.

Response inhibition (ability to withhold a prepotent response) is one
main measure of impulsivity (Moeller et al., 2001a). Most neuroimaging
analyses of response inhibition have used either a Go/NoGo task or a
Stop-Signal task (Colzato et al., 2007; Fillmore et al., 2002; Fillmore and
Rush, 2002; Li et al., 2006a; 2006b, 2008a; 2008b). Meta-analyses
(e.g., Buchsbaum et al., 2005; Simmonds et al., 2008; Swick et al., 2011)
of Go/NoGo neuroimaging studies have shown activation of frontal,
subcortical, parietal, and insular regions with right hemispheric
dominance during response inhibition under the NoGo condition. It has
been hypothesized that the dorsolateral prefrontal cortex (DLPFC), ven-
trolateral prefrontal cortex (VLPFC), and pre-supplementary motor area
are particularly important for response inhibition duringNoGo conditions
(Chikazoe, 2010).

The Go/NoGo task has revealed altered patterns of cortical recruit-
ment under acute demands to curtail a prepotent response in subjects
with cocaine dependence. For example, Kaufman et al. (2003) conduct-
ed a functional magnetic resonance imaging (fMRI) study with a Go/
NoGo task and found poorer behavioral performance and lower activa-
tion in the cingulate, pre-supplementary motor cortex, and insula dur-
ing response inhibition in active cocaine users compared to cocaine-
naive controls. In another fMRI study using a Go/NoGo task, Connolly
et al. (2012) found that although there was no group difference in
behavioral performance, cocaine users with short-term abstinence had
greater inhibition-elicited activation than controls in the right middle
frontal gyrus (MFG), right precentral gyrus, right superior frontal gyrus,
and right middle temporal region. In addition, cocaine users with long-
term abstinence had greater activation than controls in the right inferior
frontal gyrus (IFG), rightMFG, right precentral gyrus, left superior tempo-
ral gyrus, and cerebellar tonsils.

These studies collectively suggest an altered neural network under-
lying response inhibition in cocaine dependence. However, traditional
regional activation fMRI studies have been unable to answer questions
about effective neuronal connectivity and directional relationships
among functionally-related brain regions, i.e., whether a particular
neuronal region (“Region 1”) directionally influences another region
(“Region 2”), whether Region 2 directionally influences Region 1, or
whether the regions reciprocally influence each other. In the present
study, we addressed this limitation. We employed dynamic causal
modeling (DCM) (Friston et al., 2003; Li et al., 2011) to test whether
CD subjects have altered directional neuronal connectivity underlying
their inhibitory behavioral control. We measured response inhibition
using the Go/NoGo task (Lane et al., 2007), in which the subject was
instructed to respond (Go) when a target stimulus was presented and
to withhold responding (NoGo) when a non-target stimulus was pre-
sented. Unique from other analytic techniques, effective (directional)
connectivity inDCM ismodeled at theneuronal level rather than the ob-
served blood oxygen level dependent (BOLD) signal level (Friston et al.,
2003). This is important for fMRI studies of individuals with substance
use disorders because it is known that the BOLD signal could be con-
founded by disruption from disease (i.e., Alzheimer3s) or drug effects
on neurovascular coupling and/or hemodynamic responses (Iannetti
and Wise, 2007). In addition, DCM can measure effective connectivity
specific to certain experimental conditions. This is attractive because
sometimes disease-related impaired cognitive functions can only be ob-
served during special experimental conditions. For example, Lane et al.
(2007) used a Go/NoGo task with two-level NoGo difficulty (Easy and
Hard, in terms of similarity between targets and non-targets), and
found that CD subjects showed poorer behavioral performance than
controls only during Hard NoGo trials rather than Easy NoGo trials.
The DCM analysis in this study was conducted on fMRI data acquired
from 13 CD subjects and 10 normal healthy cocaine naive controls
while they performed a Go/NoGo task as used in Lane et al. (2007).
Based on the hypothesis that cocaine use disorder and inhibitory behav-
ior are regulated through top-down control of the prefrontal cortex re-
flective system over an amygdala–striatum impulsive system (Aron,
2011; Bechara, 2005; Cunningham and Anastasio, 2014; Dalley et al.,
2011; Ersche et al., 2011; Fineberg et al., 2010; Ghahremani et al.,
2012; Heatherton and Wagner, 2011; Noël et al., 2013; Robbins et al.,
2012; Volkow et al., 2011; Winstanley, 2007), we hypothesized that
the effective connectivity fromprefrontal regions to sub-cortical regions
would be altered in CD subjects compared to controls during successful
response inhibition.
2. Methods

2.1. Subjects

The study was officially approved by the Committee for the Protec-
tion of Human Subjects (CPHS) in University of Texas Health Science
Center, Houston, TX and University of Texas Medical Branch, Galveston,
TX, and was performed in accordance with the Code of Ethics of the
World Medical Association (Declaration of Helsinki). Subjects with co-
caine dependence and normal healthy controls were recruited through
advertisements. Informed consent was obtained from each subject.

The subjects included in this study were from two separate projects
that assessed the acute effects ofmedication versus placebo on brain ac-
tivation and brain connectivity. Subjects received placebo ormedication
prior to the MRI scan. The functional MRI scans analyzed in this study
were only on placebo days. Four subjects participated in both projects.
Among the 23 subjects included in the final analyses, 15 subjects (five
CD subjects and 10 controls) were from the first project, and eight sub-
jects (all CD subjects) were from the second project.

All subjects were screened using the Structured Clinical Interview for
DSM-IV (SCID) (First et al., 1996). All subjects underwent physical exam-
ination andmedical history. The Addiction Severity Index (McLellan et al.,
1992) was obtained to document lifetime drug and alcohol use. Female
subjects were screened with a urine pregnancy test immediately prior
toMRI scanning. Each subject3s urinewas screened for tetrahydrocannab-
inol, opiates, cocaine, amphetamines, and benzodiazepines (Syva Compa-
ny, Deerfield, IL), and each subject was screened for alcohol with an
Intoximeter Alco-Sensor III breathalyzer (Intoximeters, Inc., St. Louis,
MO) immediately prior to MRI scanning.

Subject inclusion criteria were: (1) 18–55 years old; (2) right-
handed; (3) free of alcohol at the time of MRI scanning; (4) CD subjects
met Diagnostic and Statistical Manual Fourth Edition (American Psychi-
atric Association, 2000) criteria for current cocaine dependence as de-
termined by Structured Clinical Interview for DSM-IV (SCID) (First
et al., 1996), and (5) normal control subjects had no current or lifetime
history of any DSM-IV substance use or psychiatric disorder. Exclusion
criteria were: (1) CD subjects who met current or past DSM-IV Axis I
disorder other than substanceabuseor substancedependence; (2)med-
ical disorders or taking medication that may affect the central nervous
system; (3) claustrophobia experienced during MRI simulator sessions;
(4) any definite or suspected clinically significant abnormalities of the
brain on Fluid-Attenuated Inversion Recovery (FLAIR) MRI scans, as
read prior to data analysis by a board-certified radiologist; (5) positive
urine drug screen for control subjects; and (6) positive pregnancy test
result.

In addition to the 10 completed control subjects analyzed in this
report, seven other control subjects were excluded for the following
reasons: taking medications that may affect the central nervous system
(one subject); behavioral performance (percentage of correct responses
b50%) (two subjects); and unmatched age (younger than 23 years old)
(four subjects). In addition to the 13 completed CD subjects, 13 addi-
tional CD subjects were excluded for the following reasons: behavioral



Fig. 1. Flow chart showing subject inclusion/exclusion, andwhich project (Project 1 and Project 2) the subjects come from. CTL denotes control subject, and CDdenotes cocaine dependent
subject.
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performance (percentage of correct response b50%) (one subject);
excessive head motion during the fMRI scan (two subjects); clinically
significant abnormal results on FLAIR scan of the brain (four subjects);
subject3s request to terminate the scanning (three subjects); and cur-
rent alcohol dependence (three subjects). See Fig. 1 for the flow chart
showing subject inclusion/exclusion.

Based on the inclusion and exclusion criteria, 13 CD subjects (CD
group) and 10 controls (control group) were included for final analysis.
None of the control subjects had a DSM-IV diagnosis of any present or
past drug abuse or dependence. All CD subjects had DSM-IV diagnoses
of both current and past cocaine dependence. Please see Supplementary
materials for additional diagnoses. The CD group was composed of one
female and 12 males; their mean age was 37.4 ± 5.3 years (mean ±
standard deviation), ranging from 27.5 to 44.1 years. The control
group had three females and seven males; the mean age was 35.2 ±
7.3 years, ranging from 23.3 to 43.6 years. The educational duration of
CD group was 11.8 ± 2.0 years, ranging from 7 to 15 years; and the ed-
ucational duration of the control group was 13.8 ± 2.0 years, ranging
from 11 to 17 years.

Fisher3s exact test revealed that therewas no significant difference in
proportion of female and male subjects between groups (p = 0.281,
two tail). There was no significant group difference in age (t = 0.837,
degree of freedom [df]= 21, p=0.412). The CD group had significantly
lower educational durations than the control group (t = –2.220, df =
21, p = 0.038), with a 2-year difference in means.
2.2. Go/NoGo response inhibition task

A rapid-presentation event-related Go/NoGo task (Lane et al., 2007;
Ma et al., 2014b) was used for analyses of response inhibition during
fMRI. For all subjects, there were two Go/NoGo fMRI runs. The Go/
NoGo task has been described in detail elsewhere (Lane et al., 2007;
Ma et al., 2014b). In brief, during each fMRI run, 208 visual stimuli
(including Go, Easy NoGo, or Hard NoGo, please see below) were se-
quentially presented in random order. Each stimulus was displayed
for 500 ms. The neighboring stimuli in time were separated by a blank
screen lasting 1900 ms, 2100 ms, or 2300 ms (jittered randomly).
Each of the stimuli consisted of line segments enclosed within two
boxes that were presented simultaneously side by side on the same
screen. Each subject was instructed to discriminate the direction of the
lines by pressing a button using their right index finger when both
boxes showed parallel diagonal lines in the same direction in both
boxes (Go trial). Each subject was instructed not to press the button
when both boxes showed horizontal lines (“Easy” NoGo trial), or
when one box contained diagonal lines that were in the opposite direc-
tion of the diagonal lines in the other box (“Hard”NoGo trial). For Go tri-
als, a key press, completed greater than 100 ms and less than 600 ms
after the stimulus, was defined as a correct response. For NoGo trials, a
key press, completed within 600 ms after the stimulus, was defined as
an incorrect response. Each fMRI run duration was 10 min 40 s, includ-
ing 156 Go trials (75%), 26 Easy NoGo trials (12.5%), and 26 Hard NoGo
trials (12.5%). There was no “null” (i.e., resting) trial in this event-
related paradigm. Each subject completed a practice Go/NoGo test dur-
ing a mock fMRI session in order to stabilize performance and provide
familiarity with the task prior to actual MRI scanning. The discrimina-
tion accuracy measure (d′) (Forman et al., 2004; Gescheider, 1985;
Lane et al., 2007) was used to measure behavioral performance on the
Go/NoGo task in the scanner.

2.3. fMRI data acquisition

MRI data were acquired on a Philips 3.0 T Intera system (Philips
Medical Systems, Best, Netherlands) with an eight-channel receive
head coil. Single shot spin-echo echoplanar imaging (EPI) was used
for acquiring fMRI data. The spin-echo EPI sequence eliminates signal
losses caused by through-slice dephasing in medial orbitofrontal cortex
(Kruger et al., 2001) and is sensitive (Norris et al., 2002) to blood oxygen
level dependent (BOLD) signal in fMRI. The fMRI acquisition parameters
were as follows: SENSE acceleration factor 2.0, repetition time 2500ms,
echo time 75 ms, flip angle 90°, field-of-view 240 × 240 mm, in-plane
resolution 3.75 × 3.75 mm, 25 axial slices, slice thickness 3.75 mm,
interslice gap 1.25 mm, 256 repetitions per run after 10 dummy acqui-
sitions. A T1-weighted 3-dimensional Spoiled Gradient Recalled (SPGR)
anatomical scan (in-plane resolution 0.94 × 0.94 mm, slice thickness
1 mm) was acquired for co-registration with the fMRI images. A Fluid
Attenuated Inversion Recovery (FLAIR) scan and T2-weighted spin-
echo scanwere acquired, andwere read by a board-certified radiologist
in order to rule-out incidental brain abnormalities. Although two fMRI
runs were acquired for each subject, some subjects only had one usable
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fMRI run. Thus we decided to use only one fMRI run for each subject in
order to avoid potential bias effects. The first run was used if a subject
had two usable fMRI runs.

2.4. fMRI preprocessing

During each fMRI run, individual images in which the fMRI signal
exceeded plus or minus four standard deviations from the mean
for the run were considered to be outliers and were replaced by the
mean of the two nearest neighbors using the Analysis of Functional
NeuroImages (AFNI) (Cox, 1996) software command “3dDespike”
(http://afni.nimh.nih.gov/afni/). All remaining preprocessing used
Statistical Parametric Mapping 8 (SPM8) software (http://www.fil.ion.
ucl.ac.uk/spm/) implemented in Matlab R2007b (Mathworks Inc.,
Sherborn, MA, USA). Slice-timing correction was conducted first. Then,
the fMRI series was realigned to the first image to correct for head mo-
tion. Runs with head motion greater than 1 voxel (3.75 mm translation
on any axis) or rotation greater than 3.75°were excluded from the anal-
ysis. As an optional feature of SPM software, the head motion parame-
ters can be regressed out in the SPM Level 1 general linear model
analysis, and if so, the motion parameters can be then be regressed
out from the effects of interest when generating the ROI time series
for the DCM analysis. However, many studies do not enter head motion
parameters as regressors because regressing out task-related head mo-
tionmay eliminatemuch of the true signal when themovement param-
eters are related to the experimental task design (Ashburner and
Friston, 2007). For this reason, we do not routinely include headmotion
parameters as regressors in our fMRI studies that involve activation
tasks, including the present study. However, fMRI series with severe
head movement were excluded from this study, and motion correction
was conductedwith the SPM8 realignmentmodule for all included fMRI
series. As noted previously, for all subjects, the first runwithout artifacts
and without excessive motion was included in the analysis. The anatom-
ical imagewas coregistered to the fMRI images and spatially transformed
toMontreal Neurological Institute (MNI) standard atlas coordinates using
the SPM8 Normalise module with the SPM8 T1MNI template image. The
transformation parameters were applied to the fMRI images. After that,
the fMRI images were resliced to 2 mm isotropic resolution and spa-
tially smoothed with a Gaussian filter of 8 mm isotropic full width at
half maximum.

2.5. SPM univariate analysis

The univariate statistical analyses of the fMRI data were conducted
using SPM8. After specifying the design matrix, the parameters for the
effects of different conditions were estimated at the first level for all
subjects as an event related design according to the general linear
model at each voxel, using stick functionsmodeling the onsets of correct
NoGo trials convolvedwith the SPM8 canonical hemodynamic response
function as a basis function. Standard SPM8 basis functions for temporal
and dispersion derivatives were also included in the model. Incorrect
trials were entered as a separate covariate of no interest so that the
remaining implicit baseline consisted only of the correct Go trials.
A 1/128 Hz high-pass temporal filter was applied. One contrast
image was constructed for all subjects for each of the following con-
trasts of parameter estimates: (1) correct Easy NoGo minus correct
Go; (2) correct Hard NoGo minus correct Go; and (3) correct Hard
NoGo minus correct Easy NoGo. In the remainder of this paper, for
brevity the word “correct” will be omitted, but the NoGo and Go
conditions will be understood to consist of correct responses only.
While incorrect responses merit theoretic and clinical interest,
they were too few to allow valid activation analyses.

In order to determine differences in BOLD activation between
groups, a SPM8 second level Random Effects (Holmes and Friston,
1998) statistical analysis was conducted voxel-wise throughout the
whole brain for each of the contrast images listed in the above
paragraph. For each contrast, the SPM8 second-level two-sample t-
test with the default non-sphericity correction for unequal variance be-
tween groups was used.

According to the practical steps in a typical DCM analysis suggested
by Seghier et al. (2010), random effects group analysis can be used to
determine the DCM nodes. Consistent with Seghier et al.3s recommen-
dation and previous DCM studies (e.g., Bitan et al., 2005; Deserno
et al., 2012; Dima et al., 2009; DiQuattro and Geng, 2011; Wang et al.,
2011), we used random effects group analysis to determine the regions
that significantly activated across both groups in this study, after ex-
cluding the brain regions showing group differences. A separate SPM8
second level (Random Effects) statistical analysis was conducted
voxel-wise throughout the whole brain for each of the contrast images
listed above. For each contrast, the SPM8 second-level one-sample
t-test with the default settings was used to determine BOLD activations
significantly different from zero.

For all SPM second level group analyses, statistical significance
was defined as family-wise error (FWE) corrected cluster probability
(p) less than 0.05 (two tail). Uncorrected cluster p less than 0.05 (two
tail) was used as the threshold for the brain activations used for DCM
regions of interest selection. The cluster-defining threshold was t =
2.4. Approximate anatomical labels for regions of activation were
determined using the Anatomical Automatic Labeling (AAL) toolbox
(Tzourio-Mazoyer et al., 2002).
2.6. Stochastic dynamic causal modeling

FMRI based DCM is a biophysical model of the underlying neuronal
connectivity and of how the neuronal connectivity generates the ob-
served BOLD signal (Friston et al., 2003). DCM12, as implemented in
SPM12b, was used for effective connectivity analysis. DCM has been de-
scribed elsewhere (Friston et al., 2003;Ma et al., 2012, 2014a; 2014b). In
brief, the mathematical model of the underlying neuronal connectivity
among an a priori selected set of brain regions (or DCM nodes) is a sys-
tem of bilinear differential state equations with coefficients specified by
threematrices (Amatrix, Bmatrix and Cmatrix) (Friston et al., 2003). In
thismodel, experimental conditions (e.g., Go, EasyNoGo, or HardNoGo)
can serve as inputs to themodel as either driving inputs, or modulatory
inputs, or both. The DCM analysis determines which particular nodes in
themodel exhibit effective (directional) connectivitywith other specific
nodes in the model, which nodes receive driving inputs from experi-
mental conditions into the model, and which specific connectivities
between nodes in themodel aremodulated during experimental condi-
tions. A node in the model that receives driving inputs, as quantified by
the C matrix parameters, is the brain region among the nodes in the
model which first experiences a change in neuronal activity associated
with experimental conditions. The node that receives the driving
input then influences (“drives”) the connectivity to other nodes in the
model. The endogenous (or fixed) connectivity in DCM is quantified
by the A matrix parameters, which measure the effective connectivity
strengths (in units of Hz) between nodes, regardless of the moment-
to-moment switching on and off of inputs. Experimental conditions
can modulate the endogenous connectivity among nodes. Thesemodu-
lation effects are quantified by the B matrix parameters as increased or
decreased connectivity strength compared to the endogenous connec-
tivity at different times in the experiment that are related to the timing
of changes in the particular experimental conditions. Nonlinear connec-
tivity effects that are gated by other regions in the system can be
modeled by another matrix (D matrix) (Stephan et al., 2007). In the
present study, the nonlinear option was not applied, and thus the
term “modulation effects” in the present paper denotes bilinear modu-
lation effects, where “bilinear” refers to the mathematical form of the
equations determining the B matrix parameters. In addition, the sto-
chastic option for DCM was used in which random fluctuations were
modeled as inputs to the system as well as the driving inputs due to
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experimental conditions (Daunizeau et al., 2009, 2012a, 2012b, 2013; Li
et al., 2011). The random fluctuations in physiological noise may con-
tribute to the system connectivity input (Li et al., 2011) due to stochastic
fluctuations in neuronal and vascular responses (Kruger and Glover,
2001; Li et al., 2011). Li et al. (2011) have shown that stochastic DCM
can improve parameter estimation over deterministic DCM. In addition,
Daunizeau et al. (2012) have validated stochastic DCM and shown that
stochastic DCM is superior to deterministic DCM in terms of bothmodel
structure inference and model parameter inference.

2.6.1. Regions-of-interest
Following the procedures in Ma et al. (2012, 2014a), the regions

(nodes) for the DCM analysis in the present study were chosen based
on simultaneously meeting the following three criteria: (1) the region
must show activation that is at least significant at the uncorrected
cluster level in the present univariate SPM second-level analysis;
(2) the regionmust also show activation (NoGo vs. Go or NoGo vs. base-
line) in previous fMRI studies using Go/NoGo tasks (e.g., meta studies,
Buchsbaum et al., 2005; Simmonds et al., 2008; Swick et al., 2011),
and (3) the region must also be regarded to be involved in inhibitory
behavior in the previous literature (e.g., Bechara, 2005; Chikazoe,
2010; Heatherton andWagner, 2011; Volkow et al., 2011). Thus, the fol-
lowing seven nodes were used for the DCM analyses in the present
study: (1) left (L) dorsolateral prefrontal cortex (DLPFC); (2) right
(R) DLPFC; (3) L anterior cingulate cortex (ACC); (4) R ACC; (5) R ven-
trolateral prefrontal cortex (VLPFC); (6) L caudate (CAU); and (7) R
hippocampus (HIPP). Because of uncertainty about the exact gross ana-
tomical boundaries in humans of the DLPFC (Fuster, 2008), the DLPFC in
the present paper was defined by the middle frontal gyrus, which com-
prises amajor portion of theDLPFC in humans (Fuster, 2008). TheVLPFC
in the present paper was defined by inferior frontal gyrus, on which the
major part of the VLPFC of the human brain lies (Petrides, 2005).

2.6.2. Volumes of interest and time series extraction
We followed the method that was described in Ma et al. (2012,

2014a; 2014b) to construct the volumes of interest (VOIs). The atlas-
derived binary masks corresponding to the aforementioned seven
nodes were obtained from the Anatomical Automatic Labeling (AAL)
atlas (Tzourio-Mazoyer et al., 2002) which was implemented in the
WFU (Wake Forest University) PickAtlas SPM toolbox (Maldjian et al.,
2003; Maldjian et al., 2004). The binary mask of VLPFC was defined as
the set-theoretic union of the atlas-based binary masks of inferior fron-
tal gyrus (pars opercularis, pars triangularis, and pars orbitalis). Each
VOIwas obtained by the set-theoretic intersection of the atlas-based bi-
nary masks and the activation clusters (at least significant at uncorrect-
ed cluster level) that were determined by the second-level random
effects univariate SPM analysis. The standard SPM procedure in which
NoGo and Go conditions were explicitly modeled was conducted by
using the principal eigenvariate of each VOI as a summary of the func-
tional activity time-series in that VOI (Ma et al., 2014a), and each prin-
cipal eigenvariate time series was also adjusted for the F-contrast of
effects of interest (Stephan et al., 2010). The same VOIs were used for
each subject. The number of voxels, volume, and center of mass of the
Table 1
Number of voxels, volume, and center of mass of each of the seven VOIs used as nodes in
the DCM analysis.

VOI Number of voxels Volume (mL) Center of Mass
MNI coordinates [x, y, z] (mm)

L DLPFC 78 0.624 −23, 20, 41
R DLPFC 128 1.024 43, 39, 21
L ACC 21 0.168 −0, 38, 3
R ACC 25 0.200 4, 37, 0
R VLPFC 185 1.480 46, 16, 29
L CAU 53 0.424 −14, −3, 21
R HIPP 253 2.024 24, −18, −21
seven VOIs used as nodes for the DCM analysis are shown in Table 1.
These VOIs did not overlap with the regions showing significant group
difference (See the Results section).

2.6.3. DCM network discovery
DCM structure inference, as applied to task-fMRI experiments such

as this study, searches for a model of the underlying neuronal connec-
tivity among an a priori selected set of brain regions, in which the com-
binedpresence of someendogenous connectivities (and/ormodulation/
driving input effects) and the absence of some other endogenous con-
nectivities (and/or modulation/driving input effects) best explain the
observed fMRI data. In this study, DCMstructure inferencewas conduct-
ed using DCM Network Discovery (DND) (Friston et al., 2011; Friston
and Penny, 2011). The rationale for us to conduct DCM structure infer-
ence using DND has been described elsewhere (Ma et al., 2014b).

DND was conducted using the post-hoc optimization (spm_dcm_
post_hoc routine) as implemented in the SPM12b software. Before the
DND analysis was conducted, an initial single “full”model (Friston et al.,
2011) was specified for all subjects. The term “full” is used here in the
sense that (1) each of the three experimental conditions (i.e., Go, Easy
NoGo, andHardNoGo conditions) can be a driving input and amodulato-
ry input; (2) each of the putative driving inputs entered all of the seven
nodes; (3) each node was putatively interconnected to all other nodes,
and (4) each of the modulatory inputs putatively modulated all of the
42 interconnectivities between nodes. Only stimuli corresponding to cor-
rect responses were included in the DCM analysis because the incorrect
responses were very few and sporadic for all included subjects. The full
models were inverted (estimated) for all subjects. For each group, group
level post-hoc optimization was conducted by selecting all inverted
“full” models (one per subject). The group level optimal sparse model
was found at the group level, using Bayesian parameter averaging
(BPA), which is integrated in the spm_dcm_post_hoc routine.

2.7. Statistical analyses

Student3s t-test and Fisher3s exact test were used to assess group
differences on continuous and categorical demographic variables,
respectively. Linear mixed models analysis, as implemented in IBM
SPSS Version 22 (Chicago, IL) for Windows (Microsoft Corp., Redmond,
WA), was used to analyze the main effects of the two factors and their
interaction effects on the behavioral performance. The between-
subjects factor in this analysis was group (CD and control groups), and
the within-subjects factor was levels of NoGo difficulty (Easy and
Hard). If main effects or interactions were statistically significant, then
post-hoc analyses were conducted with the Bonferroni correction for
multiple comparisons.

3. Results

3.1. Behavioral results

The mean and standard deviation of the discrimination accuracy
measure (d′) and percentage of correct response in each group during
Easy NoGo and Hard NoGo are shown in Table 2. The SPSS linear
mixed model analysis revealed significant main effects of difficulty
level (Hard or Easy NoGo) (F = 18.810; df = 1, 35.13; p b 0.001).
The main effects of group (F = 0.014; df = 1,35.13; p = 0.905) and
Table 2
Mean and standard deviation of the behavioral performance (discrimination accuracy d′,
and percentage of correct response) in each group during different NoGo trials.

Correct Easy NoGo Correct Hard NoGo

d′ Percentage d′ Percentage

CD 3.501 ± 0.767 0.979 ± 0.030 2.275 ± 0.831 0.778 ± 0.149
Control 3.457 ± 0.604 0.992 ± 0.016 2.232 ± 0.835 0.808 ± 0.148
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the interaction of group × difficulty (F = 0.111; df = 1,35.13; p =
0.741) were not statistically significant. Post-hoc comparisons showed
that d′ during Easy NoGo was significantly greater than during Hard
NoGo for both groups (CDs and controls) (p b 0.001), suggesting that
the behavioral performance during Hard NoGo trials was less accurate
than that during Easy NoGo trials.

3.2. Contrast-elicited brain activation

The SPM8 univariate second level GLM analysis of the fMRI data
revealed a statistically significant cluster (p = 0.038, two tail, FWE-
corrected) showing a group difference in activation (CD group less
than control group) for the Easy contrast. This cluster (Fig. 2 and
Table 3) was found in portions of R middle frontal gyrus (g), R
precentral g, R middle cingulate cortex, R superior frontal g, and R
paracentral lobule. No significant cluster was found for the reverse
direction of comparison (control group less than CD group) for the
Easy contrast. No significant cluster was found for the other con-
trasts (Hard and Hard-Easy contrasts).

SPM8 second-level random-effects one-sample t-test analysis across
both groups combined revealed several clusters for Easy, Hard, and
Hard–Easy activationswith the cluster level p less than 0.05 (uncorrect-
ed, two tail) in portions of frontal, subcortical, and other brain regions.
These clusters were used to select regions (or nodes) for DCM analysis.
Please see Supplementary materials for the detail of these regions.

3.3. DCM network discovery analysis

Post-hoc optimization found a group-level optimum sparse model
structure for each subject group. For the CD group, R HIPP, L ACC, and
R VLPFC were reliable (posterior probability N 0.9999) driving input lo-
cations for all three driving inputs (Go, Easy NoGo, and Hard NoGo). In
addition, L caudate was a reliable driving input location for Easy NoGo
and Go inputs. Furthermore, R ACCwas a reliable driving input location
for the Go input. For the control group, R HIPP, L ACC, L caudate, and R
DLPFC were reliable driving input locations for all three driving inputs
(Go, Easy NoGo, and Hard NoGo). There was no other driving input lo-
cations for the control group. The posterior mean strength of each driv-
ing input effect is shown in Supplementary Table 1.

The group level sparse structure regarding the endogenous connectiv-
ities is shown in Supplementary Table 2, which also shows the posterior
mean strength of each endogenous connectivity. Three connectivities
(R DLPFC to R ACC, R ACC to R DLPFC, and R ACC to L DLPFC) among the
42 connectivities were switched off (posterior probability = 0) by the
post-hoc optimization for the CD group. Two connectivities (R VLPFC to
R ACC, and R ACC to R VLPFC) among the 42 connectivitieswere switched
Fig. 2. FWE corrected significant cluster detected by the SPM8 second-level random effects ana
two-tailed p = 0.038) than the CD group for the E contrast (Easy NoGo BOLD signal minus the
image in gray. The number above each slice indicates slice location (mm) of theMNI z coordina
subjects3 left brain hemisphere.
off (posterior probability = 0) by the post-hoc optimization for the
control group.

The group level sparse structure regarding the modulation effects is
shown in Supplementary Table 3. The group level optimum sparse
structure regarding NoGo modulation effects is shown in Fig. 3, for
both CD group (left panel) and control group (right panel). The mean
strength of each endogenous connectivity modulated during NoGo
conditions is also shown in Fig. 3. For the CD group, only one (L ACC to
L caudate) of the 42 connectivity was reliably (posterior probability N

0.9999) modulated during NoGo conditions, and this connectivity was
modulated during both Easy (modulation effect = −0.0584 Hz) and
Hard (modulation effect = −0.0822 Hz) NoGo conditions. For the
control group, three of the 42 connectivity were reliably (posterior
probability N 0.9999) modulated during NoGo conditions. One connec-
tivity (L ACC to L caudate) was only modulated during the Easy NoGo
condition (modulation effect=−0.0229 Hz). The other two connectiv-
ity, i.e., R DLPFC to L caudate, and R VLPFC to L caudate, were only mod-
ulated during the Hard NoGo condition, with modulation effect =
0.2016 Hz for the DLPFC–caudate connectivity, and modulation
effect = −0.2418 Hz for the VLPFC–caudate connectivity.

A post-hoc analysis (using Student3s t-test) was conducted to deter-
mine whether the two groups were significantly different in themodu-
lation effects exerted by the NoGo conditions. A t-test was conducted
based on the posterior means and posterior standard deviations obtain-
ed from the two groups. There was no group difference (uncorrected
p = 0.3640, 2-tail) in the modulation effects exerted by the Easy
NoGo condition (on the connectivity from L ACC to L caudate). All the
modulation effects exerted by the Hard NoGo condition were signifi-
cantly different between the groups (p b 0.0008, Bonferroni corrected).
These modulation effects were on the connectivities from L ACC to L
caudate (CD group: −0.0822 Hz; control group: 0 Hz), from R DLPFC
to L caudate (CD group: 0 Hz; control group: 0.2016 Hz), and from R
VLPFC to L caudate (CD group: 0 Hz; control group:−0.2418 Hz).
4. Discussion

The present study provides evidence that cortico-striatal circuits
activated in CD subjects during inhibition of a prepotent response are
distinct from those employed by normal healthy controls responding
under the same taskwith similar performance.When the task demands
were high (Hard NoGo trials), CD subjects demonstrated ACC con-
nectivity to the caudate during successful response inhibition instead
of the control subjects3 DLPFC or VLPFC connectivity to the caudate
which was also during successful response inhibition. These data sup-
port the use of DCM tomeasure effective connectivity specific to certain
experimental conditions. In the DCM analysis, a single optimum model
lysis. In the cluster, the control group had significantly greater activation (FWE corrected
Go BOLD signal). The cluster is overlaid in color on axial slices of the MNI brain template
te. Scale on color bar represents voxel t values. The reader3s left (L) side of each slice is the



Table 3
The SPM8 second-level random effects two-sample t-test analysis result. The CD group had significantly lower activation than the control group for Easy NoGo contrast. x, y, and z=MNI
standard space coordinates (mm). Negative x= Left hemisphere. FWE= family-wise error corrected cluster probability. L= left. R=Right. g=Gyrus. TheMNI coordinates and locations
are listed for thefive largest t valueswithin the significant cluster (with the exception that small regionswith number of voxels b10, or regions thatwere not labeled byAAL, are not shown
in the table). The number of voxels in each brain regionwas determined by counting the number of labeled voxels for each regionwithin the intersection of the significant clusterwith the
set of labeled voxels in the AAL atlas.

Cluster
label

Cluster P
[2-tailed FWE-corrected]

Relative maximal voxel t values
within the cluster

MNI coordinates [x, y, z] of relative
maximal voxel t locations

Number of voxels in
brain region

Brain region containing the relative
maximal voxel t location

1 0.038 4.72 36, −10, 52 232 R precentral g
4.46 36, −8, 52 157 R middle frontal g
4.20 14, −30, 44 90 R middle cingulate cortex
3.95 36, −6, 58 66 R superior frontal g
4.14 12, −32, 48 21 R paracentral lobule
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with reliable driving input effects andmodulatory effects was identified
for each group. In the optimum model, endogenous connectivities,
modulatory effects, and driving input effects with high posterior
probability were retained, and those with low posterior probability
were eliminated by the network discovery analysis. A modulation
effectmeasures increased or decreased effective connectivity strength rel-
ative to the endogenous connectivity at different times in the experiment
that are related to the timing of changes in a particular experimental
condition.

Subjects in both groups performed the Go/NoGo tasks similarly well
and demonstrated several commonalities during the NoGo conditions.
Specifically, only prefrontal–caudate connectivity was modulated dur-
ing the NoGo condition for both groups. This is consistent with the the-
ories of top-down regulation (Bechara, 2005; Heatherton and Wagner,
2011; Noël et al., 2013; Volkow et al., 2011) and the involvement of
the caudate (Aron et al., 2003) in response inhibition. Furthermore,
the Easy NoGo condition modulated only L ACC to L caudate effective
connectivity. These modulation effects were not significantly different
between the two groups and support a previous study that reported
similar inhibitory behavioral performance inCDand control groups dur-
ing the Easy NoGo condition (Lane et al., 2007). Interestingly, control
and CD subjects also achieved similar successful response inhibition
during theHard NoGo condition. This is in contrast to the poorer perfor-
mance by CD subjects during Hard NoGo trials reported previously
(Lane et al., 2007).

We have used DCM to demonstrate differential modulation of ef-
fective cortico-striatal networks during Hard NoGo condition for CD
Fig. 3. Schematic diagram representing effective connectivity only modulated by the NoGo co
effects are depicted by lines ending with solid dot. The mean strengths (in units of Hz) of th
shown. For clarity, not all nodes or endogenous connectivities are shown in this figure. The m
significant group differences in modulation effect occurred during Hard NoGo condition. L =
vs. control subjects. Specifically, performance during the Hard NoGo
condition was associated with modulation of the effective connectivity
of the R VLPFC to L caudate and R DLPFC to L caudate in control subjects
only, and the L ACC to L caudate in CD subjects only. The DCM analyses
showed negative modulation of the effective connectivity from R VLPFC
to L caudate during the Hard NoGo condition in control subjects. This
supports cumulative evidence suggesting that the R VLPFC functions as
a “brake” during inhibitory responding (Aron et al., 2014). As previously
noted, response inhibition may be driven by reduced striatal activity
and subsequent medial globus pallidus disinhibition and thalamocortical
suppression via the direct pathway of the basal ganglia (Aron et al., 2003;
Beiser et al., 1997). Thus, our results may reflect that normal healthy sub-
jects achieve successful response inhibition during Hard NoGo trials due
to effective “brake”mechanisms afforded by the R VLPFC that appear al-
tered in the CD group.

The DCM analyses further showed positive modulation of the effec-
tive connectivity from R DLPFC to L caudate during the Hard NoGo con-
dition in control subjects. This result may reflect that healthy subjects
achieve executive control through DLPFC activation during the Hard
NoGo condition. While the effective connectivity from the R DLPFC to
L caudatewasmodulatedduring theHardNoGo condition, this pathway
was not modulated during the Easy NoGo condition. This finding is
similar to a previous study showing significant DLPFC activation during
a complex, but not a simple, NoGo task (Mostofsky et al., 2003). The re-
sults are also consistent with a previous study that demonstrated right
hemisphere lateralization during executive control in healthy subjects
(Tranel et al., 2005). Further, the modulation of two inter-hemisphere
nditions. The endogenous connectivities are denoted by line with arrow. The modulation
e modulation effects exerted by the Easy (E) or Hard (H) NoGo condition are separately
odulation effects showing significant group difference are indicated by asterisks. All the
Left. R = right.



844 L. Ma et al. / NeuroImage: Clinical 7 (2015) 837–847
prefrontal–striatal connectivities (RDLPFC to L caudate and R VLPFC to L
caudate) during the HardNoGo condition in the control group is consis-
tent with the hypothesis that DLPFC and VLPFC are essential for Go/
NoGo response inhibition tasks and that the right PFC dominates the
left PFC during response inhibition in healthy subjects (Chikazoe, 2010).

The present study demonstrates the unique finding that the Hard
NoGo condition modulates different prefrontal–striatal networks in
CD subjects compared to control subjects. Particularly, the effective con-
nectivity from L ACC to L caudate was negatively modulated during the
Hard NoGo condition in the CD group but unaffected in the control
group. The ACC is a critical region for both behavioral monitoring
(Botvinick et al., 1999; MacDonald et al., 2000), an important aspect of
executive control (Garavan and Hester, 2007), and emotional response
inhibition (Albert et al., 2012). Thus, instead of employing the “brake”
functionality of the VLPFC and executive control functionality of the
DLPFC as in control subjects, the CD subjects may complete the task
through the behaviormonitoring functionality of the ACC. Alternatively,
the difficulty level of the Hard NoGo trials may arouse frustration and
consequently activate emotion-responsive neural nodes (e.g., ACC;
Albert et al., 2012) during response inhibition, particularly as observed
in the CD subjects. The results alsomay suggest that CD subjects employ
an intact intra-hemisphere connectivity (L ACC to L caudate) to
compensate for an altered inter-hemisphere connectivity (R VLPFC to
L caudate) to achieve successful response inhibition. While the key
connectivity underlying response inhibition in CD subjects (L ACC to L
caudate) seems inconsistent with a previous study (Kaufman et al.,
2003) that found the ACC to be hypoactive in cocaine users during a
Go/NoGo task, it is important to consider that the current study showed
no group differences in success during the NoGo condition as opposed
to the study that demonstrated ACC hypoactivity concurrent with im-
pairments in behavioral performance in CD subjects (Kaufman et al.,
2003). Nonetheless, the present study shows group differences in mod-
ulation of prefrontal–striatal effective connectivity during Hard NoGo
condition consistent with other studies (e.g., Hanlon et al., 2011;
Wilcox et al., 2011; Ma et al., 2014a) and theories (e.g., Volkow et al.,
2011) in CD subjects.

The groupwise difference in brain signaling that underlies overtly
similar task performance (here discriminability) is in keeping with per-
haps a dominant finding in the task fMRI of addiction (Connolly et al.,
2012; Ma et al., 2014a; Tomasi et al., 2007; Wilkinson and Halligan,
2004).We contend that these altered brain signaturesmay be indicative
of reduced effective function in real world settings that may be infused
with emotional context or may otherwise lack the vigilance-inducing
conditions of observed behavior in a novel laboratory setting. The inter-
pretive advantage of normative performance is that differences are not
likely due to any differences in experience, perception of task errors, or
frustration.

Normal healthy controls exhibited the ability to adapt dynamic neu-
ronal connectivity dependent upon the difficulty level of the response
inhibition task, while CD subjects demonstrated the same intra-
hemispheric (L ACC to L caudate) connectivity regardless of the difficul-
ty level of the response inhibition task. This pattern of neuronal connec-
tivity could directly result from chronic cocaine use associated with
alterations in functional connectivity (Albein-Urios et al., 2013, 2014;
Bednarski et al., 2011; Cisler et al., 2013; Gu et al., 2010; Hanlon et al.,
2011; Lu et al., 2014; McHugh et al., 2013, 2014; Mitchell et al., 2013;
Murnane et al., 2015; Velez-Hernandez et al., 2014; Verdejo-Garcia
et al., 2014; Wilcox et al., 2011; Wisner et al., 2013; Worhunsky et al.,
2013; Zhang et al., 2014) and dysregulation within key brain regions
(e.g., prefrontal cortex) involved in cognitive processing (Fuster,
1997). These alterations may be attributable to a combination of perfu-
sion deficits (Holman et al., 1991, 1993; Levin et al., 1994; Strickland
et al., 1993; Volkow et al., 1991), altered gray/white matter structure
(Barros-Loscertales et al., 2011; Ma et al., 2009; Moeller et al., 2005),
and/or changes inmetabolic activity (Volkow et al., 1991). Furthermore,
chronic cocaine use is characterized by a multitude of alterations in
neurotransmitter function, particularly in the dopamine (DA), serotonin
(5-HT), and glutamate systems that may occur consequent to or inde-
pendent of the aforementioned changes (Cunningham and Anastasio,
2014; Volkow et al., 2011). Monoaminergic DA and 5-HT neurons
projecting from the mid-brain regions densely innervate the cortical
and subcortical systems (Kosofsky and Molliver, 1987; Vertes and
Linley, 2008). Both neurotransmitters interact profoundly at strategically
localized receptor proteins (e.g., 5-HT2A receptor (5-HT2AR), 5-HT2CR,
DA D1 and D2 receptors) within the complex cortico-striatal circuits,
including those localized to the microcircuitry of the frontal cortex and
dorsal striatum (for review, Howell and Cunningham, 2015). Partic-
ularly, the 5-HT2AR and 5-HT2CR abundantly localize to pyramidal
and GABAergic neurons within the frontal and cingulate cortex (Cornea-
Hebert et al., 1999; Liu et al., 2007; Pompeiano et al., 1994; Santana
et al., 2004), dopaminergic and GABAergic neurons of the caudate–puta-
men (Eberle-Wang et al., 1997; Lopez-Gimenez et al., 1997), and ascend-
ing dopaminergic mesolimbic neurons innervating the cortico-striatal
networks (Bubar and Cunningham, 2007; Doherty and Pickel, 2000;
Nocjar et al., 2002). Serotonin exerts tonic and phasic neuromodulatory
control over both DA and glutamate neurotransmission through these re-
ceptors in the mesocortical and nigrostriatal pathways (for reviews, Alex
and Pehek, 2007; Howell and Cunningham, 2015) that govern cognitive/
executive processes and motor/inhibitory response behaviors (Carli and
Invernizzi, 2014; Cunningham and Anastasio, 2014). While there is an
extensive body of literature supporting the role of these receptors in
cocaine-related behavioral alterations (Cunningham and Anastasio,
2014; Bubar and Cunningham, 2008), it is unknown whether the altered
top-down control in the CD subjects may be mediated, in part, by com-
promised 5-HT system interactions with DA and glutamate.

Several limitations of the present study do exist. (1) It is possible that
other neural interconnectivities are similarly important for inhibitory
control but were not identified because the connecting regions were
not included as nodes for theDCManalysis. One reason for the exclusion
of potential nodes was the lack of sufficient statistical power on fMRI
activation due to the small sample size in this study. Future studies
with more subjects will be helpful in providing greater insight into the
altered neuronal effective connectivity underlying inhibitory control in
CD subjects. (2) All subjects in the present study received a placebo cap-
sule as part of two larger studies in which they were enrolled. Although
unlikely, this may have contributed to unknown sources of variability in
both the behavioral and fMRI data. (3) While we have shown modula-
tion of effective connectivity during the NoGo conditions, the present
study was unable to determine which brain regions mechanistically
caused thesemodulation effects. This question could be answered in fu-
ture studies through the utilization of non-linear DCM (Stephan et al.,
2007). (4) Although the Go/NoGo paradigm has been frequently used
to investigate response inhibitionmechanisms, regional brain activation
elicited by Go/NoGo tasks may not be directly related to response inhi-
bition (Criaud and Boulinguez, 2013). To avoid the emergence of trivial
strategies (for example, repeated responses to stimuli resulting in 75%
correct performance), we motivated subjects by setting reward-values
for NoGo trials three times that of Go trials (either in terms of gain or
loss), thereby balancing the relative value of Go and NoGo trials. There-
fore, the connectivity observed in the present study may reflect the en-
gagement of other cognitive processes (e.g., attention, reward, and/or
motivation) in addition to response inhibition, which could confound
our interpretations. (5) The mean education of control subjects was
higher (by about 2 years) than that of CD subjects. Although differences
in education level could theoretically affect the study, it is unlikely since
behavioral performance was the same in both groups. (6) These find-
ings were from a small sample size (23 total subjects). Thus, one should
be cautious when generalizing these findings or interpreting effect sizes
(Button et al., 2013).

In summary, the control and CD subjects had similar levels of perfor-
mance on the Go/NoGo task. Given the nodes in our networkmodel, the
DCM Network Discovery analysis revealed that prefrontal–striatal
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connectivities were modulated during the NoGo conditions for both
groups, consistent with the theory that successful inhibition is related
to top-down control by a prefrontal, reflective systemover a subcortical,
impulsive system. While the effective connectivity from L ACC to L cau-
date was similarly modulated during the Easy NoGo condition for both
groups, differences in connectivity were observed during Hard NoGo
trials between groups. In the control group, the effective connectivity
from R VLPFC to L caudate was negatively modulated while the R
DLPFC to L caudate was positively modulated during the Hard NoGo
condition; therewere nomodulation effects on these two connectivities
during the Hard NoGo condition in the CD group. In the CD group, the
effective connectivity from L ACC to L caudate was negatively modulat-
ed during the Hard NoGo condition; there was no modulation effect on
this network during the Hard NoGo condition in the control group.
These results indicate that CD subjects use different patterns of con-
nectivity to achieve behavioral performance similar to control subjects
during Hard NoGo trials.
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