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ABSTRACT.

Purpose: We had found that a multivariate prediction model used for the

detection of primary angle-closure suspects (PACS) by combining multiple static

and dynamic anterior segment optical coherence tomography (ASOCT) param-

eters had an area under the receiver operating characteristic curve (AUC) of

0.844. We undertook this study to evaluate this method in screening of PACS

with different dominant mechanisms of angle closure (AC).

Methods: The right eyes of subjects aged ≥40 years who participated in the 5-

year follow-up of the Handan Eye Study and had undergone gonioscopy and

ASOCT examinations under light and dark conditions were included. All

ASOCT images were analysed by the Zhongshan Angle Assessment Program.

The dominant AC mechanism in each eye was determined to be pupillary block

(PB), plateau iris configuration (PIC) or thick peripheral iris roll (TPIR).

Backward logistic regression (LR) was used for inclusion of variables in the

prediction models. LR, Na€ıve Bayes’ classification (NBC) and neural network

(NN) were evaluated and compared using the AUC.

Results: Data from 796 subjects (413 PACS and 383 normal eyes) were analysed.

The AUCs of LR, NBC and NN in the PB group were 0.920, 0.918 and 0.917. The

AUCs of LR, NBC and NN in the PIC group were 0.715, 0.708 and 0.707. The

AUCs of LR, NBC and NN in TPIR group were 0.867, 0.833 and 0.886.

Conclusions: Prediction models showed the best performance for detection of

PACS with PB mechanism for AC and have potential for screening of PACS.

Key words: primary angle-closure suspect – screening – angle-closure mechanisms – static and

dynamic ASOCT parameters – prediction models
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Introduction

Glaucoma is a leading cause of irre-
versible blindness worldwide, and pri-
mary angle-closure glaucoma (PACG)
is a major cause of visual impairment
in Asia, especially in China (Quigley
et al. 2006; Tham et al. 2014). With 10
million people estimated to be affected
with PACG in China by 2020 (about
48% of the total worldwide), the dis-
ease will be a serious challenge for
healthcare systems in our country
(Quigley et al. 2006).

The definition of primary angle-clo-
sure disease (PACD) and the diagnosis
of primary angle-closure suspect
(PACS), primary angle closure (PAC)
and primary angle-closure glaucoma
(PACG) were based on the criteria
established by the International Society
of Geographic and Epidemiologic
Ophthalmology (ISGEO) (Foster
et al. 2002).

Vision loss resulting from PACG
cannot be reversed; it is therefore
essential to detect the early asymp-
tomatic stage of the disease (PACS)
and perform prophylactic laser irido-
tomy to prevent damage to the optic
nerve and irreversible visual impair-
ment (Weinreb et al. 2006; Tham et al.
2014).

Gonioscopy is the gold standard
examination for opportunistic case
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detection in clinics (Fu et al. 2019). For
the evaluation of anterior chamber
angle, gonioscopy permits direct visu-
alization of angle structures (Qiao et al.
2019). However, gonioscopy is a rela-
tively subjective technique with sub-
stantial intra- and inter-observer
variability, requires considerable exper-
tise and involves topical anaesthesia as
well as contact with the cornea (Fried-
man et al. 2008; Lavanya et al. 2008).
All these limit the use of gonioscopy in
population-based screening (Lavanya
et al. 2008).

Several non-contact imaging devices
of the anterior chamber angle (ACA)
are available, but none were considered
an ideal screening test for PACS
(Zhang et al. 2014).

Anterior segment optical coherence
tomography (ASOCT) uses an infrared
light with a wavelength of 1310 nm and
provides non-contact in vivo cross-
sectional imaging of the anterior seg-
ment of the eye in the absence of visible
light spectrum influence on angle con-
figuration and pupil size, either quali-
tatively or through various quantitative
parameters. It has high axial resolution
and short acquisition time (Radhakr-
ishnan et al. 2001; Friedman et al.
2008). This technique assesses the
ACA, iris, and lens parameters objec-
tively and is capable of recording
transient and dynamic changes of the
pupil at low levels of illumination
(Radhakrishnan et al. 2001; Moghimi
et al. 2013).

As ASOCT can visualize the entire
anterior chamber, all the essential
parameters for detection of angle clo-
sure (AC)/narrow angle can be exam-
ined in a single scan, which makes the
ASOCT a potential tool to screen for
PACS without relying on a specialist
performing gonioscopy (Dorairaj et al.
2012).

We recently evaluated the diagnostic
ability of three prediction models based
on static and dynamic ASOCT param-
eters to detect PACS as an early
screening tool (unpublished data). A
neural network (NN) model with a
variable set consisting of 4 ASOCT-
derived parameters – angle recess area
at 750 lm (ARA750) in light, lens
vault (LV) in light, anterior chamber
volume (ACV) in light and iris cross-
sectional area (IA) change/ pupil diam-
eter (PD) change – had the largest area
under the receiver operating character-
istic curve (AUC) of 0.844 in

identifying eyes with gonioscopic
PACS. While this is a good AUC, it
is still not ideal for population-based
screening. A possible reason for this
was considered to be different angle-
closure mechanisms of PACS eyes
enrolled in that study.

The aim of this investigation was to
evaluate three prediction models to
detect PACS with different dominant
AC mechanisms including pupillary
block (PB), plateau iris configuration
(PIC) and thick peripheral iris roll
(TPIR), based on static and dynamic
ASOCT parameters.

Methods

This was a cross-sectional observa-
tional study conducted with the
approval of the Ethics committee of
the Beijing Tongren Hospital. We
adhered to the tenets of Declaration
of Helsinki, and informed consent was
obtained from all participants.

Subjects aged ≥40 years who partic-
ipated in the five-year follow-up exam-
ination of the Handan Eye Study
(HES) between June 2012 and May
2013, with limbal anterior chamber
depth ≤40%, and had undergone
gonioscopic examination and ASOCT
imaging under light and dark condi-
tions were eligible for inclusion.

Patients were excluded if they had a
history of use of eyedrops that could
influence the anterior chamber angle,
intraocular surgery, laser treatment,
eye trauma and ocular surface disor-
ders, such as corneal opacity, ptery-
gium or other abnormalities that
precluded ASOCT imaging. Eyes with
peripheral anterior synechiae (PAS),
raised intraocular pressure (IOP),
cup–disc ratio ≥0.6 or presence of
typical glaucomatous optic neuropathy
(GON), secondary AC, and past his-
tory of acute angle-closure (AAC)
attack were also excluded. Other exclu-
sion criteria were inability to fixate on
the target, or general physical or men-
tal impairment that precluded partici-
pation in the testing.

All participants underwent a com-
prehensive ophthalmic examination
including presenting visual acuity
(PVA) and best-corrected visual acuity
(BCVA) measurement using a loga-
rithm of minimum-angle-of-resolution
chart (LogMAR E chart), auto-refrac-
tion (Topcon KR-8800, Topcon Cor-
poration, Tokyo, Japan), slit-lamp

examination, IOP using Kowa appla-
nation tonometry, A-scan ultrasound
biometry using an OcuScan RxP
(Alcon, Inc., Fort Worth, TX, USA)
and stereoscopic optic-disc examina-
tion with a 90-dioptre lens (Volk Opti-
cal Inc., Mentor, OH, USA).

Gonioscopy

Gonioscopy was performed in the dark
in all enrolled subjects by one of two
glaucoma specialists (ZP and YSH)
who were masked to imaging findings.
Static gonioscopy was performed using
a Goldmann one-mirror lens at a
magnification of 916 with the eye in
the primary position of gaze. Care was
taken to avoid light falling on the pupil
and to avoid inadvertent indentation
during examination. Dynamic exami-
nation (manipulation) then was per-
formed using the same lens. Primary
angle-closure suspects (PACS) was
diagnosed if ≥180° of the posterior
trabecular meshwork was not visible
on static gonioscopy.

ASOCT imaging and measurement

The Visante ASOCT (Carl Zeiss Med-
itec Inc., Dublin, CA, USA) obtains
scans at a rate of 2000 A-scans per
second, with an axial and transverse
resolution of 18 and 60 µm, respec-
tively (Quek et al. 2011).

Subjects underwent ASOCT imaging
first under dark conditions (~3 lux, to
induce physiologic mydriasis) after
allowing dark adaptation for at least
3 min prior to examination without the
use of any mydriatics followed by
imaging under light conditions (~200
lux). The scans were performed by a
single trained examiner who was
masked to the gonioscopy results. Dur-
ing ASOCT scanning, an internal fixa-
tion target was used with the subjects’
refractive correction in place to per-
form the measurements in an unac-
commodated state.

All images were obtained in the
‘anterior segment quadrant’ mode at
0°–180°, 45°–225°, 90°–270°, and 135°–
315° meridians. Due to interference
from the eyelids with image acquisition
of the ACA at 6 and 12 o’clock, the
lower lid was gently retracted by the
operator to image the inferior angle
and the upper lid was elevated gently to
image the superior angle; care was
taken to avoid pressure on the globe.
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Imaging was repeated if the scleral spur
visibility was poor.

A customized software, the Zhong-
shan Angle Assessment Program
(ZAAP, Guangzhou, China), was used
to process the ASOCT images (Console
et al. 2008). For each image, one
ophthalmologist (ZY) determined the
location of the 2 scleral spurs,
described as the inward protrusion of
the sclera with a change in curvature of
its inner surface (Sakata et al. 2008).
The algorithm then automatically cal-
culated parameters, including angle
opening distance at 500 lm
(AOD500), trabecular-iris space area
at 500 lm (TISA500), angle recess area
at 750 lm (ARA750), anterior cham-
ber depth (ACD), anterior chamber
area (ACA), anterior chamber volume
(ACV), anterior chamber width
(ACW), iris thickness at 750 lm
(IT750), iris curvature (IC) and iris
cross-sectional area (IA), lens vault
(LV), and pupil diameter (PD) (Con-
sole et al. 2008).

The AOD500 was measured as the
perpendicular distance between ante-
rior iris surface and a point at trabec-
ular meshwork at 500 lm anterior to
the scleral spur (Salim 2012). The
TISA500 was measured as an area
bounded anteriorly by the AOD500,
posteriorly by a line drawn from the
scleral spur perpendicular to the plane
of the inner scleral wall to the opposing
iris, superiorly by the inner corneoscle-
ral wall and inferiorly by the iris
surface (Salim 2012). The ARA750 is
the area of the angle recess bounded
anteriorly by the anterior iris surface,
corneal endothelium and a line perpen-
dicular to the corneal endothelium
drawn to the iris surface from a point
at 750 lm anterior to the scleral spur
(Salim 2012).

The ACD was measured as the
perpendicular distance from the cor-
neal endothelium at the corneal apex to
the anterior lens surface (Salim 2012).
The ACA was defined as the cross-
sectional area of anterior segment
bounded by the corneal endothelium,
the anterior surface of the iris and the
anterior surface of the lens (within the
pupil) (Wang et al. 2012). The algo-
rithm plots a vertical axis through the
midpoint (centre) of the anterior cham-
ber area, and by rotating the anterior
chamber area 360 degrees around this
vertical axis, calculates the ACV
(Wang et al. 2012). The ACW was

defined as the horizontal scleral spur-
to-spur distance (Nongpiur et al. 2010).

The IT750 was the iris thickness
measured at 750 lm from the scleral
spur, and the IC was determined by
measuring the maximum distance
between the posterior iris surface and
a line from the iris root to the first
point of contact between the iris and
lens (Wang et al. 2013). The LV was
the perpendicular distance between the
anterior pole of the crystalline lens and
the horizontal line joining the 2 scleral
spurs (Nongpiur et al., 2011a).

The IA was calculated as the cross-
sectional area of the full length (from
spur to pupil) of the iris (Sun et al.
2012). Iris cross-sectional area (IA)
change was calculated as IA in light
minus IA in dark, and PD change was
calculated as PD in dark minus PD in
light. Iris cross-sectional area (IA)
change/PD change was calculated as
IA change divided by PD change.

Categories of angle-closure mechanisms

Four ASOCT images from each PACS
eye obtained in the dark with clearly
discernible scleral spurs were analysed
qualitatively and categorized into one
of three AC mechanisms: PB, PIC and
TPIR (Figs 1, 2 and 3). Where the
image suggested more than one

mechanism for AC, a forced choice
was made to select the dominant mech-
anism without the benefit of other
information. The AC mechanism that
was identified in at least two ASOCT
images of each PACS eye was deter-
mined to be predominant AC mecha-
nism of that eye. The detailed
guidelines of the three AC mechanism
categorizations based on ASOCT
images and the reproducibility of AC
mechanism categories based on
ASOCT and ultrasound bio-mi-
croscopy (UBM) images are described
elsewhere (Zhang et al. 2015; Zhang
et al. 2016).

Statistical analysis

Data from right eyes of all the enrolled
subjects were analysed using the Sta-
tistical Analysis System (SAS) version
9.4 (SAS Institute, Cary, NC, USA).
For continuous variables, data were
first examined by Kolmogorov–Smir-
nov test for the normality of distribu-
tion. Variables demonstrating a normal
distribution were presented as mean
(standard deviation, SD), while vari-
ables failing to achieve a normal dis-
tribution were presented as median
(percentiles). For those variables with
a normal distribution, analysis of vari-
ance (ANOVA) was used to compare the

Fig. 1. Angle-closure mechanism – pupillary block.

Fig. 2. Angle-closure mechanism – plateau iris configuration.
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difference between four groups: normal
subjects and PACS patients with the
three different AC mechanisms. Bon-
ferroni correction was used to adjust p-
values for multiple pair-wise compar-
isons of normally distributed variables.

The Kruskal–Wallis test for unpaired
data was used to compare variables
which were not normally distributed
and to determine differences between
the four groups. The Mann–Whitney
U-test was used to compare the normal

group and PACS groups with PB, PIC
or TPIR, respectively. A p value < 0.05
was considered statistically significant.

Variable selection

Normal subjects were classified as neg-
ative outcomes. For each PACS group
with PB, PIC or TPIR, logistic regres-
sion (LR) analysis (Backward) was
used for inclusion of variables in the
prediction models from the following
12 parameters under dark and light
conditions: AOD500, TISA500,
ARA750, IT750, IC, LV, ACD,
ACW, ACA, ACV, IA and PD. And
plus two calculated parameters of
changes in dark and light conditions
including IA change and IA change/
PD change, there were a total of 26
candidate parameters for inclusion of
variables in the prediction models.
First of all, we used the univariate LR
analysis (Backward) on the 26 ASOCT
parameters and excluded the variables
with a p value more than 0.1.

Then, in order to avoid the obvious
correlations between the independent
variables, we designed four combina-
tions of variables for multivariate LR
analysis (Backward) to build the mod-
els for each PACS group with different

Fig. 3. Angle-closure mechanism – thick peripheral iris roll.

Fig. 4. Angle-closure mechanism – exaggerated lens vault.

Table 1. Demographic and ocular bircometric data of PACS subjects with different angle-closure mechanisms and normal subjects.

Parameter 1 = PB (n = 141) 2 = PIC (n = 147) 3 = TPIR (n = 125)

0 = Normal

Subjects

(n = 383) p value

p value

(0 & 1)

p value

(0 & 2)

p value

(0 & 3)

Age, median (IR),

years

64.0 (59.0, 70.0) 60.0 (55.0, 64.0) 62.0 (57.0, 66.5) 61.0 (56.0, 66.0) <0.001† <0.001§ 0.079§ 0.190§

Male (%) 36 (25.5) 48 (32.7) 43 (34.4) 145 (37.9) 0.067‡

Female (%) 105 (74.5) 99 (67.3) 82 (65.6) 238 (62.1)

PVA, median (IR) 0.34 (0.20, 0.50) 0.20 (0.08, 0.40) 0.30 (0.14, 0.44) 0.20 (0.10, 0.32) <0.001† <0.001§ 0.898§ 0.001§

BCVA, median

(IR)

0.10 (0.00, 0.21) 0.00 (0.00, 0.15) 0.10 (0.00, 0.17) 0.00 (0.00, 0.16) <0.001† <0.001§ 0.699§ 0.058§

SE, median (IR),

dioptre

1.00 (0.13, 1.75) 0.75 (0.00, 1.50) 0.63 (0.00, 1.50) 0.50 (�0.13, 1.13) <0.001† <0.001§ 0.018§ 0.027§

IOP, median (IR),

mmHg

11.3 (10.0, 13.0) 12.0 (10.0, 13.5) 12.0 (10.0, 13.0) 12.0 (10.0, 13.5) 0.148†

CCT, median

(IR), lm
527 (512, 544) 528 (514, 552) 530 (514, 548) 528 (513, 546) 0.568†

Central ACD,

median

(IR), mm

2.44 (2.30, 2.68) 2.58 (2.43, 2.84) 2.47 (2.31, 2.71) 2.71 (2.49, 2.92) <0.001† <0.001§ 0.002§ <0.001§

LT, median (IR),

mm

4.97 (4.69, 5.16) 4.73 (4.39, 4.94) 4.90 (4.48, 5.15) 4.78 (4.48, 5.07) <0.001† <0.001§ 0.092§ 0.093§

AL, median (IR),

mm

22.19 (21.81, 22.75) 22.29 (21.89, 23.15) 22.23 (21.61, 22.80) 22.73 (22.22, 23.25) <0.001† <0.001§ <0.001§ <0.001§

ACD = anterior chamber depth, AL = axial length, BCVA = best-corrected visual acuity, CCT = central corneal thickness, IOP = intraocular

pressure, IR = interquartile range, LT = lens thickness, PB = pupillary block, PIC = plateau iris configuration, PVA = presenting visual acuity,

SE = spherical equivalent, TPIR = thick peripheral iris roll.
† Kruskal–Wallis test.
‡ v2 test.
§ Mann–Whitney test (<0.05/4 = 0.0125 = significant different).
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AC mechanisms: 1. 12 parameters
under light conditions plus IA change;
2. 12 parameters under light conditions
plus IA change/PD change; 3. 12
parameters under dark conditions plus
IA change; and 4. 12 parameters under
dark conditions plus IA change/ PD
change. The variance inflation factors
(VIFs) and clinical significance of
included factors were calculated and
considered to determine the included
variables in multivariate logistic regres-
sion analysis. Significant variables with
a p value less than 0.1 in the multivari-
ate analysis were finally selected. The
Nagelkerke R squares were calculated
to evaluate and to select the best one
that fitted the data from the four
combinations of each PACS group
with different AC mechanisms.

Prediction model development

We randomly split the dataset into two
samples: 70% for the training (or
derivation) set and 30% for the testing
(or validation) set. We used the train-
ing subsets to develop and evaluate the
three prediction models for the detec-
tion of gonioscopic PACS with three
different AC mechanisms: logistic
regression (LR), Na€ıve Bayes’ classifi-
cation (NBC), and neural network
(NN) (Hastie et al. 2009). All the
significant variables selected through
univariate and multivariate LR analy-
sis were used to build the three predic-
tion models.

Logistic regression is a probabilistic
model that uses the relationship
between dependent and independent
variables as a concrete function for
prediction models (Cox 1958). We first
ran the LR models by SAS 9.4 using
the significant variables selected for
detection of PACS with different AC
mechanisms. This was our baseline
statistical model, as logistic regression
is the usual and standard method for
binary classification in epidemiological
research and clinical applications (Ford
et al. 2019).

The Na€ıve Bayes model, which is a
probabilistic model that predicts out-
put, calculates the probability that a
given instance belongs to a certain class
by using the Bayesian theorem (McCal-
lum et al. 1998). Na€ıve Bayes’ classifi-
cation (NBC) is fast and easy to build,
and useful for the classification of large
datasets (Jamal et al. 2020). In our
study, Na€ıve Bayes models for T

a
b
le

2
.
A
S
O
C
T

d
a
ta

o
f
P
A
C
S
su
b
je
ct
s
w
it
h
d
iff
er
en
t
a
n
g
le
-c
lo
su
re

m
ec
h
a
n
is
m
s
a
n
d
n
o
rm

a
l
su
b
je
ct
s.

C
o
n
d
it
io
n
s

P
a
ra
m
et
er

1
=
P
B
(n

=
1
4
1
)

2
=
P
IC

(n
=
1
4
7
)

3
=
T
P
IR

(n
=
1
2
5
)

0
=
N
o
rm

a
l

S
u
b
je
ct
s
(n

=
3
8
3
)

p
v
a
lu
e

p
v
a
lu
e
(0

&
1
)

p
v
a
lu
e
(0

&
2
)

p
v
a
lu
e

(0
&

3
)

L
ig
h
t

A
O
D
5
0
0
,
m
ed
ia
n
(I
R
),
m
m

0
.2
1
0
(0
.1
5
8
,
0
.2
8
1
)

0
.2
8
5
(0
.2
3
2
,
0
.3
6
3
)

0
.2
1
7
(0
.1
5
6
,
0
.2
9
2
)

0
.3
3
9
(0
.2
7
6
,
0
.4
3
4
)

<
0
.0
0
1
†

<
0
.0
0
1
§

<
0
.0
0
1
§

<
0
.0
0
1
§

T
IS
A
5
0
0
,
m
ed
ia
n
(I
R
),
m
m

2
0
.0
9
5
(0
.0
7
4
,
0
.1
1
8
)

0
.1
1
8
(0
.0
9
9
,
0
.1
4
5
)

0
.0
9
0
(0
.0
6
5
,
0
.1
2
2
)

0
.1
4
2
(0
.1
1
6
,
0
.1
7
7
)

<
0
.0
0
1
†

<
0
.0
0
1
§

<
0
.0
0
1
§

<
0
.0
0
1
§

A
R
A
7
5
0
,
m
ed
ia
n
(I
R
),
m
m

2
0
.2
6
2
(0
.1
8
9
,
0
.3
4
4
)

0
.3
0
9
(0
.2
5
0
,
0
.3
7
8
)

0
.2
2
7
(0
.1
6
4
,
0
.3
1
0
)

0
.3
9
0
(0
.3
1
1
,
0
.4
7
5
)

<
0
.0
0
1
†

<
0
.0
0
1
§

<
0
.0
0
1
§

<
0
.0
0
1
§

A
C
D
,
m
ed
ia
n
(I
R
),
m
m

2
.1
1
3
(1
.9
6
4
,
2
.2
4
9
)

2
.3
7
8
(2
.2
4
3
,
2
.5
4
5
)

2
.2
6
4
(2
.1
0
4
,
2
.3
9
3
)

2
.4
8
8
(2
.3
2
5
,
2
.6
4
2
)

<
0
.0
0
1
†

<
0
.0
0
1
§

<
0
.0
0
1
§

<
0
.0
0
1
§

A
C
W
,
m
ed
ia
n
(I
R
),
m
m

1
0
.7
9
(1
0
.4
7
,
1
1
.0
6
)

1
1
.0
2
(1
0
.7
9
,
1
1
.2
8
)

1
0
.8
5
(1
0
.6
0
,
1
1
.1
0
)

1
1
.1
2
(1
0
.8
2
,
1
1
.4
3
)

<
0
.0
0
1
†

<
0
.0
0
1
§

0
.0
2
1
§

<
0
.0
0
1
§

A
C
A
,
m
ed
ia
n
(I
R
),
m
m

2
1
4
.7
2
(1
3
.1
9
,
1
5
.9
2
)

1
7
.1
3
(1
5
.9
7
,
1
8
.7
4
)

1
5
.8
4
(1
4
.1
6
,
1
7
.0
8
)

1
8
.2
7
(1
6
.6
0
,
1
9
.8
2
)

<
0
.0
0
1
†

<
0
.0
0
1
§

<
0
.0
0
1
§

<
0
.0
0
1
§

A
C
V
,
m
ed
ia
n
(I
R
),
m
m

3
5
6
.2
5
(4
8
.6
4
,
6
3
.1
1
)

6
7
.8
3
(6
1
.9
6
,
7
5
.4
0
)

5
9
.4
9
(5
2
.4
4
,
6
6
.8
7
)

7
3
.8
9
(6
5
.2
5
,
8
2
.4
0
)

<
0
.0
0
1
†

<
0
.0
0
1
§

<
0
.0
0
1
§

<
0
.0
0
1
§

IT
7
5
0
,
m
ed
ia
n
(I
R
),
m
m

0
.4
4
(0
.3
9
,
0
.4
7
)

0
.4
5
(0
.4
2
,
0
.4
8
)

0
.5
0
(0
.4
7
,
0
.5
5
)

0
.4
4
(0
.3
9
,
0
.4
8
)

<
0
.0
0
1
†

0
.6
1
6
§

0
.3
2
4
§

<
0
.0
0
1
§

IC
,
m
ea
n
(S
D
),
m
m

0
.3
0
(0
.0
6
)

0
.2
4
(0
.0
7
)

0
.2
5
(0
.0
6
)

0
.2
4
(0
.0
7
)

<
0
.0
0
1
*

<
0
.0
0
1
‡

1
.0
0
0
‡

1
.0
0
0
‡

L
V
,
m
ed
ia
n
(I
R
),
m
m

4
9
9
.8

(4
1
3
.8
,
5
8
7
.7
)

3
2
6
.9

(2
2
0
.2
,
4
4
9
.5
)

3
9
8
.4

(2
9
2
.8
,
5
0
9
.7
)

2
6
9
.1

(1
1
9
.0
,
4
0
9
.5
)

<
0
.0
0
1
†

<
0
.0
0
1
§

0
.0
0
1
§

<
0
.0
0
1
§

D
a
rk

A
O
D
5
0
0
,
m
ed
ia
n
(I
R
),
m
m

0
.1
7
6
(0
.1
2
4
,
0
.2
3
3
)

0
.2
5
8
(0
.2
0
4
,
0
.3
2
8
)

0
.1
7
8
(0
.1
1
0
,
0
.2
6
0
)

0
.3
0
7
(0
.2
4
2
,
0
.3
8
3
)

<
0
.0
0
1
†

<
0
.0
0
1
§

<
0
.0
0
1
§

<
0
.0
0
1
§

T
IS
A
5
0
0
,
m
ed
ia
n
(I
R
),
m
m

2
0
.0
7
5
(0
.0
5
5
,
0
.0
9
9
)

0
.1
0
3
(0
.0
7
6
,
0
.1
2
8
)

0
.0
6
8
(0
.0
4
5
,
0
.1
0
1
)

0
.1
2
7
(0
.1
0
0
,
0
.1
5
6
)

<
0
.0
0
1
†

<
0
.0
0
1
§

<
0
.0
0
1
§

<
0
.0
0
1
§

A
R
A
7
5
0
,
m
ed
ia
n
(I
R
),
m
m

2
0
.1
9
1
(0
.1
4
0
,
0
.2
5
6
)

0
.2
5
7
(0
.1
8
1
,
0
.3
2
7
)

0
.1
6
8
(0
.1
0
9
,
0
.2
5
6
)

0
.3
2
2
(0
.2
5
3
,
0
.4
0
5
)

<
0
.0
0
1
†

<
0
.0
0
1
§

<
0
.0
0
1
§

<
0
.0
0
1
§

A
C
D
,
m
ed
ia
n
(I
R
),
m
m

2
.1
2
3
(1
.9
6
7
,
2
.2
4
6
)

2
.3
8
5
(2
.2
5
5
,
2
.5
4
7
)

2
.2
5
8
(2
.0
8
0
,
2
.3
9
9
)

2
.4
8
3
(2
.3
2
9
,
2
.6
3
6
)

<
0
.0
0
1
†

<
0
.0
0
1
§

<
0
.0
0
1
§

<
0
.0
0
1
§

A
C
W
,
m
ed
ia
n
(I
R
),
m
m

1
0
.9
3
(1
0
.6
5
,
1
1
.1
9
)

1
1
.0
3
(1
0
.7
9
,
1
1
.3
0
)

1
0
.9
1
(1
0
.5
9
,
1
1
.1
4
)

1
1
.1
1
(1
0
.8
4
,
1
1
.3
9
)

<
0
.0
0
1
†

<
0
.0
0
1
§

0
.0
6
6
§

<
0
.0
0
1
§

A
C
A
,
m
ed
ia
n
(I
R
),
m
m

2
1
5
.1
6
(1
3
.5
8
,
1
6
.4
3
)

1
7
.5
4
(1
6
.5
2
,
1
9
.1
9
)

1
5
.9
7
(1
4
.4
6
,
1
7
.4
5
)

1
8
.6
1
(1
6
.8
9
,
2
0
.2
7
)

<
0
.0
0
1
†

<
0
.0
0
1
§

<
0
.0
0
1
§

<
0
.0
0
1
§

A
C
V
,
m
ed
ia
n
(I
R
),
m
m

3
5
8
.0
1
(4
9
.9
1
,
6
4
.9
3
)

6
9
.7
0
(6
3
.6
2
,
7
7
.2
5
)

6
0
.1
4
(5
2
.4
2
,
6
9
.2
0
)

7
4
.5
7
(6
6
.5
7
,
8
3
.8
6
)

<
0
.0
0
1
†

<
0
.0
0
1
§

<
0
.0
0
1
§

<
0
.0
0
1
§

IT
7
5
0
,
m
ed
ia
n
(I
R
),
m
m

0
.4
7
(0
.4
1
,
0
.5
0
)

0
.4
8
(0
.4
5
,
0
.5
1
)

0
.5
3
(0
.5
0
,
0
.5
7
)

0
.4
7
(0
.4
2
,
0
.5
1
)

<
0
.0
0
1
†

0
.4
3
1
§

0
.0
7
6
§

<
0
.0
0
1
§

IC
,
m
ed
ia
n
(I
R
),
m
m

0
.2
9
(0
.2
5
,
0
.3
2
)

0
.2
3
(0
.1
9
,
0
.2
8
)

0
.2
4
(0
.2
1
,
0
.2
8
)

0
.2
4
(0
.2
0
,
0
.2
8
)

<
0
.0
0
1
†

<
0
.0
0
1
§

0
.2
9
1
§

0
.3
1
1
§

L
V
,
m
ed
ia
n
(I
R
),
m
m

5
5
2
.7

(4
2
2
.0
,
6
8
4
.6
)

3
4
1
.7

(2
0
4
.6
,
4
4
6
.0
)

4
1
2
.4

(2
7
6
.2
,
5
3
0
.8
)

2
8
5
.9

(1
3
8
.5
,
4
0
1
.6
)

<
0
.0
0
1
†

<
0
.0
0
1
§

0
.0
0
3
§

<
0
.0
0
1
§

A
C
A

=
a
n
te
ri
o
r
ch
a
m
b
er

a
re
a
,
A
C
D

=
a
n
te
ri
o
r
ch
a
m
b
er

d
ep
th
,
A
C
V

=
a
n
te
ri
o
r
ch
a
m
b
er

v
o
lu
m
e,
A
C
W

=
a
n
te
ri
o
r
ch
a
m
b
er

w
id
th
,
A
O
D
5
0
0
=
a
n
g
le
o
p
en
in
g
d
is
ta
n
ce

a
t
5
0
0
l
m
,
A
R
A
7
5
0
=
a
n
g
le
re
ce
ss

a
re
a
a
t
7
5
0
l
m
,
IC

=
ir
is

cu
rv
a
tu
re
,
IR

=
in
te
rq
u
a
rt
il
e
ra
n
g
e,

IT
7
5
0
=
ir
is

th
ic
k
n
es
s
a
t
7
5
0
lm

,
L
V

=
le
n
s
v
a
u
lt
,
P
B

=
p
u
p
il
la
ry

b
lo
ck
,
P
IC

=
p
la
te
a
u

ir
is

co
n
fi
g
u
ra
ti
o
n
,
S
D

=
st
a
n
d
a
rd

d
ev
ia
ti
o
n
,

T
IS
A
5
0
0
=
tr
a
b
ec
u
la
r-
ir
is
sp
a
ce

a
t
5
0
0
lm

,
T
P
IR

=
th
ic
k
p
er
ip
h
er
a
l
ir
is
ro
ll
.

*
O
n
e-
w
a
y
a
n
a
ly
si
s
o
f
v
a
ri
a
n
ce
.

†
K
ru
sk
a
l–
W
a
ll
is
te
st
.

‡
B
o
n
fe
rr
o
n
i.

§
M
a
n
n
–W

h
it
n
ey

te
st

(<
0
.0
5
/4

=
0
.0
1
2
5
=
si
g
n
ifi
ca
n
t
d
iff
er
en
t)
.

e580

Acta Ophthalmologica 2021



detection of PACS with different AC
mechanisms were developed by SAS
9.4 using the significant variables.

Neural network mimics the brain’s
information processing system, which
involves complex neuron connections
and complex computations (Hassoun
1995). Neural network (NN) consists
of multiple linear regression models are
advantageous when there is a large
number of variables with complex
relations among them (Dreiseitl et al.
2002). For each PACS group, signifi-
cant variables selected were used as
inputs and 1 binary variable (PACS or
normal) was used as output. Our NN
models, which were built by the Statis-
tical Package for Social Sciences
(SPSS) version 25.0 (SPSS, Chicago,
IL, USA), consisted of one input layer,
a hidden layer and an output layer.

The ROC curve was used as a metric
to measure prediction model perfor-
mance. Each model was assessed for its
ability to classify PACS cases versus
controls using the AUCs. The optimal
operating point was determined at the
point at which the Youden index was
maximized and was used as the diag-
nostic threshold to calculate sensitivity
and specificity (Fluss et al. 2005). The
estimates of AUC (95% confidence
interval [CI]), sensitivity and specificity
were obtained using the SPSS 25.0.
Comparisons of AUCs of the three
different models for each PACS group
with PB, PIC or TPIR were performed
using ANOVA.

The testing dataset was used to
validate models’ ability to discriminate
between PACS patients versus normal
subjects. Overall model accuracy which
is the correct classification ratio for
each model was the key indicator of
model validation in our study.

Results

Subjects characteristics

A total of 989 subjects age ≥40 years
who attended the 5-year HES follow-
up and completed ocular examinations
as well as gonioscopy and ASOCT
measurements under light and dark
conditions were eligible for inclusion.
A total of 132 eyes (13.3%) were
excluded due to poor quality ASOCT
images or inability to accurately iden-
tify the scleral spur.

We excluded 5 PACS eyes consid-
ered to have an exaggerated lens vault T
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(Fig. 4) as the dominant AC mecha-
nism and 13 PACS eyes in which the
dominant AC mechanism could not be
identified. Data from the right eye of
796 subjects including 413 PACS and
383 normal subjects were included in
the final analysis. There were no statis-
tically significant differences in demo-
graphic or ocular features between the
included and excluded subjects. A total
of 141 PACS eyes were determined to
have PB (34.1%), 147 PACS eyes PIC
(35.6%) and 125 PACS eyes TPIR
(30.3%) as the dominant AC mecha-
nism.

The demographic and ocular bio-
metric data of subjects with each AC
mechanism group and normal group
are shown in Table 1. There was no
significant difference in sex, IOP and
CCT among the four groups. A signif-
icant difference existed in age
(p < 0.001), PVA (p < 0.001), BCVA

(p < 0.001), spherical equivalent (SE)
(p < 0.001), central ACD (p < 0.001),
lens thickness (LT) (p < 0.001) and
axial length (AL) (p < 0.001) between
the four groups.

Quantitative anterior chamber
parameters measured using ASOCT in
the four groups in light and dark
conditions along with the differences
between the groups are summarized in
Table 2. Significant differences across
all parameters were found between the
four groups in both light and dark
conditions (p < 0.001).

Iris cross-sectional area measurements

A summary of mean IAs, PDs, IA
changes, PD changes and IA changes/
PD changes in light and dark condi-
tions in four groups is shown in
Table 3. Significant differences in IA’s
in light and dark (p < 0.001), changes

in IA’s (p < 0.001), changes in PD’s
(p = 0.012) and IA changes/PD
changes (p < 0.001) in dark and light
conditions were observed between the
four groups. The PB group was found
to have the smallest IA changes
(p < 0.001 between PB and normal
groups, p = 0.001 between PB and
PIC groups, p = 0.005 between PB
and TPIR groups) and IA changes/
PD changes (p < 0.001 between PB
and normal groups, p = 0.007 between
PB and PIC groups, p = 0.009 between
PB and TPIR groups).

Multivariate prediction models

For PACS group with PB, the Nagelk-
erke R2 of the four combinations of
variables selected through multivariate
LR analysis are shown in Table 4, with
the best one being 0.563. For PACS
group with PIC, the parameter IA
change was excluded through univari-
ate LR analysis because of a P value of
less than 0.1. Hence, there were only
two combinations of variables, with the
Nagelkerke R2 being 0.178 and 0.157
(Table 4). Finally, for PACS group
with TPIR, two parameters including
IA change and IA change/PD change
were both excluded through univariate
LR analysis. There were also two
combinations of variables left through
multivariate LR analysis, with the
Nagelkerke R2 being 0.358 and 0.441
(Table 4).

Table 5 details the variables
included as the best combinations
using LR analysis. In the PB group,
ACV in light (p < 0.001), LV in light
(p < 0.001) and IA change/PD change
(p < 0.001) were included. In the PIC
group, significant variables were

Table 4. Nagelkerke R squares of different combinations of variables through backward logistic

regression analysis

Angle-Closure

Mechanisms

Logistic

Models Parameter

Nagerkerke

R2

Pupillary Block 1 ACV (L), LV (L), IA Change 0.553

2 ACV (L), LV (L), IA Change/PD Change 0.563

3 IC (D), ACV (D), LV (D), IA Change 0.554

4 IC (D), ACV (D), LV (D), IA Change/PD Change 0.557

Plateau Iris

Configuration

1 AOD500 (L), ARA750 (L), IA Change/PD Change 0.178

2 ARA750 (D), ACD (D), LV (D), IA Change/PD

Change

0.157

Thick Peripheral

Iris Roll

1 ARA750 (L), IA (L), ACV (L) 0.358

2 ARA750 (D), IT750 (D), ACV (D) 0.441

IA Change = IA in light – IA in dark; PD Change = PD in dark – PD in light.

ACD = anterior chamber depth, ACV = anterior chamber volume, AOD500 = angle opening

distance at 500 lm, ARA750 = angle recess area at 750 lm, D = dark, IA = iris cross-sectional

area, IC = iris curvature, IT750 = iris thickness at 750 lm, L = light, LV = lens vault,

PD = pupil diameter.

Table 5. Variables included in the best combinations through backward logistic regression analysis

Angle-Closure

Mechanisms Parameter

Estimated

regression coefficient Standard error v2 p value OR (95% CI)

Pupillary Block ACV; L, mm3 �0.121 0.018 47.072 <0.001 0.886 (0.856, 0.917)

LV; L, mm 0.005 0.001 24.450 <0.001 1.005 (1.003, 1.007)

IA Change/PD Change, mm �1.987 0.520 14.582 <0.001 0.137 (0.049, 0.380)

Plateau Iris Configuration AOD500; L, mm 4.976 2.232 4.971 0.026 144.963 (1.825, 11512.382)

ARA750; L, mm2 �10.113 2.128 22.577 <0.001 <0.001 (<0.001, 0.003)
IA Change/PD Change, mm �0.803 0.368 4.770 0.029 0.448 (0.218, 0.921)

Thick Peripheral Iris Roll ARA750; D, mm2 �8.507 1.987 18.339 <0.001 <0.001 (<0.001, 0.010)
IT750; D, mm 12.039 2.862 17.698 <0.001 169282.464 (620.373,

46192469.33)

ACV; D, mm3 �0.033 0.015 4.684 0.030 0.967 (0.939, 0.997)

IA Change = IA in light – IA in dark; PD Change = PD in dark – PD in light.

ACV = anterior chamber volume; AOD500 = angle opening distance at 500 lm; ARA750 = angle recess area at 750 lm; D = dark; IA = iris cross-

sectional area; IT750 = iris thickness at 750 lm; L = light; LV = lens vault; PD = pupil diameter.
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determined as AOD500 in light
(p = 0.026), ARA750 in light
(p < 0.001) and IA change/PD change
(p = 0.029). In the TPIR group, the
following three variables were selected:
ARA750 in dark (p < 0.001), IT750 in
dark (p < 0.001) and ACA in dark
(p = 0.030). No significant collinearity
among the input variables of each
group was detected.

Figures 5, 6 and 7 show the ROC
curves of the 3 algorithms in PB, PIC
and TPIR groups, respectively. Table 6

shows the AUCs and 95% CIs of BLR,
NBC and NN: in the PB group, these
were 0.920, (95% CI, 0.890–0.950),
0.918 (95% CI, 0.889–0.947) and
0.917 (95% CI, 0.887–0.946), with no
significant statistical differences
(p = 0.990). The AUCs and 95% CIs
of BLR, NBC and NN in PIC group
were 0.715, (95% CI, 0.659–0.771),
0.708 (95% CI, 0.651–0.764) and
0.707 (95% CI, 0.650–0.764), with no
significant statistical differences
(p = 0.977). The AUCs and 95% CI

of BLR, NBC and NN in TPIR group
were 0.867, (95% CI, 0.823–0.912),
0.833 (95% CI, 0.784–0.882) and
0.886 (95% CI, 0.849–0.922), respec-
tively, with no significant statistical
differences (p = 0.240). The sensitivity,
specificity and the validation results
(overall accuracy) of the three algo-
rithms of each group with different AC
mechanisms are also shown in Table 6.

Discussion

In a previous study, we had investi-
gated algorithms for detection of
PACS by combining static and
dynamic ASOCT parameters and
found that the three algorithms includ-
ing BLR, NBC and NN failed to meet
the requirements for population-based
screening of PACS; NN had the largest
AUC of 0.844 (Zhang et al. 2020). The
current investigation shows potential
for the development of an image-based
non-contact method to screen for
PACS, which is the ASOCT examina-
tions under both light and dark condi-
tions.

There are different AC mechanisms
for PACD (Wang et al. 2000; Li et al.
2009). Pure pupillary block, pure non-
pupillary block and combination of
multiple mechanisms have been
reported to underlie AC in Chinese
eyes with PACD (Wang et al. 2000). In
our previous study, we found that there
were significant differences in ASOCT
parameters between PACD eyes with
different dominant AC mechanisms
(Zhang et al. 2015). In another study,
we also showed that the contribution of
dynamic iris behaviour to the patho-
genesis of PACD varies among those
with different AC mechanisms (Zhang
et al. 2015). Accordingly, we felt that
using a single algorithm in detection of
all PACS eyes might not be the best
way to screen.

In this study, we categorized
enrolled PACS eyes into three groups
including PB, PIC and TPIR according
to their dominant AC mechanisms as
determined by ASOCT images. Among
the three groups, PB group had the
smallest IA change and IA change/PD
change, suggesting that dynamic iris
change has a more important role in
angle closure where PB is the dominant
AC mechanism; this is what we had
found in our earlier study (Zhang et al.
2015). The reason for that may be the
pressure gradient between the anterior
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Fig. 5. ROC curves of three prediction models in PACS eyes with pupillary block.
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Fig. 6. ROC curves of three prediction models in PACS eyes with plateau iris configuration.
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and posterior chambers in the PB
group created by three forces including
sphincter and dilator muscles as well as
iris elasticity which affect the iris struc-
ture and change the capacity for free
fluid movement (Nongpiur et al.,
2011b; Zhang et al. 2015).

The three algorithms demonstrated
good AUCs in the PB group, moderate
AUCs in TPIR group and relatively
poor AUCs in PIC group. In our
previous study, the largest AUC
(0.844) was for NN for detection of
all PACS eyes; this is less than that for
the PB and TPIR groups and better
than that for the PIC group. We
evaluated the performance of three
prediction models in detection of
PACS as a new method of screening
for PACD based on different AC
mechanisms. This method performed
best in detection of PACS with PB as
the dominant AC mechanism.

Early diagnosis of PACD can be
achieved by population-based screen-
ing or case detection (opportunistic
screening) (Thomas et al. 2002). Our
findings suggest that this new method
(prediction models using variables
obtained through ASOCT measure-
ments in both dark and light condi-
tions) was suitable for population-
based screening as well as in case
detection of PACS eyes with PB as
the dominant AC mechanism. And this
method (prediction models using vari-
ables obtained through ASOCT mea-
surements in dark conditions) may
have potential use in case detection of
PACS eyes with TPIR as the dominant
AC mechanism. The algorithm was not
suitable for population-based screening
or case detection in PACS eyes with
PIC as the dominant AC mechanism.

The Zhongshan Angle-Closure
Prevention (ZAP) trial reported a low

incidence of development of PAC or
PACG in PACS subjects over 6 years
and also suggested that performing LPI
on a population basis may not be the
best strategy for preventing visual
impairment in PACS (He et al. 2019).
Hence, population-based screening of
PACS may seem insignificant based on
those findings. However, the ZAP trial
fails to provide sufficient information
referring to the risk which is especially
important in determining whether an
individual PACS is with higher possi-
bility of a sight-threatening acute
attack and should undergo a prophy-
lactic LPI (He et al. 2019).

We believe that early screening for
PACS is not useless; identifying and
targeting which PACS are at higher
risk of developing angle closure or
vision-impairing acute attack are essen-
tial and also the most powerful tool for
preventing blindness and low vision
caused by PACD.

The ultimate goal of our study is
looking for an ideal screening method
for all stages of PACD, not only for
PACS. However, as our study was
based on a population-based research
(follow-up of the Handan Eye Study),
the number of PAC or PACG was very
limited. We intended to establish and
evaluate this new method first in PACS
cases; in a future study, we will further
evaluate the performance of this
method in PAC/PACG cases.

Previous studies have reported that
the AC mechanism involved in most
AAC eyes and fellow eyes of AAC is
predominantly PB, while non-pupillary
block or multiple mechanisms have a
greater role in non-acute presentations
(Barkan 1954; Zhou et al. 1993;
Moghimi et al. 2018). Acute angle-
closure (AAC) is a subtype of PACD
and an ocular emergency which in the
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Fig. 7. ROC curves of three prediction models in PACS eyes with thick peripheral iris roll.

Table 6. AUC, sensitivity and specificity of algorithms.

Angle-closure mechanisms

Prediction

algorithm

Overall

accuracy (%) AUC

95% CI

of AUC sensitivity

95% CI of

sensitivity specificity

95% CI of

specificity

Pupillary Block LR 80.9 0.920 0.890, 0.950 86.87% 84.81%, 88.93% 86.57% 83.14%, 89.99%

NBC 77.7 0.918 0.889, 0.947 87.88% 85.89%, 89.87% 83.96% 80.27%, 87.64%

NN 82.1 0.917 0.887, 0.946 88.89% 86.97%, 90.81% 84.33% 80.67%, 87.98%

Plateau Iris Configuration LR 66.0 0.715 0.659, 0.771 77.67% 75.13%, 80.21% 54.85% 49.95%, 59.75%

NBC 68.6 0.708 0.651, 0.764 68.93% 66.11%, 71.76% 62.69% 57.92%, 67.45%

NN 74.7 0.707 0.650, 0.764 68.93% 66.11%, 71.76% 60.45% 55.63%, 65.27%

Thick Peripheral Iris Roll LR 79.6 0.867 0.823, 0.912 78.41% 75.90%, 80.92% 82.84% 78.82%, 86.86%

NBC 73.7 0.833 0.784, 0.882 86.36% 84.27%, 88.46% 67.54% 62.55%, 72.53%

NN 86.8 0.886 0.849, 0.922 87.50% 85.48%, 89.52% 77.24% 72.77%, 81.71%

AUC = area under the receiver operator characteristic curve, CI = confidence interval, LR = logistic regression, NBC = Na€ıve Bayes’ classification,

NN = neural network.
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absence of timely treatment causes
permanent visual loss (Ha et al. 2019).

Early screening for AAC would be
beneficial. We found that the new
method which was based on algorithms
and combination of anatomical and
dynamic ASOCT parameters per-
formed well in detection of PACS with
PB as the dominant AC mechanism
and may be helpful in screening eyes
which are at risk of AAC. This would
require confirmation by a prospective
study.

Gonioscopycertainly remains thepri-
mary method for angle assessment and
the gold standard for the diagnosis of
PACDand is essential when the decision
of how to manage an individual with
PACD is made. However, even in the
clinics, gonioscopy is not performedhalf
of the time probably due to lack of
experience, potential discomfort and
lack of time (Chansangpetch et al.
2018). And its fair inter- and intra-
observer reproducibility, situations such
as corneal pathologies or uncooperative
patients prevents it from being an ideal
screening, detecting and monitoring
method for angle closure (Chansang-
petch et al. 2018).

The anterior segment imaging
machines such as ASOCT are now
already commonly available in more
developed areas. In developing areas
and countries such as China, ASOCT
will become more and more common
with the development of economics and
medical resources, which makes it a
preferable option for early screening of
PACD. For underdeveloped countries
and areas where ASOCT is not practi-
cal for screening for its high costs,
gonioscopy is still more suitable for its
characteristics of being cost-effective
and portable (Chansangpetch et al.
2018).

Our study has several strengths. To
the best of our knowledge, it is the first
study to establish and evaluate a novel
method for detection of PACS with
different AC mechanisms by combining
multiple static and dynamic anterior
segment parameters on the basis of
three prediction algorithms. Our anal-
ysis used the ISGEO classification sys-
tem for PACD. Anterior segment
optical coherence tomography
(ASOCT), which is non-contact, elim-
inates patient discomfort and inadver-
tent compression of the globe and has
the advantages of ease of operation,
rapidity of image acquisition, less inter-

operator variability and angle viewing
in its natural state because of the use of
infrared light (Angmo et al. 2016).

The study has several limitations.
Firstly, we included only PACS eyes
but not those with established primary
angle closure because the decision to
treat is evident in the latter. This makes
it difficult to estimate how eyes with
confirmed angle closure would
respond. Secondly, our subjects were
Chinese and caution is warranted in
extrapolating the findings to other
ethnic groups. Thirdly, subjects with
limbal anterior chamber depth ≤40%
and had undergone gonioscopic exam-
ination and ASOCT imaging under
light and dark conditions were enrolled
in our study, which may cause some
bias when drawing a conclusion. In the
future, we would further assess this
screening method in general popula-
tion. Fourthly, the main disadvantage
of ASOCT is the inability to image
structures posterior to the iris such as
the posterior chamber of the eye,
zonules and the ciliary body (Nongpiur
et al. 2020). Therefore, mechanisms of
angle closure effected by ciliary body
components such as plateau iris may
not be wholly elucidated with ASOCT
(Nongpiur et al. 2020). Our earlier
study did find a good kappa (0.870)
with the UBM for the same observer in
determination of the AC mechanism
(Zhang et al. 2016). Also, the Visante
ASOCT could not perform the 360-
degree imaging of the entire anterior
chamber, which may miss some infor-
mation. Also, currently available soft-
ware analysis programmes are
semiautomated and require manual
localization of the scleral spur (Quek
et al. 2011). This can be difficult espe-
cially in closed angles or where there is
a smooth transition from cornea to
sclera (Quek et al. 2011). We are
planning a study to investigate fully
automated image analysis software for
angle-closure detection. Finally, exter-
nal validation which requires evalua-
tion of the performance of these
models in other participant data is
needed.

Conclusions

In summary, we compared three pre-
diction models derived from static and
dynamic ASOCT-based parameters
obtained under both light and dark
conditions for the detection of PACS

with different dominant AC mecha-
nisms. This new method showed the
best performance for detection of
PACS with pupillary block mechanism
with potential for use in population-
based screening as well as in case
detection. In a future study, we plan
to enrol PACD patients from clinics at
our hospital and further evaluate the
performance of these models in screen-
ing of PACD in the real world.
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