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Abstract

Objective: Maternal hypothyroidism during pregnancy can affect the neurodevelopment 

of their offspring. This study aimed to investigate the effects of maternal subclinical 

hypothyroidism (SCH) on spatial learning and memory, and its relationship with the 

apoptotic factors in cerebral cortex of the offspring.

Methods: Female adult Wistar rats were randomly divided into three groups (n = 15 per 

group): control (CON) group, SCH group and overt hypothyroidism (OH) group. Spatial 

learning and memory in the offspring were evaluated by long-term potentiation (LTP) 

and Morris water-maze (MWM) test. The protein expression of the p75 neurotrophin 

receptor (p75NTR), phospho-c-Jun N-terminal kinase (p-JNK), the pro-apoptotic protein 

p53 and Bax were detected by Western blotting.

Results: The Pups in the SCH and OH groups showed longer escape latencies in the MWM 

and decreased field-excitatory post synaptic potentials in LTP tests compared with those 

in the CON group. p75NTR, p-JNK, p53 and Bax expression levels in the cerebral cortex 

increased in pups in the SCH and OH groups compared with those in the CON group.

Conclusions: Maternal SCH during pregnancy may impair spatial learning and memory in 

the offspring and may be associated with the increased apoptosis in the cerebral cortex.

Introduction

Thyroid hormones (THs) are vital for fetal neurodevelopment. 
The prevalence of subclinical hypothyroidism (SCH) in the 
general population is 4–10% and can reach 5% in pregnant 
women. Haddow et al. investigated the intelligence levels 
of 62 children aged 7–9 years who were born to mothers 
with thyroid dysfunction during early pregnancy. They 
found that even mild and asymptomatic hypothyroidism 
in pregnant women, including SCH, could affect the 
development of intelligence in their offspring (1). Several 
experimental studies also found that maternal TH 
deficiency during pregnancy could cause irreversible brain 

damage in the offspring, resulting in varying degrees of 
mental retardation, cognitive impairment and learning and 
memory dysfunction (2, 3, 4, 5). We previously found that 
decreased activation of the cAMP response element-binding 
protein signaling pathway in pups was related to impaired 
cognitive function caused by maternal SCH (6). However, 
the relationship between cognitive impairment due to SCH 
and the apoptosis in cerebral cortex remains unclear.

The p75 neurotrophin receptor (p75NTR) is an 
important member of the death receptor family. Although 
the role of the p75NTR-mediated signal transduction 
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pathway in promoting apoptosis is currently unclear, the 
activation of the JNK signaling pathway is thought to be 
an important step in this process (7, 8). Previous studies 
showed that the expression of p75NTR increased in the 
cerebral cortex of pups from mothers with perinatal 
hypothyroidism, and the pro-apoptotic protein such 
as p53 and Bax increased (9, 10). However, whether 
neuronal apoptosis induced by the p75NTR signaling 
pathway exists in the offspring of pregnant SCH rats 
remains unknown.

This study aimed to determine if the p75NTR signaling 
pathway was activated in the cerebral cortex in the 
offspring of rats with SCH during pregnancy and to 
investigate its role in the apoptosis of cerebral cortex.

Materials and methods

Animals

This experiment used 45 female rats (weighing  
190–210 g) that had never been pregnant. All female 
rats were kept in the Experimental Animal Department 
at China Medical University under specific pathogen-
free conditions, in a constant environment at 23–25°C 
and 55% relative humidity with a 12-h light/darkness 
cycle, and provided with normal feed and water. Rats 
were fed normally for 1 week before the experiment. All 
animal experiments and procedures were approved by 
the Animal Care and Use Committee at China Medical 
University, which complies with the National Institutes 
of Health Guide for the Care and Use of Laboratory 
Animals (NIH Publications No. 8023, revised 1978). The 
rats were randomly assigned to three groups: control 
group (CON, n = 15), overt hypothyroidism group 
(OH, n = 15) and SCH group (n = 15). Rats in the OH 
and SCH groups were treated by intraperitoneal (i.p.) 
injection of 3% pentobarbital sodium (0.1 mL/100 g) 
and underwent thyroidectomy. CON rats underwent 
sham thyroid surgery. After surgery, rats were kept at 
34 ± 2°C under an electric blanket until they awoke. 
One month after surgery, rats in the SCH group were 
injected subcutaneously with l-thyroxine (l-T4, Sigma, 
USA) 1.0 μg/100 g/day on the back or neck. Rats in the 

CON and OH groups were injected subcutaneously 
with physiological saline (50 µL/100 g/day) on the back 
or neck. Calcium lactate (0.1% w/v) was added to the 
drinking water for all rats after surgery. After 9 days of 
injections, all rats were mated with normal male rats 
(male: female = 1: 2). Then, pregnant rats were placed 
in solitary confinement until delivery. The female rats 
were observed daily until they gave birth, and the 
delivery day was recorded as postnatal day 0 (PND0). All 
pups were weaned and the mothers stopped receiving 
subcutaneous injections on PND21. Venous blood 
(approximately 2 mL) was collected from all pregnant 
rats via the inner canthus vein on the 9th day after 
initial subcutaneous injection of L-T4 and on PND0, 
to detect total thyroxine (TT4) and thyroid-stimulating 
hormone (TSH) levels. Six to eight pups from each group 
on PND7 were decapitated on ice and the cerebral cortex 
was removed for Western blotting. The remaining pups 
were raised to PND39 and subjected to the Morris water-
maze (MWM) test (n = 10) and long-term potentiation 
(LTP) experiments (n = 6), finishing on PND44. The 
project timeline is described in Fig. 1.

Measurements of TT4 and TSH

Blood samples obtained from the rats were immediately 
centrifuged at 20,913 g for 13 min and stored at −80°C 
for subsequent chemiluminescence immunoassay 
(Immulite, Diagnostic Products Corporation, Los 
Angeles, CA, USA) to measure serum TT4 and TSH. The 
inter- and intra-assay coefficients of variation (CVs) for 
TT4 was 3.83–7.09% and 1.58–3.68%, respectively. The 
inter- and intra-assay (CVs) for TSH were 1.87–5.43% 
and 2.34–3.47%, respectively. Based on >95% specific 
binding, the limit of detection for TT4 was 1.0 μg/dL. 
And the results samples below the level of detection were 
recorded at 1.0 μg/dL for statistical purposes.

MWM test

The MWM test was used to assess the spatial learning 
abilities of the pups in all groups. The MWM consists of 
a black circular swimming pool (100 cm diameter, 60 cm 

Figure 1
Schematic of experimental timeline. E0, 
gestational day 0; LTP, long-term potentiation; 
MWM, Morris Water Maze; PND, postnatal day.
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deep) divided into four equal quarters (I, II, III, IV) by 
two straight lines. A circular platform (10 cm diameter) is 
located 1 cm below the surface in the middle of quadrant 
IV. The rats were allowed to swim freely for 120 s on 
the first day (PND39) to adapt to the water maze and 
platform, and training was then started on the following 
day (PND40). Each pup trained four times a day, and 
rested for 1 min after each training session. The time 
required for the pup to climb the platform was defined as 
the escape latency. If the pup had not found the platform 
after 120 s, the escape latency was recorded as 120 s. All 
the pups that completed the experiment were lifted out 
gently, dried with a towel and then returned to their cages. 
The procedure was repeated for 4 days (PND40, PND41, 
PND42, PND43). On the sixth day, the platform was 
removed and the experiments performed in the previous 
4 days were repeated. We recorded the number of times 
each pup reached the platform area and the time spent 
in the area for 120 s and assigned this as a probe trial. 
The escape latency for pups in each group was recorded 
daily. The time spent in the platform quadrant and the 
number of times they crossed the platform quadrant were 
measured in the last day’s probe test.

LTP induction in vivo

We measured field-excitatory postsynaptic potentials 
(f-EPSPs) in the hippocampus of the pups in each group 
using a MED64 planar microelectrode matrix recording 
system (Alpha Med Science, Osaka, Japan). On PND40, 
the pups were decapitated on ice after anesthesia with 
3% sodium pentobarbital (30 mg/kg, i.p.). Brain tissue 
was cut into 300-μm thick slices, removed and placed 
into oxygenated artificial cerebrospinal fluid containing 
7.25 g/L NaCl, 0.22 g/L KCl, 2.18 g/L NaHCO3, 0.12 g/L 
MgSO4, 0.17 g/L KH2PO4, 1.8 g/L glucose and 0.22 g/L 
CaCl2 (pH 7.35–7.45). The temperature of the brain was 
maintained at 34 ± 1°C and the flow rate of the artificial 
cerebrospinal fluid was 1–1.5 mL/min. The tissues were 
kept in a mixture of 95% O2 and 5% CO2. Synaptic 
plasticity in the CA1 area of the hippocampus at 6 weeks 
can be evaluated by high-frequency stimulation (HFS)-
induced increase in f-EPSP after LTP. The baseline level 
before HFS was measured for 10–15 min and allowed to 
stabilize. Input/output curves were obtained by increasing 
the intensity of the stimulus and adjusting it to elicit 70% 
of the maximal response. The f-EPSP was recorded and 
the stimulus value corresponding to a 50% amplitude 
difference was recorded as the HFS. The tissue was 
stimulated twice with HFS, and LTP was induced 10 s later 

and recorded for at least 30 min. The percentage f-EPSP 
(f-EPSP%) increased after HFS was used as an indicator to 
evaluate LTP.

Western blotting

On PND7, the pups were decapitated on ice. The cerebral 
cortex was removed immediately and 0.1 g cerebral cortex 
tissue was added to 200 μL buffer containing protease 
and phosphatase inhibitors, homogenized by shaking 
(KeyGenBiotech, Nanjing, China) and centrifuged 
at 20,913 g for 10 min at 4°C. Protein concentrations 
were determined by the bicinchoninic acid method 
(Beyotime, Shanghai, China), and the samples were 
then stored at −80°C. Tissue lysates were diluted to the 
same protein concentrations (5 μg/μL), boiled for 8 min 
and 10 μL (50 g protein) samples from each group were 
then electrophoresed in 10% SDS-polyacrylamide gels. 
The marker was separated at constant voltage of 80 V for 
30−60 min, and the proteins were then separated at a 
constant voltage of 120 V for 1 h. The proteins were then 
transferred to PVDF membranes (Millipore) at a constant 
voltage of 70 V for 2 h. Non-specific binding was blocked 
using a mixture of skimmed milk powder with Tris-
buffered saline and Tween 20, with bovine serum albumin 
for p-JNK. The membranes were then incubated for 4 h 
in the dark with the following antibodies: rabbit anti-
p75NTR (1:1000 dilution; Cell Signaling Technologies); 
rabbit anti-total JNK (1:1000 dilution; Cell Signaling 
Technologies); rabbit anti-p-JNK (1:1000 dilution; Cell 
Signaling Technologies); rabbit anti-p53 (1:1000 dilution; 
Cell Signaling Technologies) and rabbit anti-Bax (1:1000 
dilution; Cell Signaling Technologies). The blots were 
then incubated for 2 h with horseradish peroxidase-
conjugated secondary antibody (1:10,000 dilution; 
Zhongshan Golden Bridge, Beijing, China) and developed 
by chemiluminescent Western blotting (ALPHAVIEW, 
version 1.3; ProteinSimple Inc., San Jose, CA, USA). The 
optimal time to expose the blot to the membrane was 
determined by standardization experiments.

Statistical analysis

Data processing and statistics were performed using SPSS 
22.0 software (SPSS). The results were expressed as the 
mean ± standard error of the mean (s.e.m.). Multiple group 
comparisons were performed using one-way ANOVA test 
followed by Dunnett’s T3 test. Independent sample t tests 
were used for comparisons between two groups. A value of 
P < 0.05 was considered to be statistically significant.
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Results

TH levels in pregnant rats

We measured serum TT4 and TSH levels in pregnant rats 
to confirm successful establishment of the SCH and OH 
models. TSH levels were significantly higher in the SCH 
and OH groups compared with those in the CON group 
before pregnancy (P < 0.05). TT4 levels were the lowest 
in the OH group among the three groups (P < 0.05). And 
TT4 levels in the SCH group were significantly higher 
compared with those in the OH group (P < 0.05). However, 
there was no significant difference between the SCH group 
and the CON group (P = 0.755). On PND1, TSH levels in 
SCH group were higher than those in CON group, and TT4 
levels were similar to those in CON group. These results 
indicated that the SCH models in rats were established 
successfully throughout the pregnancy (Fig. 2).

Decline in learning and memory in offspring of rats 
with SCH during pregnancy

We assessed spatial learning and memory in the offspring 
of rats with and without SCH using the MWM test. 
Escape latency decreased with increased training in all 
groups. Escape latency was significantly longer in the 
SCH group compared with the CON group, but escape 
latency was the longest in the OH group (P < 0.05; 
Fig. 3). The time spent in the platform quadrant in the 
probe trial was 29.5 ± 2.4 s in the CON group, 21.4 ± 1.3 s 
in the SCH group and 17.6 ± 0.5 s in the OH group (all 
P < 0.05; Fig. 4). We also calculated the number of times 
that the pups crossed the platform quadrant, which was 
7.98 ± 0.37 times in the CON group, 6.53 ± 0.16 times in 
the SCH group and 5.30 ± 0.34 times in the OH group (all 
P < 0.05; Fig. 5). These results showed that spatial learning 
and memory reduced in the offspring of mothers with 
SCH during pregnancy.

Figure 2
Thyroid-stimulating hormone (TSH) and serum total thyroxine (TT4) levels 
in pregnant rats (9 days of injection, n = 10 per group; PND1, n = 6 per 
group). *P < 0.05 vs same day CON group; #P < 0.05 vs same day SCH group. 
CON, control; OH, overt hypothyroidism; PND 1, postnatal day 1; SCH, 
subclinical hypothyroidism; TSH, thyrotropin; TT4, total thyroxine.

Figure 3
Performance of pups in the MWM test. Data are expressed as the 
mean ± s.e.m. (n = 10 for each group). Average time to find the hidden 
platform was longer in the SCH and OH groups compared with the CON 
group from PND 40–43.

Figure 4
Probe trial test recorded the time spending by each pup in the platform 
area. Pups in the SCH and OH groups spent less times than pups in the 
CON group. *P < 0.05 vs same day CON group; #P < 0.05 vs same day OH 
group.
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LTP in offspring of rats with SCH during pregnancy

The LTP results were evaluated by measuring the 
percentage of baseline f-EPSP (f-EPSP%) after HFS. There 
was no significant difference in f-EPSP among the three 
groups before HFS (P > 0.05); however, all three groups 
showed an increase in f-EPSP after HFS, with significant 
differences in the f-EPSP% among the three groups. The 
f-EPSP% reduced in the SCH (175 ± 1%) and OH groups 
(148 ± 1%) compared with the CON group (209 ± 1%) 
(n = 6, P < 0.05). However, the amplitude of the increase in 
the SCH group was significantly greater than that in the 
OH group (P < 0.05; Fig.  6). These results suggested that 
SCH during pregnancy could damage LTP in the offspring.

Expression of the transcription factor p75NTR in 
offspring of rats with SCH during pregnancy

We measured the expression levels of p75NTR in the cerebral 
cortex of pups from mother rats in the three groups. 
p75NTR levels were significantly increased in the SCH and 
OH groups to 1.56-fold and 2.36-fold higher compared 
with those in the CON group, respectively (n = 6, both 
P < 0.05). p75NTR levels in the OH group increased to 1.54-
fold higher compared with levels in the SCH group (n = 6, 
P < 0.05; Fig. 7).

JNK and p-JNK expression in offspring of rats with 
SCH during pregnancy

p-JNK expression and activation were determined by 
Western blotting, and p-JNK and total JNK were identified 
by rabbit polyclonal antibodies. p-JNK levels increased 
significantly in the pups of SCH (1.47-fold) and OH group 
(1.93-fold) compared with those in the CON group (n = 6, 
both P < 0.05; Fig.  6). However, there was no significant 
difference in total JNK among the three groups.

p53 expression in offspring of rats with SCH 
during pregnancy

Hypothyroidism promotes N-methyl-d-aspartate 
receptor activation, which in turn increases p53 
expression, probably by increasing DNA damage and 

Figure 5
Probe trial test recorded the number of times pups crossed the platform 
quadrant. Pups in the SCH and OH groups crossed fewer times than pups 
in the CON group. *P < 0.05 vs same day CON group; #P < 0.05 vs same day 
OH group.

Figure 6
Maternal SCH caused LTP damage in the 
hippocampal CA1 region in their pups. LTP was 
induced by HFS and measured as an increase in 
f-EPSP slope, expressed as percent of the baseline 
of f-EPSP slope after HFS in different groups. 
f-EPSP slopes were reduced in the SCH and OH 
groups compared with the CON group (P < 0.05).
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triggers apoptosis leading to cell death (11). p53 is an 
important member of the p75NTR signaling pathway, 
and it can induce cell apoptosis. We detected p53 and 
other components of the p75NTR signaling pathway 
in this study. The expression levels of p53 increased 
significantly in the cerebral cortex of pups in the SCH 
(1.64-fold) and OH group (2.16-fold) compared with 
those in the CON group (n = 6, both P < 0.05), as shown 
by Western blotting (Fig. 7).

Bax expression in offspring of rats with SCH 
during pregnancy

p53 can induce apoptosis by raising Bax levels, leading to 
caspase activation (12). Bax expression increased in pups 
from the SCH (1.55-fold) and OH group (2.08-fold) compared 
with those in the CON group (n = 6, P < 0.05; Fig. 7). These 
results were consistent with a previous report (9).

Discussion

Epidemiological studies suggest that SCH during pregnancy 
may affect the offspring’s intellectual development (1). 
Our group has performed a series of experiments to explore 
the mechanism in it (6). The current study explored the 
mechanism further from other aspect.

THs play a crucial role in fetal brain development 
and are involved in the proliferation, differentiation, 
maturation and migration of neurons in the brain. 
However, the fetal brain begins to develop before the 
thyroid, so THs needed for fetal brain development during 
early pregnancy are therefore derived exclusively from the 
mother. Moderate or even temporary hypothyroidism in 
early pregnancy may thus affect the normal migration 
of cortical neurons and the cellular architecture of the 
cerebral cortex and hippocampus (13). TH is also involved 
in apoptosis, which is another important physiological 
process in cerebral neuron development. Recent research 

Figure 7
Protein expression levels of p75 neurotrophin 
receptor (p75NTR), phospho-c-Jun N-terminal 
kinase (p-JNK) and pro-apoptotic proteins p53 
and Bax in the cortex of pups (n = 6 per group). 
*P < 0.05 vs CON group, #P < 0.05 vs OH group.

This work is licensed under a Creative Commons 
Attribution-NonCommercial 4.0 International 
License.

https://doi.org/10.1530/EC-18-0069
http://www.endocrineconnections.org ©2018 The authors

Published by Bioscientifica Ltd

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1530/EC-18-0069


F Zhang et al. p75NTR signal in cortex of pups 
from SCH rats

6947:5

reported that neonatal hypothyroidism could cause 
extensive apoptosis of granular cells in the cerebellum (14, 
15, 16, 17), while maternal hypothyroidism could induce 
apoptosis in the fetal cortex (9). We therefore investigated 
if maternal perinatal SCH could also induce apoptosis in 
their offspring’s cerebral cortex.

Experimental hypothyroidism in neonatal rats 
was associated with structural defects in the nervous 
system accompanied by behavioral abnormalities (18). 
Methimazole and iodine deficiency have traditionally 
been used to establish models of thyroid deficiency, 
but these could potentially have other effects on 
embryogenesis. Surgical removal of the thyroid gland, 
together with TH supplementation, is thus a preferable 
method for achieving SCH. We successfully established a 
surgical model of SCH by this method.

The previous study performed by our group has 
reported that offspring of rats with either OH or SCH had 
cognitive impairment (6). Spatial learning and memory, 
measured by MWM test, were significantly decreased in 
the SCH group compared with the CON group and were 
more severely affected in the OH compared with the 
SCH group. In addition, these differences became more 
apparent with more training sessions. The probe test also 
indicated sustained memory impairment in the SCH and 
OH groups compared with the CON group. These results 
suggest that the pups born to mothers with either SCH 
or OH developed irreversible neuronal damage, and the 
neural network connectivity could not be reconstructed 
even after prolonged training. This was consistent with 
previous findings (6, 19, 20).

Hippocampal LTP is considered to be a suitable 
electrophysiological model for assessing synaptic 
plasticity in relation to learning and memory. The current 
results showed that prenatal exposure to OH and SCH 
led to a smaller increase in amplitude of f-EPSP after HFS, 
indicating LTP damage, consistent with previous studies 
(6, 19, 21). This supports the hypothesis that both OH and 
SCH may cause LTP impairment.

Maternal hypothyroidism can increase neuronal 
apoptosis during brain development (9), and previous 
studies showed that hypothyroidism increased apoptosis 
in the cerebellum (14, 15, 16, 17) and hippocampus 
(22, 23). Maternal hypothyroidism during pregnancy 
can also increase apoptosis during cerebral cortex 
development in the pups, especially in the surface layer 
of the primary somatosensory cortex (I-III level), which 
mainly affects neurons (9).

TH modulates levels of nerve growth factor (NGF) in 
the cerebral cortex, hippocampus and cerebellum in rats 

(14, 24). Synaptic plasticity, neuronal excitability and 
cognitive function are all regulated by NGF, which also 
plays critical roles in regulating hippocampal plasticity 
and learning in rodents (25, 26, 27, 28). NGF regulates 
neuronal cell proliferation and apoptosis by binding 
to two different receptor tyrosine kinase receptors A 
(TrkA) and p75NTR (29, 30). When NGF levels decreases, 
the TrkA signal pathway is inhibited and the p75NTR 
pathway is activated (31), thereby affecting learning- 
and memory-related protein expression, resulting in 
neuronal degeneration, apoptosis and mental retardation 
(32). ProNGF is a precursor protein of NGF and can 
induce apoptosis in many kinds of cells by combining 
preferentially with p75NTR (31, 33, 34, 35, 36). p75NTR 
can also transmit signals independently to promote 
the apoptosis of a variety of cells, including developing 
neurons (34, 35). The current results showed that p75NTR 
expression increased in the cerebral cortex of pups of 
hypothyroid rats, even in the case of SCH, suggesting that 
elevated levels of maternal TSH may increase apoptosis in 
the cerebral cortex in their offspring.

Several models of p75NTR-dependent cell death have 
demonstrated the involvement JNK activity (29, 35, 37, 38, 
39, 40, 41). Increased p75NTR has been reported to activate 
the JNK pathway, suggesting a link between JNK activation 
and cell death. Overexpression of the p75NTR adaptor 
protein NRAGE was shown to induce apoptosis in a JNK-
dependent manner (37). JNK activation is also considered 
to be a molecular switch in stress signal transduction (42). 
Some stimuli, including cytokines (such as tumor necrosis 
factor and interleukin-1) and reactive oxygen species, can 
activate the JNK pathway and play an important role in 
regulating cell fate, including cell proliferation, gene 
expression and apoptosis (43). Sherrin et al. also reported a 
role for JNK in the hippocampus in terms of memory and 
synaptic plasticity (44). JNK expression in the hippocampus 
and cortex may thus influence learning and memory.

p75NTR can transduce a dichotomous signal with 
both pro-apoptotic and anti-apoptotic functions. The 
tumor suppressor p53 is a nuclear phospho-protein that 
can promote arrest or apoptosis, and it is an essential 
factor in JNK-mediated neuronal apoptosis. When DNA 
is damaged, p53 induces the expression of the cyclin-
dependent kinase inhibitor p21, leading to cell cycle 
stagnation (45). Previous studies found that increased JNK 
activation was consistent with increased expression of the 
pro-apoptotic proteins p53 and Bax in hypothyroidism 
(10) (Fig. 8).

Activation of p75NTR, JNK and p53 signaling have 
also been associated with increased neuronal apoptosis in 
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Alzheimer’s disease (46). Our results suggest that similar 
changes in terms of increased apoptosis occurred in the 
cerebral cortex of pups exposed to perinatal SCH. This 
may explain the mechanism involved in the damage to 
the neurodevelopment of the offspring from SCH mothers 
partly. However, some other potential mechanisms may 
exist. Zhang et al. found decreased activation of the CREB 
signaling pathway in pups was related to impairments of 
cognitive function caused by maternal SCH (6). Lu et al. 
reported maternal SCH affects cytoarchitecture and cell 
migration in the developing brain of the progeny (47). A 
recent study of patients with Alzheimer’s disease and SCH 
showed that regional cerebral blood flow was significantly 
reduced, suggesting that SCH may affect the perfusion 
of brain regions associated with memory function (48). 
This may provide a new direction for research into SCH-
induced memory deficits.

Limitations

Several limitations exist in our study. We did not 
perform Western blotting or other molecular biological 
experiments in the pups following MWM experiments, 

because we considered that the training may have affected 
the neurons in the cerebral cortex and thus affected spatial 
learning and memory. Furthermore, some rats died after 
thyroid surgery and some fetuses were aborted, which 
limited the availability of the cortical tissue for PCR, 
immunofluorescence, immunohistochemistry and other 
molecular experiments.

Conclusions

In summary, this study showed that perinatal SCH could 
increase the expression of p-JNK and the pro-apoptotic 
proteins p53 and Bax and increase neuronal apoptosis 
in the cerebral cortex of pups exposed to perinatal 
SCH, by activating the p75NTR signaling pathway. These 
results help to explain the cellular mechanisms whereby 
maternal SCH during pregnancy may adversely affect the 
development of the offspring’s cerebral cortex.
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