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Abstract: Supplementary cementitious materials have been widely used to reduce the greenhouse gas
emissions caused by ordinary Portland cement (OPC), including in the construction of road bases. In
addition, the use of OPC in road base stabilization is inefficient due to its moisture sensitivity and lack
of flexibility. Therefore, this study investigates the effect of hybrid alkali-activated materials (H-AAM)
on flexibility and water prevention when used as binders while proposing a new and sustainable
material. A cationic asphalt emulsion (CAE) was applied to increase this cementless material’s
resistance to moisture damage and flexibility. The physical properties and structural formation of this
H-AAM, consisting of fly ash, hydrated lime, and sodium hydroxide, were examined. The results
revealed that the addition of CAE decreased the material’s mechanical strength due to its hindrance
of pozzolanic reactions and alkali activations. This study revealed decreases in the cementitious
product’s peak in the x-ray diffraction analysis (XRD) tests and the number of tetrahedrons detected in
the Fourier transform infrared spectroscopy analysis (FTIR) tests. The scanning electron microscope
(SEM) images showed some signs of asphalt films surrounding hybrid alkali-activated particles and
even some unreacted FA particles, indicating incomplete chemical reactions in the study material’s
matrix. However, the H-AAM was still able to meet the minimum road base strength requirement
of 1.72 MPa. Furthermore, the toughness and flexibility of the H-AAM were enhanced by CAE.
Notably, adding 10% and 20% CAE by weight to the hybrid alkali-activated binder produced a
significant advantage in terms of water absorption, which can be explained by its influence on
the material’s consolidation of its matrices, resulting in significant void reductions. Hence, the
outcomes of this study might reveal an opportunity for developing a new stabilizing agent for road
bases with water-prevention properties and flexibility that remains faithful to the green construction
material concept.

Keywords: asphalt emulsion; pozzolanic material; alkali-activated binder; cementless materials; fly
ash; hydrated lime

1. Introduction

At present, ordinary Portland cement (OPC) replacements are being developed to
reduce greenhouse gas emissions in the construction industry. Many studies have revealed
the benefits of supplementary cementitious materials (SCMs), such as industrial fly ash
and hydrated lime, when replacing some OPC in concrete, including cost reductions and
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fewer greenhouse gas emissions [1–5]. Many SCMs incorporating green materials, i.e.,
geopolymers and alkali-activated materials (AAMs), have been introduced. These silica-
and alumina-rich materials are activated using alkali solutions, such as sodium hydroxide
(NaOH) and sodium silicate (Na2SiO3), resulting in new and green construction materials
with mechanical properties equal to the general concrete for construction [6–9]. Theoret-
ically, pozzolanic materials with appropriate alkali activators can form the cementitious
products calcium aluminosilicate hydrate gel (C-A-S-H), calcium silicate hydrate gel (C-
S-H), and sodium aluminosilicate hydrated product (N-A-S-H) [10–14]. These structural
formations are similar to the hydration product resulting from mixing OPC and water [15].
Some formations with lower mechanical strengths than cement-based materials have been
used in road bases and subbase structural layers. Consequently, the AAMs and pozzolanic
materials have been used as replacements for OPC in this specific work. However, it is still
necessary to increase their long-term durability for actual road conditions.

AAMs and pozzolanic materials are suitable under compressive loading conditions.
However, they are probably prone to more brittleness and less waterproofness than neces-
sary for roadway construction materials. During the rainy season, the relatively high water
can establish premature cracks in road pavement structures, allowing liquids to access
and penetrate capillary and air voids, decreasing the durability of cement-based materials
and AAMs [16–18]. Stabilizing materials with high moisture sensitivity decrease stiffness
caused by excess moisture from an external environment [19,20], negatively impacting
crucial pavement properties [21,22]. This problem results in redundant maintenance costs
and cannot be resolved in many countries. Hardiness, flexibility, and waterproofness
are necessary for long-term service. For this reason, a comprehensive solution for the
brittleness and lack of waterproofness in cement and SCMs is necessary for attaining
long-term durability.

Asphalt emulsion (AE), a stabilized asphalt by a chemical emulsifier, is an exciting
additive due to the efficient elasticity and waterproofness it brings to cement-based materi-
als and AAMs [23–26]. Researchers have investigated and applied AE as an additive in
concrete or mortar and correlated its addition to dynamic track slabs and ballasts, among
other structures [27,28]. Some studies have found that it can improve pavement engineer-
ing properties in asphalt-treated base materials by increasing flexibility, resilience, and
durability [29–32]. Moreover, the workability of AE in cement-based material influences
the setting process [33,34], which may be appropriate for pavement constructions requiring
a reasonable period of field-mixing preparation. Due to its inherent good flexibility and
moisture resistance, AE could be used to enhance the flexibility and waterproofness of
chemically stabilized road pavement materials.

The interaction mechanism of a cement-AE-based material causes asphalt droplets
with electrostatic charges to form an emulsifier that can react with the hydration product,
such as Portlandite and C-A-S-H gel, by exchanging the polar from these different chemical
components [35]. The asphalt molecules converge around the cement paste matrices and
form a stiff film. The cement particles absorb the water in AE, leading to the reduced
spaces in the pastes’ matrices and reduced voids [26,36,37]. However, the hydration of
cement-based materials is delayed due to the asphalt droplets covering the cement particles,
resulting in incomplete primary hydration with water. This retarding effect can increase
the initial and the final setting times, allowing AE to significantly retard cement hydration
at a high AE to cement ratio [38]. In addition, hydration heat is blocked by thin films of AE
on the cement particles, resulting in decreases in mechanical strength and stiffness [39–41].
No new crystalline substances or chemical functional groups have been found during the
interaction process between cement and the AE [42]. However, based on the previous
studies, there was almost no study of a hybrid alkali-activated material (H-AAM) prepared
with fly ash (FA), hydrated lime (HL), and solid sodium hydroxide (NaOH); and the effects
of adding AE into such material is still questionable. Even FA itself has toxicity manners
from leaching [43,44]; the FA used in this study is from the common source of FA used in
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the concrete industry in Thailand. Therefore, it is categorized as a standard constituent of
the cementitious mixing material.

Therefore, this study aimed to investigate the influence of AE on the mechanical
properties and structural formations of such the H-AAM. The AE was added to the mixture
in varying amounts. The mechanical characteristics of workability, compressive and flexu-
ral strength, water absorption, and shrinkage were examined. Meanwhile, the resulting
mixtures’ morphologies and microstructures were analyzed via x-ray diffraction (XRD),
Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and
pore size distribution tests.

2. Preliminary Study of the H-AAM for Road Bases

Preliminary research conducted at Chiang Mai University, Thailand, established that
the H-AAM could be used as a stabilizing agent in road bases. The H-AAM and Portland
cement (as a benchmark) were utilized as stabilizing agents, while the crushed rock was
used as the parent material [45]. From Figure 1, it can be seen that the H-AAM achieved the
target unconfined compressive strength (UCS) required by the Department of Highways,
Thailand, on day 7 [46,47]. These UCS values showed that the H-AAM could be used to
achieve the minimum strength required, even though its strength was less than that of the
OPC-based material. Therefore, this H-AAM could be utilized as an OPC replacement
in road stabilization. This study also explored the influence of AE on the flexibility and
waterproofness of this material.
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Figure 1. UCS results of road base materials stabilized by Portland cement and the H-AAM obtained
during the preliminary study.

3. Materials and Methods
3.1. Materials and the Mix Design

FA and HL were used as raw materials in the production of the alkali-activated
material. The FA was obtained from the Mae Moh power plant, Lampang Province,
Thailand. Meanwhile, the HL came from the limestone quarry in Saraburi Province,
Thailand. Figure 2 illustrates the morphology of the FA observed by using SEM (JEOL
JSM-5910LV, gold coated, WD: 11 mm, EHT: 15 kV, JEOL Inc., Pleasanton, CA, USA). Table 1
shows the oxide compositions of the raw materials obtained with X-ray fluorescence (XRF,
JEOL JSX3400R, JEOL Inc., Pleasanton, CA, USA). The FA was classified as a high-calcium
or class C fly ash with significant CaO content (24.83%). Apart from the CaO, the FA had
high contents of SiO2 (32.47%), Al2O3 (15.84%), and Fe2O3 (14.64%). The specific gravity
and Blaine fineness of the FA were 2.11 and 2400 cm2/g, respectively.
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Table 1. Chemical compositions of the raw materials.

Chemical Composition
(% by Total Weight) FA HL

SiO2 32.47 0.6
Al2O3 15.84 0.5
Fe2O3 14.64 0.1
CaO 24.83 74.5
SO3 4.3 -

P2O5 0.31 -
K2O 1.87 -

MnO2 0.2 -
TiO2 0.46 -
MgO 3 1.1
Na2O 1.99 -
LOI * 0.09 23.0

* LOI—loss of ignition.

Meanwhile, the HL contained CaO compounds with high loss on ignition (LOI).
High LOI can imply the evaporation of water and decomposition of Ca(OH)2 at 512 ◦C.
The specific gravity and blain fineness of HL were 2.16 and 1600 cm2/g, respectively.
Commercial-grade NaOH at 98% purity was used as an alkali activator. The NaOH was
ground finely (approximately 2.00 mm particles) before being added to the mixtures.

In this study, the slow-setting CAE (CSS-1h) used as an additive was provided by
the Asian Asphalt Co. of Thailand. The CAE with a positive electrostatic charge was
suspended in hydrochloric acid solution, containing 67.3% solid residue asphalt by total
modified asphalt weight. The properties of the CAE are shown in Table 2.

Based on Table 3, the hybrid alkali-activated mixtures with different CAE contents
were prepared using the binder-sand ratio (b/s) of 1.00:2.75, in which the sand with specific
gravity was 2.65 and the gradation shown in Figure 3. The control mixture as the H-AAM
sample consisted of FA, HL, and NaOH, following Table 3. According to the previous study,
the constituents of the H-AAM binder was validated the potential on cement replacement
in road base construction [45]. Proportions of CAE to the hybrid binder of 0, 0.05, 0.10, and
0.20 were used in conjunction with the added water was water-to-binder ratio (w/b) of
0.45:1.00. For the microstructure and structural formation analyses, hybrid alkali-activated
pastes with different CAE contents were prepared.
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Table 2. Properties of the CAE.

Property Unit Result

Density (g/cm3)
Storage (24 h) % 1.2

Sieve (1.18 mm) % 0.00
Particle charge Positive
Solid content % 67.3

Softening point, ◦C ◦C 61.7
Elastic recovery at 25 ◦C % 64

Penetration at 25 ◦C mm 65
Ductility at 25 ◦C cm 95

Solubility % 99.34

Table 3. Mortar mix design used in this study.

Mix
Material Proportions

(% of Binder’s Weight) w/b b/s a/b Ratio
FA HL SH CSS-1h

Control 77.3 19.3 3.4 -

0.45:1.00 1.00:2.75

-
CAE 05 77.3 19.3 3.4 5.0 0.05
CAE 10 77.3 19.3 3.4 10.0 0.10
CAE 20 77.3 19.3 3.4 20.0 0.20
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During the mixing procedure, the dry binders were added to the saturated sand and
mixed homogeneously. Subsequently, the water was added, followed by the CAE. The
resulting materials were then mixed for 180 s with a Hobart mixer.

3.2. Methodology and Experiments

Figure 4 presents the perspective diagram for the research to clarify the preparation of
the materials and the experiments. Mortar samples were examined to obtain the physical
properties of the target specimens. Meanwhile, microstructural and structural formation
analyses were performed on the hydraulic pastes.

In this study, the binder combined with varying CAE contents was examined. The
strength, water absorption, elasticity, and toughness of the resulting materials were deter-
mined. All test specimens were prepared in fresh mortar form. Furthermore, microstruc-
tural analyses were conducted to support all experimental test results.
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3.2.1. Flow and Setting Time Tests

Mortar samples were investigated for their workability within 90 s after mixing.
According to ASTM C1437 [48], the flow was tested, while setting time was measured via a
modified Vicat needle according to ASTM C807 [49]. Accordingly, the effect of free water
in the CAE on the hardening process of the H-AAM was investigated through the setting
time tests.

3.2.2. Mechanical Strength Tests

The compressive and flexural strengths were investigated based on BSEN 196-1 [50].
The mortar specimens were shaped into prisms measuring 40 mm × 40 mm × 160 mm.
They were cured at ambient temperature and wrapped to prevent moisture evaporation,
then tested on days 7 and 28 with the 250 kN–universal compression testing machine
(UTM) of Controls-65-L12L2 Model (CONTROLS S.p.A., Milan, Italy). The force rates for
the compressive and flexural strength tests were 2.4 kN/s and 0.5 kN/s, respectively. The
two specimens were examined for flexural strength. The four halves of these failed prisms
were tested continuously for compressive strength. The average strengths were recorded
for each mixture.

3.2.3. Water Absorption and Air Voids Tests

The water absorption and air voids were evaluated based on ASTM C642 [51]. Before
the test, the prism-shaped specimens should be air-cured for 28 days. Each test sample
was kept in the oven at 105 ◦C for 24 h and cooled in dry air over the next 24 h. Then the
oven-dried masses were measured. They were next immersed in water for not less than
48 h, then the surface-dry mass in the air was recorded after they were removed from the
water. At this point, the water absorption was calculated according to Equation (1).

Absorption(%) =
(Wim − Woven)

Wim
× 100 (1)

where Absorption (%) = water absorption of the specimen (%), Woven = mass of oven-dried
sample in the air (g), and Wim = mass of surface-dry sample in the air after immersion (g).



Materials 2021, 14, 7017 7 of 15

3.2.4. Toughness Characteristics Definitions

The toughness, i.e., the ratio of the flexural to compressive strength, was used to
describe the energy absorption of the material. It was calculated by using the data from the
mechanical strength tests conducted on days 7 and 28.

3.2.5. X-ray Diffraction Analysis (XRD)

The mineral compositions of the tested pastes were analyzed using XRD (Rigaku
SmartLab, 10–50 2θ, Applied Rigaku Technologies, Inc., Austin, TX, USA). A single crys-
tal X-ray diffractometer was used to capture the XRD patterns of 28-day-old pastes in
this study.

3.2.6. Scanning Electron Microscope Analysis (SEM)

SEM (JEOL JSM-5910LV, gold coated, WD: 11 mm, EHT: 15 kV, JEOL Inc., Pleasanton,
CA, USA) was used to observe the pastes’ microstructures. Harden specimens were coated
with gold before the examination.

3.2.7. Fourier Transform Infrared Spectroscopy Analysis (FTIR)

The functional groups of the chemical compound present in the samples were ex-
amined with FTIR (Thermo Nicolet 6700, 4000–400 cm−1, Thermo Fisher Scientific Inc.,
Waltham, MA, USA). The 28-day-old pastes were ground into powder smaller than
75 microns and mixed with KBr powder. FTIR spectrometer was used to record their
spectra information as percentages of transmittance and wavenumbers.

3.2.8. Pore Distribution Analysis

The surface area analysis was conducted using the Brunauer, Emmett, and Teller
(BET, Quantachrome Autosorb 1 MP, N2 gas, 99 points Adsorption–desorption, Anton Paar
GmbH, Graz, Austria) method [52] on the adsorption isotherm. The pore size distribution
was determined from the desorption isotherm via the Barrett, Joyner, and Halenda (BJH)
method [53]. The Nitrogen adsorption and desorption isotherms were measured at 77.35 K
while using a Quatachrome Nova station to test the 28-day-old pastes with volumes of
1 cm3. Prior to this test, each sample was degassed at 105 ◦C for 5 h.

4. Results and Discussion
4.1. Flow and Setting Time Tests

Figure 5 shows the test flow values and setting times of mortars with different CAE
contents. The results indicate that the hybrid alkali-activated mortar’s initial and final
setting time values were significantly delayed with an increase in CAE content—as was
true for the flow values. The mortar with 20% CAE provided the highest flow value, which
was much larger than the value for the control mortar, and the setting time of this mortar
was approximately twice that of the control mortar. The increase in flow was due to the
extra water, which was 35% by the total amount of the CAE. From Figure 5a, the mortar
with CAE contents of 5 and 10% had 187 and 275 min initial setting times, respectively. The
final setting values were 458 and 468 min, respectively, both higher than 326 min recorded
for the control mortar.

From Figure 5b, these results indicated that adding CAE could increase the flow values
of the mixture. The CAE enhances the fluidity of the paste by providing more water for
the mixing matrix through its demulsification. CAE can provide this extra water due to its
free water content of approximately 35%. The emulsifier and excess water from the CAE
accumulate in the free water according to the water-to-binder ratio, resulting in the excess
water for the hydration of the pozzolanic materials, thus a prolonged hardening process
during mixing. The H-AAM and CAE composite behaved like that of the cement-AE
material and revealed the retardation effect of CAE, mainly caused by the high liquidity
of the mixtures [24,25]. Hence, the addition of CAE can enhance the properties of this
H-AAM remarkably.
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4.2. Mechanical Properties

Figure 6a illustrates the compressive strength of the test samples with different CAE
contents. A higher CAE content resulted in a lower compressive strength. With more
free water available with a higher CAE content, the water-to-cement ratio of the mixture
increased, leading to a decrease in the overall compressive strength of the material. Further-
more, asphalt droplets in the mixture can cover pozzolan particles, delaying the reaction
and forming weak spots [54,55]. In terms of flexural strength, Figure 6b shows the relatively
small decline in flexural strength with higher CAE content for both seven- and 28-day
curing periods. Note the relatively small gaps in flexural strength between the seven- and
28-day curing periods, regardless of CAE content. It seems that the CAE content did not
play a leading role in developing flexural strength in the materials.
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4.3. Water Absorption

Figure 7 displays the results for the water absorption of the H-AAM mortars with
different CAE contents. More CAE in the hybrid- alkali-activated matrix could reduce
water absorption since the asphalt droplets in the CAE can cover and partly fill in the paste
matrix, resulting in a barrier to water immigration along the mortar’s entire surface [56]. It
can be explained by the presence of CAE-induced asphalt droplets in the matrix plugging
in the free space between the binder and sand, resulting in impermeable space [37]. Fur-
thermore, fewer air voids in the material matrix can lead to a considerable reduction in air
porosity, resulting in improved surface barriers, the coated surface by the asphalt binders
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to protect the cementitious subtracts’ water consumption, to contact with water caused by
the hydrophobicity of the emulsified asphalt coating [34,57].
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4.4. Toughness Characteristics

Figure 8 reveals the toughness characteristics of the H-AAMs with varying CAE
contents. Note that adding CAE can increase the toughness of the hybrid alkali-activated
mortars, with the highest CAE contents resulting in the most outstanding toughness. A
material’s toughness generally indicates the brittleness and ductility of the material. Rela-
tively higher material toughness implies flexibility, and the lower one indicates brittleness.
Based on the toughness results exhibited in Figure 8, the presence of CAE in the H-AAMs
provides ductility. These results agree with previous research, which indicated that more
flexibility is present in polymer-modified cement-based materials [58,59]. Notably, more
excellent material toughness indicates greater energy absorption, which is required for
road pavement materials [60,61]. Therefore, CAE can generate better energy absorption
behavior in the H-AAM, making it an ideal flexible road pavement material.
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4.5. SEM Analysis

Figure 9 presents the morphologies of the hybrid alkali-activated pastes with different
CAE contents obtained through the SEM analyses. Figure 9a shows the relatively smooth
and continuous texture of the hybrid alkali-activated paste as a benchmark, indicating
the large pieces of the solid cementitious product of the C-S-H gels. Adding CAE to the
hybrid alkali-activated matrix did affect the texture. In Figure 9b–d, it is seen that a CAE
layer surrounds the cluster of relatively smaller FA and HL particles. At a magnification
of 5000×, agglomeration of material was found in control with 20 microns. Small sizes of
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particles were seen 5–10 microns with the increase in CAE content. It has been reported
that different reaction products, including C-S-H gel, AFt, and CH were formed in paste
without CAE, and pores were filled by the hydration products [35]. With CAE, asphalt film
generated on the surface of fly ash particles, retardation of reactions occurred, and small
sizes of fly ash particles were observed.
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This clustering pattern of the CAE-coated particles indicates that the CAE addition did
interrupt and retard the continuous cementitious product formation due to the pozzolanic
reactions and alkali activations. Some unreacted FA particles are surrounded by CAE film
layers connected to the hybrid alkali-activated paste. The microstructures indicate that
more CAE contents had retarding effects on the chemical reaction needed for the hybrid
alkali-activated formation. Furthermore, the 20% CAE addition provided a smoother
consolidation in the matrices than lesser amounts of CAE due to CAE’s emulsifying
property. In addition, CAE film, which was interlocked with and surrounded the hybrid
alkali-activated particles, can plug and reduce some void spaces in the material matrix,
resulting in the mortar’s lowest water absorption rate.

CAE layers covered the hybrid alkali-activated binder. These CAE layers governed
the overall flexural resistance of the material. However, these CAE layers also played a
vital role in the compressive strength reduction observed as the CAE content increased
(see Figure 6). The thicker CAE layers produced by more CAE contents provide lower
compressive load resistance.
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4.6. XRD Analysis

Figure 10 illustrates the XRD patterns of the H-AAMs after 28 days of curing. The
broad hump in the region of 26–38◦ 2θ was found in all samples and shows the amorphous
phase of the material. The phases consist mainly of calcite, Portlandite, C-S-H, and N-
(A)-S-H [9,12,14,62,63]. The control paste showed the peaks of C-S-H and N-(A)-S-H gels
more clearly than the others with the CAE mixed in, indicating that the CAE retarded the
alkali-activated reactions of the mixtures. Consequently, reductions in mechanical strength
ensued. This result is similar to that obtained for the cement-AE system in previous
research [42].
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4.7. FTIR Analysis

The FTIR results for the hybrid alkali-activated pastes with CAE contents are presented
in Figure 11. Note that the intensities of the bands at about 835 and 960 cm−1 decreased as
the CAE content increased. These two bands correspond to the asymmetric and symmetric
stretching vibrations of the Si-O bonds, which can be considered part of the tetrahedrons in
Q1 and Q2 from the structural formation of C-S-H [64,65]. The addition of CAE diminished
gel formation. In contrast, the intensities of the bands at about 1375 and 2870 cm−1

increased as the CAE increased from 5 to 20% in the pastes. These wavenumbers refer
to the stretching vibrations of the N-H bonds in ammonium chloride (NH4Cl), i.e., the
emulsifier used in the CAE [66].
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Furthermore, the C=O bonds indicated by the 1630 cm−1 band are from the hydro-
carbon chains in the asphalt binder. Note that the band’s intensity gradually increases at
the CAE addition increases from 5 to 20%. Based on these FTIR results, it is confirmed
that the CAE did not react chemically with the pozzolanic material and AAMs. Hence, the
FTIR results can validate CAE’s effect on this H-AAM in terms of obstructing the struc-
tural formations harmful to the material’s strength characteristics, as in the cement-based
materials [38,67].

4.8. Pore Structure Analysis

Table 4 shows the results of BET surface area and total pore volumes following BJH
pore size distribution desorption. The surface area of the hybrid alkali-activated mixtures
decreased with the addition of CAE. The H-AAM with the 20% CAE addition provided the
lowest surface area and had a high average pore diameter due to the asphalt droplets in
CAE occupying pore spaces in the hybrid alkali-activated matrix. CAE’s asphalt droplets
and emulsifying molecules refine the pores and are inserted into the hybrid alkali-activated
matrix’s free space. The newly tiny pores are perhaps aggregated, leading to an increase in
the average pore diameter. Consequently, CAE prevents extraneous water from penetrating
this H-AAM by reducing the total number of pores.

Table 4. BET surface and total pore volume results.

Mixture
Average Diameter Surface Area Total Pore Volume

(nm) (m2/g) (cm3/g)

Control 35.752 12.705 0.114
CAE05 39.481 10.107 0.112
CAE10 44.603 9.520 0.094
CAE20 48.812 6.955 0.085

Overall, these BJH pore analyses support the mortar test and validate that the addition
of CAE plays a vital role in improving the water resistance of the H-AAM. It refined the
pores and reduced the total pore volume of the material. The mixture with the highest
CAE content would be excellent in terms of water and moisture resistance since the CAE
reduced the average size of the capillary pores.

5. Conclusions

This study investigated the influence of CAE on the physical properties and structural
formation of a H-AAM. According to the results, the following conclusions can be made:

Augmentation with CAE content gradually prolonged both the initial and final setting
times of the hybrid alkali-activated mortar as it increased from 0 to 20% of the weight of
the binder. Moreover, the study material’s compressive and flexural strength decreased
markedly as the CAE content increased, resulting in more free water and reaction barriers
to the hardening process, as confirmed by the microstructural analyses conducted in
this study.

The flexural to compressive strength ratio increased with CAE content up to 20%, and
the toughness of the hybrid alkali-activated mortar improved. Enhancements in material
flexibility are possible through the addition of CAE.

CAE hinders cementitious formation resulting from the pozzolanic reactions and
alkali activations in the hybrid alkali-activated pastes. This study revealed decreases in the
cementitious product’s peak in the XRD tests and the number of tetrahedrons detected in
the FTIR tests. The SEM images showed some signs of asphalt films surrounding hybrid
alkali-activated particles and even some unreacted FA particles, indicating incomplete
chemical reactions in the study material’s matrix.

The water absorption of the hybrid alkali-activated mortar decreased with the CAE
content from 0 to 20%. The CAE increases the average pore size of the hybrid alkali-
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activated paste while decreasing the surface area, hindering the cementitious formation of
the study material.

Based on this study’s results, the H-AAM with a CAE addition could represent a
sustainable construction material with water repulsion and flexibility, ideal for pavement
base stabilization. This material should be subjected to further investigations concerning
its environmental and economic benefits. The performance-based parameters such as
resilient modulus, shrinkage, and cyclic tensile modulus are recommended for further
studies of this new material to understand specific pavement properties based on more
realistic conditions.
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