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ABSTRACT: This microperspective covers the most recent
research outcomes of artificial intelligence (AI) generated
molecular structures from the point of view of the medicinal
chemist. The main focus is on studies that include synthesis and
experimental in vitro validation in biochemical assays of the
generated molecular structures, where we analyze the reported
structures’ relevance in modern medicinal chemistry and their
novelty. The authors believe that this review would be appreciated
by medicinal chemistry and AI-driven drug design (AIDD)
communities and can be adopted as a comprehensive approach
for qualifying different research outcomes in AIDD.
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Drug discovery is a highly complex process requiring a
delicate balance of dozens of essential criteria. There are

two different levels of usefulness for generative design. One
goal of generative chemistry is de novo design of molecular
structures with desirable properties such as high potency, good
absorption, distribution, metabolism, excretion, and pharma-
cokinetics (ADME/PK) profiles and high synthetic feasibility
through automatic or semiautomatic ways.1 This capability is
of great help for computational chemists and can advance a
research program. Early examples of generative chemistry
engines include synthetic combinatorial library enumeration
tools, R-group enumeration software, and genetic algo-
rithms.2,3 The second goal is the generation of molecular
structures to solve complex and challenging MPO tasks by
proposing compounds that are patentable and sufficiently
unobvious. However, the intellectual capacity of such engines
is restricted and does not match the full diversity of requests
made by medicinal chemists. Recent advances in artificial
intelligence (AI) technologies, mostly related to the successes
of deep learning (DL), prompted their adaptation to address
some of the challenges associated with drug discovery.4−6 The
introduction of DL into drug discovery has caused an
exponential growth of research outputs and revived generative
chemistry, which is now often mostly associated with DL.7

There are several research papers describing various
applications of ML and DL to generative chemistry, including

recurrent neural networks (RNNs),8 variational autoencoders
(VAEs),9−12 generative adversarial networks (GANs),13 trans-
formers, and hybrid approaches exploiting reinforcement
learning (RL) methods.14−16 Some algorithms have progressed
into integrated early drug discovery pipelines available as SaaS
and on-premise solutions.17−21

Cheminformaticians and AI/ML scientists in the field are
typically interested in the metrics associated with the
performance of generative algorithms including the coverage
of chemical space, portion of the valid generated chemical
representations (SMILES22 (simplified molecular-input line-
entry system) strings and two-dimensional (2D) structures),
diversity of the generated structures, and “novelty” standing for
nonsimilarity to the training set used by the generative model.
Therefore, benchmarking solutions, such as MOSES23 and
GuacaMol,24 aim to provide ML scientists with such analytical
data.
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However, medicinal chemists tend to look at the results of
generative algorithms in a different way. Rather than looking at
the numbers describing the validity of the generated SMILES
strings, they are more enthusiastic about AI-generated
structures, which are already synthesized “trendy” sp3-rich
and druglike compounds without structural alerts. Further,
such compounds possess low-digit values of the half-maximal
inhibitory concentration (IC50) and good ADME/PK profiles.
That is why experimental validation in the context of
generative chemistry is very important to the medicinal
chemist and why we pay more attention to research papers
describing generation techniques reinforced by the synthesis
and biological assessment of generated structures.

Although the total number of recent publications (from the
last two years) and yet uncited research outcomes covering
generative chemistry efforts was 55, in this review, we will
focus on the eight papers supported by experimental validation.
The discussion on the reported structures, synthesized
compounds, and their measured properties and activities
aims to reveal the impact of AI/ML methods on modern-day
drug discovery.

Most generative DL models are goal-dependent and can
provide numerous virtual structures. However, most of them
do not satisfy the essential criteria for modern drug design. The
majority of publications on generative chemistry do not
address real validation issues and mainly focus on metrics.
Moreover, the generated structures frequently resemble
examples from the training data set, questioning the intellectual
property (IP) position. Therefore, to overcome these
limitations, Li et al. proposed a generative DL model based
on a distribution-learning convolutional recurrent neural

network with the long short-term memory (LSTM) algorithm
that can generate previously unreported and diverse chemical
scaffolds using SMILES strings as inputs/outputs.25 Receptor-
interacting protein kinase 1 (RIPK1) was used as a target for
the generation workflow, followed by in vitro and in vivo
validations. Transfer learning allowed the authors to shift the
generation process close to the area of the target space in terms
of cumulative properties, keeping the scaffold diversity high.
Duplicated structures and items containing structural alerts or
reactive moieties were excluded. The authors highlighted a
good diversity among the generated scaffolds that was much
higher than that observed in the source and target data.
Druglike filters were applied for the structures with unique
scaffolds, followed by pharmacophore-based virtual screening
(PBVS) (11 features). Structures that matched at least four
features were classified as fitting the constructed hypothesis.
Further, molecular docking was applied to the selected virtual
structures. Consequently, the authors obtained 50 high-scored
structures, of which eight were selected for performing
synthesis and subsequent biological evaluation (Figure 1A).

On the basis of the obtained results, four compounds (RI-
413 (1), RI-470 (2), RI-539 (3), and RI-985 (4)) showed no
inhibitory activity (IC50 > 10 μM). However, the most active
compound, RI-962 (5), demonstrated an IC50 value of 35 nM
against RIPK1 and a good selectivity profile among 408 human
kinases (KINOMEscan panel). With respect to scaffold
novelty, Li et al. published a related patent application where
a wide series of similar compounds were described as potent
RIPK inhibitors two years before publishing the reviewed
study.26 Many isosteric scaffolds were synthesized, including
those obtained via the atom-replacing approach, particularly by

Figure 1. (A) Generated structures submitted for synthesis and in vitro evaluation. (B) Examples of RIPK inhibitors similar to compound 5 (RI-
985).
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changing the position of a heterocyclic nitrogen atom
(compounds 9−12, Figure 1B). However, Lee et al. were the
first to claim closely related scaffolds (compound 13) as
RIPKs, c-Abl, and LRRK2 inhibitors.27 In 2021, Hatcher et al.
published a series of 5-(1H-indazol-5-yl)-1H-pyrazolo[3,4-
b]pyridines (compound 14) exhibiting nanomolar activity
against cyclin-dependent kinases.28,29 In 2020, Masse et al.
described 5-(1H-pyrrolo[2,3-b]pyridin-5-yl)pyrazolo[1,5-a]-
pyrimidine-3-carboxamide derivatives (compound 15) as
potent TYK2 inhibitors.30 As shown in Figure 1B, the scaffold
reported by Li et al. cannot be described as novel either among
RIPK inhibitors or within an extensive category of kinase
inhibitors. Many reported kinase scaffolds, such as pyridin-2-
amines, pyridin-2-amides, their fused analogues, and 1H-
imidazol-2-amides, could be found among the generated
structures presented in the supporting information.25 The
authors used 1030 RIPK1 inhibitors to fine-tune the model,
and within this set we revealed many compounds with high
similarities to the generated structures. On the basis of a
thorough analysis, we can conclude that the novelty of the
generated structures is rather low and, as a consequence, the IP
position is presumably weak. Li and colleagues also mentioned
a “cleaning” procedure to remove bad structures within the
generation pool. However, metabolically labile carbamates (RI-
273), N-acyl derivatives (e.g., RI-251, RI-109, RI-111, and RI-
166), hemiaminal-containing structures (RI-024, RI-452),

esters (e.g., RI-441, RI-016, and RI-011), pyridin-4-ylmethanol
(RI-17), and hydroxylamine (RI-109) are the unstable
moieties present in the generated structures. Furthermore,
several structures contain reactive fragments such as 4-
chloropyridine (RI-111) and 1,4-MA (RI-373 and RI-535).
At least one structure (RI-017) should be classified as rare
because it contains a 1,4-dihydrocinnoline moiety, presumably
prone to aromatization upon biological conditions. Although
the study is attractive with exhaustive biological evaluation, the
generative power of the presented approach should be
evaluated for other targets, not from the kinase family,
especially toward novel proteins with no reported ligands.
Additionally, the active molecules contain a π-conjugated fused
aromatic system similar to benzimidazole dimers or planar
biaryl amides which are well-known minor groove DNA
binders; therefore, the results of the related biological
examination are also needed to characterize the active
compounds more comprehensively.

Jang et al. developed a small-molecule compound, PCW-
1001 (see Figure 2, 16).31 FLT3 kinase was initially considered
one of the possible targets using an in-house network-based
reverse target prediction module, ChEMBL database similarity
searching, followed by docking against 2000 unique proteins.
On the basis of the docking results, FLT3, JAK2, NTRK,
MKNK2, and TGFBR1 (ALK5) were among the top 10 scored
proteins selected as the possible targets for PCW-1001. It

Figure 2. Generated compound 16A and its comparison to the reported compounds 16, 16B−16D, and 17−21.
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showed IC50 values of 13.6 and 1.83 μM against FLT3 and
D835Y, respectively. Notably, for high-throughput screening of
novel kinase inhibitors, a compound with an activity of <500
nM is usually classified as the primary hit compound for a
kinase with unknown inhibitors. The micromolar activity of a
hit molecule is commonly considered a hard starting point.
Then, a deep RNN with an LSTM approach was used to
generate the optimized PCW-1001 analogues. Toxicities for
the generated structures were predicted with the use of
Pharmulator, and compounds containing structural alerts were
removed from the pool. Only 190 structures, which fulfilled the
criterion of synthetic feasibility (ML models), novelty, druglike
properties, and PAINS filters, were subjected to a docking
study with a visual inspection of the obtained binding poses.
Then, high-scored structures were synthesized, and their
activities were evaluated in vitro. PCW-A1001 (16A) showed
good in vitro activity and was considered a potential and
selective FLT3WT and FLT3D835Y inhibitor with IC50 values of
2.54 μM and 764 nM, respectively.

According to the related patent application, PCW-1001 (16)
(KRCT-1) was tested against a panel of 104 kinases in vitro at
a concentration of 10 μM.32 Although it inhibited the activities
of TRKA (∼55%), FLT (∼45%), MELK (∼35%), FGFR
(∼35%), and PKC (∼35%), the activities of other kinases,

including MAPK2 and ALK, were unaffected. PCW-1001
showed an IC50 value of 5.8 μM against TRKA, which was
considered the main target kinase. Furthermore, cell-based
studies confirmed the inhibition of the TRKA-dependent
downstream signaling route by PCW-1001 (16). Additional
information about FLT3 inhibition was not presented. Five
kinases (from a list of the top 10 kinases scored during the
docking study) were mentioned as possible targets, including
FLT3 and NTRK. However, it is not clear whether the kinase
panel was manually designed based on the obtained docking
results or whether the standard panel available in the Eurofins
subdivision (Scotland, U.K., currently closed) was simply used
as JAK2 kinase was not included in the panel. Considering
unique preprocessing procedures and pose/scoring analysis,
the time effectiveness of the docking study with 2000 proteins
against the testing of kinase panel for 104 targets is not
obvious. Moreover, the inclusion of kinases predicted by
docking in the panel could be much better for estimating the
predictive ability and to improve the docking model. We
searched for similarities with the PCW-1001 structure and
found at least four compounds (17−20) with higher
topological and structural similarities with PCW-1001 than
CHEMBL1807483 provided by the authors as the closest
analogue (21). Compound 17 was described as the TRPV4

Figure 3. (A) Examples of reported compounds similar to the generated structures. (B) Examples of the generated structures targeted against
DDR1.
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receptor antagonist (IC50 = 4.22 μM, cell-based assay),33

compound 18 showed activity against hCA-II (IC50 = 2.9
nM),34 and compound 19 was reported as the neuropeptide-
Y5 receptor binder with a Ki value of 1.4 nM.35 Therefore, it
would be valuable to test PCW-1001 against at least these
targets to preevaluate the off-target space. Compound 20 was
claimed as a kinase inhibitor, particularly acting against B-Raf
kinase with a half-maximal effective concentration (EC50) of
493 nM in a cell-based assay. However, PCW-1001 did not
show considerable activity against B-Raf kinase according to
the kinase panel results, presumably due to pyrazole being the
only fragment which can be responsible for hinge binding, in

contrast to compound 20 bearing a pyridine moiety in addition
to a triazole fragment. In any case, these examples demonstrate
that PCW-1001 could be obtained via scaffold hopping using
bioisosteric amide or triazole moieties. The structure of PCW-
A1001 resembles the topologies of several covalent and
competitive JAK inhibitors containing 2-amino-4-benzamide
fragments (compound 16B)36 and their isosteric analogues.
Considering this, the generation process can be presumed to
be partly based on this transformation or within the structural
mixing between compounds 16C and 16D that are likely to be
present in the training set of 438 552 structures for RNN,
which unfortunately was not published. These inhibitors with

Figure 4. (A) Representative examples of structures generated by GRU-based algorithm and (B) 20 structures containing metronidazole
substructure selected for further analysis.
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4-aminonicotinamide fragment bind JAK in two main ways:
the terminal amide fragment placed close to the gatekeeper
region (“amide in”)37 or located out of the pocket (“amide
out”).37 The last binding mode is more realistic for PCW-
A1001 because carbonyl oxygen, hypothetically, forms the H-
bond with −NH− of Cys694, and the docking results provided
by the authors correlate well with this hypothesis, although
gilteritinib binds FLT3 via H-bonding between the terminal
amide group and the hinge motif. The inhibition activity of
PCW-A1001 against other kinases and examples of the
generated structures were not provided by the authors.
Additionally, the novelty, druglikeness, and potential toxicity
of each obtained compound cannot be estimated as the
authors did not provide this information. Although PCW-
A1001 demonstrated a relatively low in vitro activity, its
structures can be attributed to a novel category, at least for
developing small-molecule FLT3 inhibitors. The authors
presented good results; however, more detailed and versatile
analysis of the obtained compounds and related biological
activities could greatly enhance this study. It should be also
noticed that the designed PCW-A1001 is not structurally
related to the input PCW-1001 molecule. That is why the
“optimization” term used by the authors of the paper is hardly
applicable to the described design procedure, since the
structural context of PCW-1001 is completely lost during the
few indirect steps during this procedure.

Tan et al. developed a small-molecule selective DDR1
inhibitor using a deep generative scaffold decorator model.38

They classified the most promising molecule as the lead
compound and investigated its efficiency in vivo using a dextran
sulfate sodium (DSS) induced colitis mouse model. The design
was based on pyrazolo[3,4-d]pyridazinone-containing FGFR
inhibitors, reported previously by the same authors as novel
compounds. However, this scaffold and its isosteric derivatives
were described as adenosine receptor ligands,39,40 DPP-IV
inhibitors,41 CRF receptor antagonists,42 and kinase inhib-
itors43 (Figure 3A, 23−26, 26a−26c). An efficient route to
obtain these compounds was also developed. However, the
synthetic pathway, particularly for DC-1, has been described in
many previous reports.44−46 Consequently, DC-1 cannot be
classified as novel (see Figure 3A, 22), especially for kinase
inhibitors. The authors revealed that DC-1 showed a weak
cross activity against DDR1 with an inhibitory rate of 48% at
0.1 μM and used this template compound to optimize the
scaffold toward DDR1 via the ML approach. Additionally,
clarity is required regarding why the more active compound47

that inhibited DDR1 up to 66% at the same concentration was
not used. Moreover, it did not inhibit the activities of DDR2
and BTK.47 Liang et al. published similar molecules
(compound 24, covalent inhibitor) as FGFR inhibitors,
containing the 4-amino-dihydro-1H-pyrazolo[3,4-d]pyridazin-
7-one scaffold,48 whose close analogues were claimed as BTK
inhibitors in 2014 (reversible compound 25 and covalent
26).43,49,50 The available X-ray data and the published results
of the molecular docking studies showed that the binding
modes of the scaffold with BTK and FGFR within the hinge
region were identical. However, the 1,4-MA warhead was
targeted on different cysteine residues.

The benzofuran moieties of compound 24 and DC-1 (22)
and the phenyl fragments of the presented BTK inhibitors
were located at the same positions. The predicted binding
mode of the structures obtained via ML-based optimization of
DC-1 in the DDR1 binding site was the same in the hinge

region and proximal areas. Therefore, FGFR inhibitors
containing the 4-amino-dihydro-1H-pyrazolo[3,4-d]pyridazin-
7-one scaffold could be discovered based on similar BTK
inhibitors via the trivial transposition of a covalent warhead.

Furthermore, regarding the design of DDR1 inhibitors
(Figure 3B), the matched molecular pairs (MMP) algorithm
was used to obtain a wide fragment library, which was applied
to train the deep generative (decoration) model to investigate
the links or decorations of scaffolds and fragments. The criteria
applied during the training set accumulation were as follows:
the scaffolds must contain at least one ring, and the
decorations must meet the descriptor ranges of HBD ≤ 5,
cLogP ≤ 5, and Rot bonds ≤ 5. The quality of the generated
structures was assessed via the prediction/calculation of
properties such as LogP, MW, and SA (synthetic accessibility).
We performed visual analysis of the generated structures
(Figure 3B) and concluded that the fragments, such as
(trifluoromethyl)phenylamide and 1-benzyl-4-methylpipera-
zine, attached to the scaffold are present in the structures of
the reported small-molecule DDR1 inhibitors. Therefore,
whether this generation provided new fragments or the ML
model was learned to recognize the most reliable scaffold
within the MMP pool is unclear. Otherwise, the presented
structures can be rapidly obtained using the available
chemoinformatic software with the routine scaffold hopping
approach. Although the subsequent pharmacophore searching
and docking study can provide the same virtual hits, these
arguments do not allow the assessment of the real role of the
generative step in the design workflow.

Metronidazole is a widely used antibacterial agent (Figure
4A, 31). However, it provokes severe side effects. Therefore,
developing its analogues with a new skeleton and reduced
toxicity is highly interesting. Chen et al. presented an approach
to solving this problem.51 First, a generative model based on
gated recurrent unit (GRU) with transfer learning was used to
produce novel structures (Figure 4A), of which structures
containing a metronidazole substructure were selected. Then,
20 structures were sampled for further analysis after the
application of clustering (Figure 4B), and structure 57 was
chosen based on synthetic accessibility. Finally, a series of its
analogues were synthesized and tested in vitro, revealing clear
inhibitory activity against four bacteria species.

The structures generated by the GRU-based model seem
questionable, as discussed further. For example, only 321 of the
3314 generated structures had the nitroimidazole moiety
known for exhibiting antibacterial activity.52 Consequently,
most generated structures may show a loss of antibacterial
activity. Moreover, multiple structures seemed potentially toxic
(e.g., 45 looks similar to known DNA intercalators53 and 48
contains a potentially mutagenic 1,2-dicarbonyl group54),
unstable in water or under physiological conditions (e.g., 40
contains an ester group which is known to be prone to
hydrolysis55 and 42 contains an unstable trihydroxy-
substituted carbon atom), or chemically unreasonable (e.g.,
43 contains a terminal sulfone group and 50 contains an
unusual bicyclic substructure).

Regarding the results of selecting nitroimidazole-containing
structures for further analysis, such an approach does not find
novel skeletons and all the selected structures contained the
metronidazole moiety with different substituents in place of
the hydroxyl group. Seemingly, selecting the generated
structures with metronidazole cores played a crucial role in
obtaining valuable examples. Compound 57 and its analogues
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were tested, showing moderate micromolar activity. Possibly,
the effect of tested structures was mainly owing to the
metronidazole substructure as metronidazole acts as a DNA
binder after the metabolic activation of its nitro group. The
metabolic reduction of the nitro group also leads to the
generation of reactive oxygen species, providing a toxic
effect.56−58 Thus, it did not seem that the toxicity would be
decreased by adding new fragments during the presence of the
nitro group in the molecule structure. Moreover, the selected
structures had some problems in terms of medicinal chemistry.

For example, structures 57, 58, and 59 contained metabolically
unstable aminotriazole fragments, unusual bicyclic fragments,
and a highly reactive aldehyde group, respectively.

Additionally, some generated structures did not seem to be
novel as their close structural analogues had been previously
reported in the literature. For example, analogues of structure
60 were previously described as dual anticancer/antimicrobial
agents with the highest minimum inhibitory concentration
values of 1.56−3.13 μg/mL against the tested bacterial
strains.59 Structure 57, selected for synthesis and biological

Figure 5. (A) Synthesized compounds evaluated as DDR1 inhibitors and (B) their previously described analogues.
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evaluation, was highly similar to the analogues of structure 60
and differed only by several atoms, obtaining predictable
results. A close structural analogue of 61 was previously
synthesized and evaluated as a potential antimalarial agent.60

The structural derivative of 62 previously exhibited anti-
trichomonas activity in a low micromolar range.61 Structure 63
was described as a nanomolar antiamoebic agent.62 The patent
landscape of the substituted 5-nitro-1H-imidazoles as anti-
bacterial agents is extensive, resulting in unattractiveness in
developing novel molecules containing this core structure.

Yoshimori at al. applied a deep generative model and three-
dimensional (3D) pharmacophore modeling and filtering
based on the calculated binding affinity to obtain structures
of novel DDR1 inhibitors.63 Consequently, 570 542 structures
were generated, 10 694 structures were selected based on the
pharmacophore score, and 4731 structures were sampled based
on the calculated binding affinity. Then, nine structures were
selected, considering the pharmacophore score, binding score,
and synthetic accessibility. Subsequently, nine compounds
were synthesized based on the generated structures or their
manually modified analogues (Figure 5A, 64−72), and three
showed submicromolar inhibitory activity. The developed
approach was found suitable for hit identification and scaffold
hopping.

However, there are several questionable points. A full list of
the generated structures with high pharmacophore and binding
affinity scores was not provided. Only nine finally selected
compounds were provided. Therefore, the overall quality of
generation cannot be assessed based on a few structures. It
should be noted that less than 1% of generated structures met
the requirements of binding affinity and pharmacophore
filtering, which may indirectly indicate the low ability of the
method to generate the desired structures. Furthermore, three
of the analyzed compounds were manually modified, and the
actual potential of the developed approach to generate active
structures based on these three examples is hard to fully
estimate. Structure 72A was obtained from 72 via changing the
position of the aromatic nitrogen in the pyridine ring to form a
hydrogen bond with the hinge region. As this interaction is
crucial for kinase targeting and compound 72A itself showed
only micromolar activity, it seems unlikely that compound 72
would be active against this target.

Among tested compounds, compounds 66, 67, and 70A
showed moderate activities (IC50) of 92.5, 186.7, and 171.3
nM, respectively, in the submicromolar range. Seemingly, the
hit rate of the developed approach is not as high as expected,
especially considering that one of the discovered submicro-
molar inhibitors was obtained utilizing manual modification. It
seems that structure 70 would not have the same activity as an
inner geometry of phenylurea moiety would not be the same in
these two compounds. The authors’63 idea that the chlorine
atom at the ortho-position in structure 70 should not affect the
binding mode of the compound is somewhat confusing,
because it would prevent the benzene ring from forming a
favorable active conformation appropriate for binding due to
forced rotation. Low nanomolar DDR1 inhibitors containing
the same scaffold were previously described by Jeffries et al.
(Figure 5B, 70B−70F).64 3-Benzyloxypyridine, which includes
hinge binding scaffold of compounds 66 and 70A, is a well-
known kinase inhibitor skeleton discovered more than 10 years
ago.65 Compound 66 and its close structural analogue66 were
described as p38α MAP kinase inhibitors in 2002.67

Compound 66 was also claimed as a Raf kinase inhibitor in
2003.68 Minor modifications in compound 66 led to a series of
CSF-1R inhibitors.69 Derivatives of compound 67 were also
reported as nanomolar B-Raf kinase inhibitors more than 10
years ago.70 Very close urea-containing analogues of
compound 70 were also reported as p38α MAP67 and Raf
kinase inhibitors.68 The developed approach allowed identify-
ing a series of structures with low structural diversity and high
similarity with the previously reported compounds. However,
only a small fraction of the synthesized compounds showed
inhibitory activity against DDR1.

Hua et al. applied RNN to generate functionalized building
blocks, which can be utilized in Suzuki and Buchwald−Hartwig
reactions in silico to get a virtual combinatorial library of the
potential Mer tyrosine kinase (MerTK) inhibitors.71 Besides
this article, there have been reported few research papers
utilizing direct accounting for synthetic context during the
generation of molecular structures72−74 since the SA of de novo
outputs is still an “Achilles heel” of artificial intelligence driven
drug design (AIDD). The outputs of generative chemistry are
usually triaged before they are submitted for synthesis to focus
on only feasible and promising structures. In this context,

Figure 6. Generated and then selected building blocks (73−77), their scaffolds (78−80), and comparison of leading compound 81 to the reported
compound 82.
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taking commercially available building blocks and feeding them
to RNN to get a set of new “building blocks” is counter-
intuitive since the biggest value of a building block is its
commercial availability, meaning fast-track delivery, which
cannot be directly ensured by the RNN architecture or the
synthetic accessibility score (SA score)75 used by the authors
for SA estimation. Since nothing more than the 17 selected
structures, synthesized with a 100% success rate, were
provided, it is hard to estimate the actual synthetic feasibility
of the remaining top (by docking score) 19 983 structures.
Thus, the synthetic accessibility of the generated structures
that were not selected for synthesis is unclear. It is
recommended not to make structural alterations of commer-
cially available starting materials, even using AI/ML
techniques, since even small alterations can render the
compounds unavailable. The rational selection from the
broader scope of in silico chemical reactions (not just two
reactions) and rational iterative nomination of the existing
building blocks based on the context of the target should be
the focus of ML application rather than generating new
building blocks.

The authors71 claimed to perform scaffold analysis to find
novel scaffolds applicable to the hinge binding region of
MerTK after the docking studies for a designed reaction-based
combinatorial library. Five building blocks (Figure 6, 73−77)
were picked as scaffolds that were considered to be related to
MerTK. A brief analysis of the scaffolds that could be extracted
from the selected five building blocks and 17 resulting
synthesized compounds was carried out in SciFinder, showing
that they could hardly be classified as novel. The indazole-
based (78) disubstituted scaffolds of 73 and 74 were found in
almost ∼1000 patents, including sample kinase inhibitor
patents.76,77 7H-Pyrrolo[2,3-d]pyrimidines (80) in 76, 77,
and the leading compound 81 are present as key scaffolds in
315 patents, most of them disclosing kinase inhibitors.78,79

Finally, a routine similarity search in SciFinder also revealed
that compound 82 (CAS No. 1192710-70-5) reported in the
JAK tyrosine kinase-related patent79 was very similar (98% by
SciFinder similarity metrics) to compound 81 with only one

trivial difference of a cyclobutane substituent changed by
aminocyclohexane. Thus, the placed scaffold novelty is rather
controversial.

Song and coauthors reported on the design of TANK-
binding kinase 1 (TBK1) inhibitor utilizing the deep
conditional transformer neural network SyntaLinker.80 Synta-
Linker80,81 is an FBDD-based algorithm that attaches
molecular fragments to linkers using deep transfer learning
from the reported chemical space (ChEMBL database82). The
focus was on replacing the 2-aminopyrimidine scaffold in a
small-molecule TBK1 inhibitor, MRT67307 (Figure 7, 83;
IC50 = 23.1 nM), with a new one. The 2-aminopyrimidine ring
from 83 was removed, and SyntaLinker was provided with two
resulting terminal groups. The output of the SyntaLinker
launch contained 1101 molecular structures, of which 276
structures contained both terminal groups of 83. The hinge
scaffold linkers proposed by SyntaLinker included the original
cyclopropyl substituted 2-aminopyrimidine and 275 other
linkers. The generated structures were then docked. In the top
10 high-scoring examples, seven structures were generated
using differently substituted 2-aminopyrimidines originally
present in 83, which did not match with the scaffold hopping
aim of the study. The remaining three structures from the pool
contained two different bicyclic scaffolds: quinazolin-2-amine
and pyrrolo[2,3-d]-2-aminopyrimidine. Compound 84 with
the best docking score resulted from linkage within pyrrolo-
[2,3-d]-2-aminopyrimidine scaffold. This compound was
synthesized and tested against TBK1 (IC50 = 66.7 nM). The
following optimization campaign led to a more potent and
selective TBK1 inhibitor 85 (IC50 = 22.4 nM), and
SyntaLinker was not exploited at this stage (see Figure 7).
The only design contribution by SyntaLinker to this study was
the scaffold hopping of 2,4-aminopyrimidine to 2-
aminopyrrolo[2,3-d]pyrimidine. A closer look at the reported
items revealed that this modification is well-described in the
literature83,84 and related examples could be found even in
2006.85 Therefore, the authors of this review believe that trivial
ring fusions adopted for scaffold hopping can be readily
performed with one starting point, such as 83, without any DL

Figure 7. Process of compound 84 generation using SyntaLinker algorithm starting from the fragments of MRT67307 (83) and its manual
modification to the potent TBK1 inhibitor 85.
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Figure 8. (A) Generated and synthesized compounds 87−93 and their comparison to upadacitinib (86) (R = CONHCH2CH2CF3) and
compound 94. (B) Reported compounds 95−100 with profound structural proximity to compounds 87−93. (C) Reported JAK2 inhibitors 101
and 102 structurally close to compound 87. (D) Marketed JAK inhibitors sharing the same scaffolds with compounds 90−92. (E) Potential
bioisosteric ancestors (106 and 107) of compound 89. (F) Patent analysis of the scaffolds (108−112) derived from the generated structures.
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interventions. The rationale behind generating hundreds of
chemical structures, docking them, and finally selecting the one
that actually requires only one well-documented manual
modification with the reported lead compound remains
unclear. The authors80 emphasized that SyntaLinker produced
the novel pyrrolo[2,3-d]-2-aminopyrimidine scaffold for TBK1
inhibitors, which is an arguable statement with respect to the
actual scaffold novelty, as it has been widely reported in 87
patents (according to SciFinder) and mostly in the context of
the key part of a kinase inhibitor.

Yu et al. (Hitgen Inc. and Tencent AI Lab) reported a novel
deep generative scaffold hopping algorithm (GraphGMVAE)
for the de novo design of new JAK1 inhibitors.86 It was pointed
out that the main purposes of the scaffold hopping approach in
medicinal chemistry are generating novel, diverse, and
patentable molecules, selectivity, and PK optimization.
Hence, the native activity and key periphery motifs of a
template molecule should remain unchanged. It was also noted
that the conventional way to perform scaffold hopping is to use
commercial software instruments, which often have a limited
scaffold database, long computational time, or expensive
licenses. Thus, a quicker engine for scaffold hopping based
on DL approaches was needed. Therefore, a generative
pipeline comprising two main parts was developed. The first
part was a generative model (GraphGMVAE with scaffold
extraction algorithmics) that produced >30 000 molecular
structures carrying novel scaffolds (as the authors claimed)
distinct from the reported JAK inhibitors. Upadacitinib was
used as a starting point (see Figure 8A, 86). All the generated
SMILES-coded structures are available in the authors’ related
supporting information. The second part was a prioritization
pipeline with a set of filters (customized druglikeness
parameters and MCFs, including PAINS and in-house rules)
and scoring systems: consensus structure-based pharmaco-
phore modeling and molecular docking, which exploited the
cocrystals of the reported JAK1 inhibitors, and the in-house
kinase 3D-CNN binding affinity predictor. The pipeline
produced 25 high-score structures, which were selected for
novelty assessment. Compounds 87−93 were synthesized and
evaluated in an enzymatic JAK1 inhibition assay. Six molecules
(87−92) exhibited good hit-level potencies.

However, the novelty of the scaffolds in terms of structure is
arguable. For instance, 7-azaindole and pyrrolo[2,3-d]-
pyrimidine are overused PKI scaffolds found in FMS (95,
ChEMBL ID: CHEMBL3673933),87 PKCi (96),88 CSF1R
(97),89 and other kinase inhibitors (Figure 8B). These motives
are also present in nonkinase modulators, e.g., C5a inhibitors
(98, ChEMBL ID: CHEMBL364695),90 Dot1L inhibitors (99,
ChEMBL ID: CHEMBL4099771),91 influenza PB2 inhibitors
(100, ChEMBL ID: CHEMBL3317992),92 etc. The side-chain
novelty evaluation was out of the scope of further investigation
owing to the study design. It was particularly emphasized that
97.9% of the 30 000 generated structures contained novel
scaffolds that were distinct from the reported JAK inhibitors. It
would be interesting for the medicinal chemistry experts to
give opinions on the generated items as, however, the
researchers did not provide the reference data set with
JAKinibs used for the novelty calculation. The authors also
argued that the structure of 87 was published,93 two months
after their algorithm generated the same structure (July 2020).
Although it was checked that this scaffold was absent in the
training data set, no information was provided regarding close
analogues. The priority date of this application is March 14,

2019, which should be assigned to this structure. A similarity
search in SciFinder unveiled a subnanomolar JAK1 inhibitor, a
close analogue of 87 with a primary amide at the fifth position
published a year earlier (Figure 8A, 94).94 In addition to the
primary amide, methyl and fluorine were claimed as possible
substituents at this position but not a bioisosteric or lipophilic
trifluoromethyl group, making 87 the de jure novel JAK1
inhibitor with a relatively weak IP status. Yet another
publication by Heinrich et al. reported substituted 5-
trifluoromethyl-7-azaindoles as FAK inhibitors (ChEMBL ID:
CHEMBL2311330).95 Among them, compounds 101 (with no
substituent and nitrile group, a bioisostere of −CF3, in the
second and fifth positions, respectively) and 102 (with a bulky
4-phenyl substituent and −CF3 in the second and fifth
positions, respectively) demonstrated high off-target activity
(68 and 88% inhibition at 1 μM) against JAK2 kinase (Figure
8C). Scaffolds of 90−92 were presented in the structures of
launched JAK inhibitors (Figure 8D). Although compound 89
might seem the topologically novel structure, it can be
obtained via scaffold morphing and a couple of bioisosteric
transformations starting from the described JAK inhibitors96,97

(Figure 8E). The authors of this review also performed a
preliminary check of 87−93 cores (108−112) in external
databases, literature, and patents before July 2020 (Figure 8F).
Based on the obtained result, almost all these scaffolds look
tarnished.
Cliff’s Notes. The conclusions and recommendations of

this review are as follows:
1. The generated structures should be thoroughly inspected

for their novelty with high attention to refute skepticism about
their real IP position. In addition to free access to public
databases like ChEMBL, PubChem, DrugBank, ChemSpider,
and SureChEMBL, researchers are strongly recommended to
seek resources for purchasing access to commercially available
databases including SciFinder which many medicinal chemists
routinely use.

2. Many of the generated structures contain well-
documented structure alerts and confusing substructures with
unsynthesizable moieties or even incorrect valencies. This
problem can be overcome by using a set of rationally balanced
and well-adapted for generative pipelines preprocessing rules
and medicinal chemistry filters.

3. It is highly recommended for AI specialists to pay more
attention to conventional terminology used in the field of
medicinal chemistry and avoid misleading statements,
especially “novel drug candidate” and “novel lead compounds”,
because these terms need to be supported with exhaustive
biological data. In many cases, “primarily hit compound” is the
only term that can be reasonably applied for active compounds
of generative origin.

4. Frequently, AI-based generative pipelines produce active
structures which can be readily obtained using routine
medicinal chemistry approaches like trivial bioisosteric
replacement and scaffold hopping, ring fusions, or cyclic
analogues. To generate such a library of close structural
homologues, a medicinal chemist uses available chemo-
informatic software, and it is not a time-consuming process.
Considering this, generative pipelines should be implemented
at least with severe similarity metrics.

5. To correctly estimate the results of generative engines, a
medicinal chemist needs to be provided with all the generated
structures besides those presented by authors as the most
promising ones. This considerably assists a medicinal chemist
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to make more adequate and valuable feedback on a generation
output.

6. In general, AI-based generative platforms are able to
generate kinase inhibitors; however, this is a fairly narrow area
of medicinal chemistry with historically predefined fragments
at least within competitive hinge-targeted inhibitors. A plethora
of patents and scientific publications describing kinase
inhibitors significantly reduce the chance that trivial analogues
will be attractive for IP profiles. Therefore, the results of
generations beyond well-validated targets are actually needed
to evaluate the ability of such AI-based pipelines to produce
novel active structures, especially in the PPI area.

7. Active molecules of AI origin need to be evaluated at least
with the use of the standard MTS or MTT tests to avoid
nonspecific action and cytotoxicity. Furthermore, a preliminary
evaluation of the selectivity and off-target activity of generated
molecules allows AI scientists to get more valuable and
comprehensive feedback.

8. The assessment of the synthetic accessibility of generated
structures is a very important step in any generative platform
for eliminating not valid structures and to reduce the cost of
organic synthesis. The synthetic routes which are based on the
commercially available building blocks can provide researchers
with primarily hit compounds in a more rapid way.
Furthermore, it should be pointed out that metrics such as
the SA score are not good predictors of synthetic accessibility.
While commonly used in publications as such those reviewed
in this paper, these metrics actually measure molecular
complexity98 rather than synthetic accessibility.

9. Generative engines should be improved to provide
computational chemists and medicinal chemists with novel
ideas and truly novel molecular structures at least with more
chances to be attractive and valuable for filling the IP profile.
More attention should particularly be placed for a training set
and similarity metrics. Undoubtedly, currently a medicinal
chemist basically expects novel ideas from generative pipelines.
Based on the selected one, he usually modifies a structure in
order to optimize the required properties, especially the
novelty.

Even though the current review covers only the recent and
yet uncited research outcomes in other reviews, the
distribution of molecular targets exploited for the reviewed
studies is very biased toward protein kinases (seven out of
eight), and this tendency can be noticed in general for much
research in the field for the last five years. Although protein
kinases are still the “hottest” drug targets, the scientific
community is eager to see more challenging targets in AIDD,
the attractive proteins from other target families, particularly
those that have been considered undruggable so far. It is
believed that AI/ML can contribute to the drug discovery
process more sophisticatedly than now and produce novel and
relevant molecular structures. AI is not required to conduct
tasks, such as trivial scaffold replacement, that can be rapidly
performed by an ordinary medicinal chemist as the scientific
community expects valuable advances and breakthroughs from
AIDD. From this perspective, the deeper involvement of
skilled medicinal chemists in developing generative chemistry
pipelines would highly benefit the overall evolution of drug
discovery. In the context of the published studies, it would be
highly appreciated if the training data sets and all the generated
structures were provided rather than picking and publishing
only a few selected, synthesized, and tested ones. Medicinal
chemistry experts should iteratively provide feedback on the

validity, relevance, and actual novelty of all the generated
structures to AI specialists. The feedback should be intensively
used for learning and enhancing generative algorithms.
Otherwise, irrelevant AI-related research outputs with vecchio
scaffolds, which can be easily produced by most medicinal
chemists without any AI intervention, will be seen.
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