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Abstract

Methamphetamine (METH) is an addictive psychostimulant whose societal impact is on the rise. Emerging evidence
suggests that psychostimulants alter synaptic plasticity in the brain—which may partly account for their adverse effects.
While it is known that METH increases the extracellular concentration of monoamines dopamine, serotonin, and
norepinephrine, it is not clear how METH alters glutamatergic transmission. Within this context, the aim of the present study
was to investigate the effects of acute and systemic METH on basal synaptic transmission and long-term potentiation (LTP;
an activity-induced increase in synaptic efficacy) in CA1 sub-field in the hippocampus. Both the acute ex vivo application of
METH to hippocampal slices and systemic administration of METH decreased LTP. Interestingly, the acute ex vivo application
of METH at a concentration of 30 or 60 mM increased baseline synaptic transmission as well as decreased LTP. Pretreatment
with eticlopride (D2-like receptor antagonist) did not alter the effects of METH on synaptic transmission or LTP. In contrast,
pretreatment with D1/D5 dopamine receptor antagonist SCH23390 or 5-HT1A receptor antagonist NAN-190 abrogated the
effect of METH on synaptic transmission. Furthermore, METH did not increase baseline synaptic transmission in D1
dopamine receptor haploinsufficient mice. Our findings suggest that METH affects excitatory synaptic transmission via
activation of dopamine and serotonin receptor systems in the hippocampus. This modulation may contribute to synaptic
maladaption induced by METH addiction and/or METH-mediated cognitive dysfunction.
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Introduction

Methamphetamine (METH) is one of the most addictive drugs

in existence. The illicit use of METH is a serious societal and

public health problem that is rapidly accelerating [1]. Indeed, the

2006 Treatment Episode Dataset indicates the percentage of

addiction treatment admissions due to METH/amphetamine

abuse has risen from three percent in 1996 to nine percent in 2006

[2]. Although METH can be prescribed (to be taken PO, by

mouth) to treat ADHD and obesity, drug abusers administer much

larger doses [3], through faster administration routes than those

used clinically. Sixty-five percent of those admitted for METH/

amphetamine abuse reported smoking as the route of administra-

tion, eighteen percent reported injection, and 11 percent reported

inhalation, [2]. The adverse effects of METH abuse are both short

(e.g., cardiac arrhythmias, hyperthermia, insomnia, confusion

[4,5] and long-term (e.g., neurotoxicity, psychosis, cognitive

impairments, addiction, changes in brain structure and function

[3,6,7]. The neural mechanisms that underlie these behavioral

responses are not completely known. Lack of such knowledge

impedes evidence-based development of pharmacological inter-

vention not only to treat addiction, but also to reverse damage

caused by methamphetamine use.

METH is a substrate for the dopamine transporter and

profoundly increases the concentration of extracellular mono-

amines dopamine (DA), serotonin (5-HT), and norepinephrine

(NE) by redistributing these neurotransmitters from synaptic

vesicles to the cytosol, in addition to inducing reverse transport

and competing for transmitter uptake at their cognate transporters

[8]. METH also affects extracellular glutamate levels [9,10,11].

METH is pharmacokinetically distinct from other psychostimu-

lants- its effects are longer lasting compared to other psychostim-

ulants such as cocaine and amphetamine, with a plasma half-life in

humans of approximately 12 hours [12,13]. Likely due to its

lipophilicity, METH is widely distributed in the human and rat

brain, a property it does not share with other psychostimulants

such as cocaine [14,15,16].

The functional states of the hippocampus are under the control

of many neuromodulators, including DA, 5-HT and NE. This

mnemonic cortical structure receives DA input from the ventral

tegmental area [17], NE input from the locus coeruleus [18], and

5-HT input from the raphe nuclei [19]. Although the hippocam-

pus is not commonly thought to be involved in addictive

behaviors, recent evidence demonstrates its involvement in

psychostimulant responses and addiction. Activation of the

subiculum (the main output of the hippocampal formation) has
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been directly implicated in the reinstatement of cocaine seeking

behavior [20]. Indeed, it has recently been discovered that rats will

self-administer METH directly into their hippocampus [21].

Developmental disruption of hippocampal connectivity results in

increased self-administration of cocaine [22] and METH [23].

Hippocampal synaptic plasticity is bi-directionally modulated by

cocaine self-administration [24]. Inactivation of hippocampal

output attenuates cocaine seeking elicited by associative cues, as

well as by cocaine injection [25,26]. Because the hippocampus is

implicated in the reinstatement of psychostimulant self-adminis-

tration, and may even contribute to the rewarding properties of

METH [21], it is critical to study the potential effects of METH in

this brain region.

Drugs of abuse, including METH, can cause long-lasting

changes in neuronal systems [27,28], and alter synaptic plasticity

[29,30]. There have been a number of reports on the effects of

cocaine on hippocampal synaptic transmission [24,31,32,33,

34,35], and although there are some reports concerning the

effects of METH on synaptic transmission in the striatum [36] and

hippocampus [37], the specific nature and pharmacology of

METH-evoked changes in hippocampal plasticity are ill-defined.

Here we examined the systemic and acute effects of METH on

baseline synaptic transmission and long-term potentiation (LTP) in

the CA1 region of the hippocampus. LTP is the potentiation of

synapses caused by an induction event, such as high frequency

stimulation, and is a ubiquitous model for studying long-lasting

changes in the nervous system [38,39,40,41,42]. We discovered

that acute ex vivo application of METH increased baseline

excitatory synaptic transmission and decreased LTP at CA1

synapses. Furthermore, systemic administration of METH also

decreased LTP. Our findings suggest that the effects of acutely

applied METH on synaptic transmission appear to be mediated

through the activation of both serotonergic and dopaminergic

receptor systems. Some of this work has been published in abstract

form [43].

Methods

Mice
(JAX: C57BL/6J) were housed in the AAALAC-certified animal

care facility (ACF) at Meharry Medical College. Mice were

maintained in an environment with ambient temperature between

22–24.5uC with a 12:12-hour light/dark cycle and ad libitum

access to food and water. For each experimental treatment mice

were randomly assigned to different treatment groups. All

experimental procedures complied with the NIH Guide for the

Care and Use of Laboratory Animals, and were conducted with

the approval of the Meharry Medical College Institutional Animal

Care and Use Committee.

Mutant mice
D1 and D5 receptor mutant mice extensively backcrossed onto

C57BL/6J were obtained from Dr. Gregg Stanwood (Department

of Pharmacology, Vanderbilt University Medical Center, Nash-

ville, TN). The electrophysiological experimenter was blind to

genotype. Genotype was determined before and reconfirmed by

PCR after electrophysiological assessment using a previously

described method [44].

Slice preparation
Acutely prepared hippocampal slices (400 mm) were obtained

from anesthetized (Isoflurane) adult (2–4 months of age) mice.

Transverse brain slices were dissected in ice cold, oxygenated

(95% O2/5% CO2) artificial cerebrospinal fluid (aCSF) containing

(mM): NaCl (125), KCL (2.5), KH2PO4 (1.25), MgSO4 (1.2),

CaCl2 (2), NaHCO3 (25), and dextrose (10). The CA3 region was

surgically removed from all slices (Fig. 1A). Slices were then

transferred to a submerged recording chamber, which continu-

ously superfused aCSF (saturated with 95% O2/5% CO2) at a rate

of 1.5 ml/minute, with temperature maintained at 30uC. The

slices were allowed to recover from dissection for at least an hour

in the recording chamber before experiments were begun.

Extracellular recording
Extracellular recording electrodes (borosilicate glass, ,1 mm tip)

filled with aCSF were placed in the stratum radiatum of CA1. We

chose to assess field excitatory post-synaptic potentials (fEPSPs)

because they provide a reliable and stable measure of excitatory

synaptic transmission. Dendritic fEPSP responses were evoked

with a bipolar tungsten stimulating electrode (Rhodes, Inc) placed

on either the CA3 or the subicular side of the recording electrode

in the stratum radiatum. Responses were amplified using the

Axoclamp-2A amplifier (Molecular Devices, Inc). The electrical

stimulus consisted of a single square waveform of 0.3 msec

duration given at intensities of 10–130 mA generated by a Grass

S88 stimulator equipped with stimulus isolation unit PSIU6.

Data acquisition and analysis
Data were acquired with Clampex 10 and analyzed with

Clampfit 10 software (Molecular Devices). The initial slope of the

fEPSP (which provides a measure of the strength of excitatory

synaptic transmission) was measured by fitting a straight line to the

first millisecond of the fEPSP immediately following the fiber

volley, and was monitored in real-time in every experiment. A

stimulus-response curve was then determined using stimulation

intensities between 10–130 mA. Baseline stimulation parameters

were selected to evoke a response of 40–60% of the maximum

slope. Baseline stimulation was then commenced at a frequency of

0.033 Hz for the entire length of the experiment. The paired-pulse

protocol used in the systemic METH experiments consisted of two

pulses at baseline intensity separated by 50 milliseconds. Control

synaptic responses were normalized by dividing all slopes by the

average of the 10 fEPSP slopes 5 minutes pre-tetanus. Since high

dose METH caused a transient increase in baseline synaptic

transmission, high dose METH synaptic responses were normal-

ized by dividing all slopes by the average of the 10 fEPSP slopes 5

minutes pre-METH application. SCH23390 + METH responses

were normalized by dividing all slopes by the average of the 10

fEPSP slopes 5 minutes pre-SCH23390 application. The tetanus

event in the acute drug application studies consisted of four

100 Hz pulses with a 30 second inter-stimulus interval. The

tetanus event in the systemic studies consisted of three 100 Hz

pulses with a 30 second inter-stimulus interval. LTP was quantified

as the normalized fEPSP response at 55–60 minutes post-tetanus.

All baseline value comparisons were made 15–20 minutes post-

drug application. Collected data was analyzed for statistical

significance with an unpaired t-test, a paired t-test, or a one-way

ANOVA followed by a Fisher’s LSD post-hoc test, where

applicable.

Drug application
Drugs used in this project are commercially available (except for

METH) from Tocris or Sigma-Aldrich. In all cases drugs were

added to the aCSF for perfusion to slices. In METH only

experiments, the drug was applied at t = 25 and washed out at

t = 57, with tetanus at t = 55. Drug free control experiments for

METH treated slices were also tetanized at t = 55. In co-

application experiments, the first drug was applied at t = 25, the

METH Reduces LTP
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Figure 1. At lower concentrations, METH decreases LTP. At higher concentrations, METH increases baseline synaptic transmission and
decreases LTP. (A) Summary plot of normalized fEPSP slope measurements recorded in the CA1 region of the hippocampus. Blue diamonds show
results from drug free slices (A), red triangles (B–F) are from METH-treated slices. Error bars show 6 SEM. Insets are 30-msec sweeps taken from

METH Reduces LTP
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second at t = 55, both washed out at t = 87, with tetanus at t = 85.

In control experiments for METH co-application experiments,

drug was added at t = 25 and washed out at t = 87, with tetanus at

t = 85. Slices taken from animals administered METH i.p. were

tetanized at t = 25, and were not exposed to METH in the

recording chamber.

Systemic administration of METH
Mice were injected with 10 mg/kg METH i.p. twice daily, at 7

AM and 7 PM for five days. Mice were then sacrificed for LTP

assessment approximately 16 hours after their last injection of

methamphetamine. No drugs were applied to slices taken from the

systemic-exposed animals.

Results

METH augments baseline synaptic transmission and
attenuates LTP

Using ex vivo slice preparations derived from the CA1 region of

the mouse hippocampus, we first assessed the impact of METH on

synaptic plasticity. After establishing fEPSPs (average amplitude at

baseline for all experiments was ,2 mV, see sweeps in Fig. 1), we

examined the effects of acute METH application on LTP. METH

was administered to the slices over the range of 0.1–60 mM. The

rationale for these particular concentrations derives from previous

in vivo studies demonstrating that a 4 mg/kg i.p. injection of

METH results in a concentration of about 10 mM in the mouse

brain [45], whereas a 1 mg/kg i.v. infusion also results in a similar

concentration in rats [46]. For humans, a dose of 30 mg i.v. is

estimated to result in a concentration of 14 mM in the brain [14].

METH abusers commonly inject dosages of tens to hundreds of

milligrams [3]; therefore, we investigated a wide range of METH

concentrations that included low and high concentrations of

METH that are within a clinically-relevant concentration range.

In drug-free control slices, we observed that robust LTP was

produced and maintained throughout the 60-min post tetanus.

LTP magnitude 55–60 minutes post-tetanus in control slices was

1.826.08 [n = 10(5)] (all n values are represented in the format

[n = number of slices (number of animals)]) (Fig. 1A). METH

significantly decreased LTP compared to control at concentrations

$0.1 mM (Fig. 1). At 30 mM and 60 mM, METH also increased

baseline synaptic transmission. As shown in Fig. 1E, the magnitude

of baseline synaptic responses in the apical dendritic area of the

CA1, measured as changes to the fEPSP slope, increased during a

30 min application of 30 mM METH. The magnitude of

normalized fEPSPs 15–20 minutes after 30 mM METH applica-

tion (t = 20–25 compared to t = 40–45) was significantly increased

to 1.126.01 [n = 15(4)] (Fig. 1E, P,0.05), the fEPSP slope

increased from 21.156.10 to 21.296.11 millivolts/millisecond

(P,.001, paired t-test). The magnitude of normalized fEPSPs 15–

20 minutes after 60 mM METH application (t = 20–25 compared

to t = 40–45) was significantly increased to 1.206.05 [n = 4(2)]

(Fig. 1F, P,0.05). These changes in synaptic transmission

observed at 30 mM and 60 mM METH did not occur at lower

drug concentrations (Fig. 1A–D). Our data demonstrates that

METH can increase glutamatergic transmission in the absence of

tetanic stimulation. Since both 30 mM and 60 mM METH

produced consistent and significant effects on both synaptic

transmission and LTP, we chose to use the more clinically

relevant concentration of 30 mM in all subsequent acute-exposure

experiments.

METH increases baseline synaptic transmission in the
absence of electrical stimulation

METH-induced increase in synaptic transmission is

transient. Some forms of plasticity require glutamatergic

activation [47]. To assess whether the observed increase of

baseline synaptic transmission we observed was dependent on

glutamatergic activation, we assessed the effect of 30 mM METH

on fEPSPs with the stimulator turned off during the first 15

minutes of drug application. Under these conditions, METH

increased fEPSPs 15–20 minutes after drug was added to the

perfusion bath (Fig. 2A). Following a wash out period (as in Fig. 1,

but without tetanus) we found that the effect on synaptic

transmission is transient, decreasing to pre-drug baseline within

,60 minutes (Fig. 2A). These results indicate that the correct

normalization point for studies where METH induces an increase

in synaptic transmission is before METH application, since the

effect is gone within 60 min.

The effects of METH on baseline synaptic transmission
are not altered by blockade of NMDA receptors

LTP induction in the CA1 region of the hippocampus is

predominantly mediated by NMDA receptors [48,49,50]. It has

also been observed that METH enhances NMDA-mediated

synaptic transmission [51]. To examine the possible involvement

of NMDA receptors in our observed METH-induced increase in

baseline synaptic transmission, we applied METH to slices

pretreated with 50 mM of the NMDA receptor antagonist dl-2-

amino-5-phosphonovaleric acid (DL-APV), a concentration shown

previously to block NMDA-mediated currents [52]. DL-APV

applied alone did not change fEPSP slopes (Fig. 2B) or affect the

ability of METH (30 mM) to increase excitatory synaptic

transmission. Thus, fEPSPs observed 15–20 minutes after

application of DL-APV plus METH are significantly increased

to 1.146.04 [n = 8(4)] (Fig. 2B, P,0.05). These changes in fEPSP

are similar to those evoked by METH alone (Fig. 1E), suggesting

that the METH-evoked increase in synaptic transmission we have

discovered is NMDA receptor independent.

Effects of methamphetamine on baseline synaptic
transmission and LTP are not altered by pre-application
of eticlopride (a dopamine D2-like receptor antagonist)

Since METH increases the concentration of extracellular

dopamine, serotonin, and norepinephrine [8], we considered the

likelihood that METH’s effects on baseline synaptic transmission

and/or LTP could be mediated via these receptor systems.

Interestingly, in the CA1 of rat hippocampus cocaine [31] and

GBR12935 [53] (drugs with increase the concentration of

extracellular monoamines) increase LTP by activation of D2-like

dopamine receptors. Therefore, we assessed whether a D2-like

receptor antagonist (eticlopride) could be effective in blocking the

effects of METH. We found that eticlopride (a D2-selective

receptor antagonist), at a concentration that effectively blocks a

representative experiments illustrating the average of fEPSPs 0–5 min prior to (solid line) and 55–60 min post-tetanus (dotted line, horizontal dashed
lines are 1 mV apart). At 0.1 mM METH, LTP was 1.586.08 [n = 13(5)] (Fig. 1B); at 1 mM METH, LTP was 1.506.07 [n = 13(7)] (Fig. 1C); at 10 mM METH,
LTP was 1.586.07 [n = 14(8)] (Fig. 1D); at 30 mM METH, LTP was 1.376.06 [n = 15(4)] (Fig. 1E); and at 60 mM METH, LTP was 1.326.24 [n = 4(2)] (Fig. 1E).
(G) Concentration-response for the effect of METH on LTP magnitude. * = P,0.05, ** = P,.01, *** = P,.001; different from drug free. Error
bars depict mean 6 SEM.
doi:10.1371/journal.pone.0011382.g001
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cocaine-mediated increase in hippocampal LTP [31], neither

altered baseline synaptic transmission on its own, nor affected the

METH-mediated increase in synaptic transmission when co-

applied with METH. The normalized magnitude of fEPSPs 15–20

minutes after 1 mM eticlopride and 30 mM METH application

was significantly increased to 1.166.02 [n = 4(4)] (Fig. 3B, t = 50–

55 compared to t = 70–75, P,0.05). D2-like dopamine receptor

blockade also did not attenuate the effects of METH on LTP. LTP

in the presence of eticlopride alone was 1.576.09 [n = 3(3)], while

METH still decreased LTP in slices pretreated with eticlopride

(1.306.04, [n = 4(4)] (Fig. 3A,B, P,0.05)).

SCH23390 (a D1-like receptor antagonist) increases
baseline synaptic transmission when applied alone

METH does not induce a further increase in synaptic

transmission or a decrease in LTP after SCH23390

pretreatment. D1/D5 receptor agonists can induce an LTP-

like potentiation in the CA1 area of the hippocampus [54,55].

Others have demonstrated that the application of D1/D5 agonist

increases LTP in the CA1 [56,57,58]. Since METH profoundly

increases the concentration of extracellular dopamine, it is feasible

that application of METH may have induced dopamine release to

mediate a dopamine-receptor dependent increase in baseline

synaptic transmission. To test the involvement of D1-like

dopamine receptors, we utilized D1/D5-selective dopamine

receptor antagonist SCH23390. Interestingly, SCH23390

increased baseline synaptic transmission when applied alone, an

effect not observed with shorter application times (5–10 minutes)

at the same concentration [56]. The magnitude of normalized

fEPSPs 15–20 minutes after 5 mM SCH23390 application was

1.126.03 [n = 7(4)] (Fig. 4A, t = 20–25 compared to t = 40–45,

P,0.05). Furthermore, the addition of METH to the slices

pretreated with SCH23390 did not induce a further increase in

fEPSPs (Fig. 4B), suggesting that D1/D5 receptor activation is

Figure 2. METH-induced increase in synaptic transmission does not require stimulation, and is transient- returning to baseline
within and hour. Also, METH effects on baseline synaptic transmission are not dependent on NMDA receptors. (A) METH increase in synaptic
transmission is not long-lasting, and does not require stimulation. Summary plot of normalized fEPSP slope measurements recorded in the
CA1 region of the hippocampus. Results are from METH-treated slices. Stimulator turned off from t = 15 to t = 30. Error bars show 6 SEM. (B) The
effects of METH on baseline synaptic transmission are not altered by blockade of NMDA receptors. Summary plot of normalized fEPSP
slope measurements recorded in the CA1 region of the hippocampus. Result are from DL-APV + METH-treated slices. Error bars show 6 SEM.
doi:10.1371/journal.pone.0011382.g002
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involved in the METH-mediated increase in baseline synaptic

transmission. Consistent with previous findings [59,60], we found

that blockade of D1/D5-like receptors with SCH23390 decreased

LTP. LTP was not significantly decreased by METH in slices

pretreated D1/D5 antagonist compared to slices treated with

SCH23390 alone. LTP in the presence of SCH23390 was

1.406.10 [n = 7(4)], and 1.336.07 [n = 8(4)] with SCH23390

plus METH (Fig. 4A,B).

METH-induced increase in baseline synaptic transmission
is attenuated in D1 receptor haploinsufficient mice

Since no known D1 or D5-selective receptor antagonists exist, in

order to further characterize the effects of METH, we utilized D1

and D5 receptor haploinsufficient mice. D1 or D5 dopamine

receptor knockout/haploinsufficient mice [61,62,63,64] have

eliminated/reduced D1 or D5 dopamine receptor expression,

respectively. We found that METH increased baseline synaptic

transmission in D5 receptor haploinsufficient mice only, and was

ineffective in D1 +/2 mice. Normalized fEPSPs were increased

15–20 minutes after 30 mM METH in D5 +/2 slices to 1.076.01

[n = 6(3)] (Fig. 5D, P,0.05). Baseline synaptic transmission was

not significantly enhanced compared to 15–20 minutes after

METH in D1 receptor +/2 slices to 1.036.01 [n = 9(5)] (Fig. 6B,

P,0.05). We also assessed LTP in D1 and D5 receptor

haploinsufficient mice under drug free and METH-exposed

conditions, finding no significant differences. LTP in drug free

D5 receptor +/2 mice was 1.276.07 [n = 6(3)], while the addition

of METH had no significant effect, resulting in an LTP magnitude

Figure 3. The effects of METH on baseline synaptic transmission and LTP are not altered by pre-application eticlopride (a selective
D2-like dopamine receptor antagonist). (A,B) Summary plot of normalized fEPSP slope measurements recorded in the CA1 region of the
hippocampus. The red triangles (B) are from eticlopride (1 mM) and METH (30 mM) treated slices; the blue diamonds (A) show results from eticlopride
(1 mM) experiments. Error bars are 6 SEM. Insets are 30-msec sweeps taken from representative experiments illustrating the average fEPSP 0–5 min
prior to (solid line) and 55–60 min post-tetanus (dotted line, horizontal dashed lines are 1 mV apart).
doi:10.1371/journal.pone.0011382.g003

METH Reduces LTP
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of 1.236.03 [n = 6(3)] (Fig. 5C,D). LTP in drug-free slices derived

from D1 receptor +/2 mice was 1.516.11 [n = 9(5)], while the

magnitude of LTP in the presence of METH decreased to

1.336.08 [n = 9(5)] in D1 +/2 slices (Fig. 5A,B).

5-HT1A serotonin antagonist NAN-190 blocks the effect
of METH on baseline synaptic transmission

We examined whether the effect of METH on baseline synaptic

transmission could have a serotonergic etiology, as well as a

dopaminergic component. A serotonergic mechanism for the

increase in baseline synaptic transmission is possible, since

serotonin can reduce inhibition of excitatory synaptic transmission

in the CA1 region of the hippocampus via activation of 5-HT1A

receptors [65]. We observed that pretreatment with serotonin 5-

HT1A competitive antagonist NAN-190 (0.5 mM) blocked the

effects of METH (30 mM) on synaptic transmission. The

magnitude of fEPSPs 15–20 minutes after NAN-190 and METH

application was 0.996.01 [n = 6(4)] (Fig. 6B, t = 50–55 compared

to t = 70–75). These results suggest METH-mediated effects on

glutamatergic transmission can be modulated by the serotonergic

system in the hippocampus. It has been shown that the selective

serotonin reuptake inhibitor fluvoxamine, which increases extra-

synaptic serotonin, decreases LTP by a mechanism mediated by 5-

HT1A receptors [66]. To test whether the inhibitory effect of

METH on LTP also is mediated via activation of 5-HT1A

receptors, we measured METH-mediated decrease in LTP when

NAN-190 is co-applied. LTP in the presence of NAN-190

(0.5 mM) was 1.676.11 [n = 8(6)], not significantly different from

LTP in METH (30 mM) slices pretreated with NAN-190

(1.516.06 [n = 6(4)] (Fig. 6A,B)). This data suggests a seroto-

Figure 4. SCH23390 (a D1-like dopamine receptor antagonist) increases baseline synaptic transmission when applied alone. METH
does not induce a further increase in synaptic transmission or a decrease in LTP after SCH23390 pretreatment. (A,B) Summary plot of
normalized fEPSP slope measurements recorded in the CA1 region of the hippocampus. The red triangles (B) are from SCH23390 (5 mM) and METH
(30 mM) treated slices; the blue diamonds (A) show results from SCH23390 (5 mM) experiments. Error bars are 6 SEM. Insets are 30-msec sweeps taken
from representative experiments illustrating the average fEPSP 0–5 min prior to (solid line) and 55–60 min post-tetanus (dotted line, horizontal
dashed lines are 1 mV apart).
doi:10.1371/journal.pone.0011382.g004
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nergic component to the modulatory effect of METH in the

hippocampus.

Systemic METH exposure decreases LTP
In addition to the acute drug exposure experiments, we tested

the ability of METH to alter hippocampal synaptic plasticity in

mice exposed to systemic METH. It has been shown that i.p.

injection of METH decreases LTP of population spikes in CA1

[37], therefore we further assessed the effect of systemic METH

exposure on hippocampal function by examining LTP of synaptic

responses. Consistent with the acute-exposure studies, systemic

exposure of METH resulted in deficient LTP. In vehicle-injected

subjects, LTP was 1.436.05 [n = 8(2)], whereas in METH-treated

mice LTP (assessed 16 hours after the last METH injection) was

significantly decreased to 1.226.07 [n = 6(2)] (Fig. 7A). Stimula-

tion of the CA1 Schaffer collaterals in quick succession (from tens

to hundreds of milliseconds) results in the facilitation of the second

synaptic response [67]. This phenomena is referred to as paired-

pulse facilitation (PPF), and is thought to be due to an increase in

the probability of glutamate release [68,69] due to residual

presynaptic calcium [70,71,72,73]. Paired pulse facilitation was

not altered by METH exposure (Fig. 7B), suggesting systemic

METH does not induce a lasting change in the probability of

action-potential dependent presynaptic neurotransmitter release.

Discussion

The present study provides insight about the unique effects of

METH in the hippocampus. First, acute ex vivo application of

METH to hippocampal slices increases baseline synaptic trans-

mission, independent of NMDA receptor activation. Second, these

effects are mediated via activation of serotonergic and dopami-

nergic receptor systems (also see figure S1). Third, both systemic

and ex vivo METH decrease hippocampal LTP; the systemic results

in accord with a previous report from Dr. Chirwa’s lab [37]. These

findings contribute to our understanding of the impact of METH

on hippocampal function.

We found at 30 and 60 mM METH increased baseline synaptic

transmission in our preparation. This effect was not diminished by

the blockade of NMDA receptors with DL-APV, indicating the

observed increase in fEPSPs caused by METH is NMDA

receptor-independent. Interestingly, METH also increased fEPSPs

in the absence of stimulation (Fig. 2A). This may suggest the

increase in synaptic transmission we have observed is induced by

Figure 5. METH-induced increase in baseline synaptic transmission is attenuated in D1 receptor haploinsufficient mice. (A,B) Summary
plot of normalized fEPSP slope measurements recorded in the CA1 region of the hippocampus of D1 +/2 mice. The red triangles (B) are from METH
(30 mM) treated slices; the blue diamonds (A) show results from drug-free experiments. Error bars are 6 SEM. Insets are 30-msec sweeps taken from
representative experiments illustrating the average fEPSP 0–5 min prior to (solid line) and 55–60 min post-tetanus (dotted line, horizontal dashed lines
are 1 mV apart). (C,D) Summary plot of normalized fEPSP slope measurements recorded in the CA1 region of the hippocampus of D5 +/2 mice. The red
triangles (B) are from METH (30 mM) treated slices; the blue diamonds (A) show results from drug-free experiments. Error bars are 6 SEM. Insets are
30-msec sweeps taken from representative experiments illustrating the average fEPSP 0–5 min prior to (solid line) and 55–60 min post-tetanus (dotted
line, horizontal dashed lines are 1 mV apart).
doi:10.1371/journal.pone.0011382.g005
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the action-potential independent release of monoamines [8,74],

however, action potentials occur in hippocampal slices indepen-

dent of electrical stimulation [75,76,77]. Therefore we hypothesize

that while both modes (action-potential dependent and action-

potential independent) of monoamine release may occur in our

hippocampal slice preparation- it is the action-potential indepen-

dent mode of release that is primarily responsible for the effects of

METH we have observed. Future studies will unequivocally

discern whether action potentials are required for METH to

increase synaptic transmission. The increase in synaptic transmis-

sion we observed was not long lasting, returning to baseline within

,1 hour, and therefore is likely mechanistically dissimilar from

LTP. Short-lived decreases in synaptic efficacy caused by

dopamine, cocaine, and amphetamine have been observed in

the nucleus accumbens [78]. Although qualitatively different (a

decrease when we observed an increase), it is possible that the

increase in synaptic transmission in the hippocampus shares a

similar mechanism. Indeed, Nicola et al. [78] suggest that the

decrease in synaptic transmission in the accumbens is D1-receptor

mediated. Our results suggest a similar possibility.

Unlike our observed results with METH, cocaine can induce

both an increase and a decrease in hippocampal LTP, depending

on the concentration of acute cocaine applied [31,35]. The

decrease in LTP caused by cocaine at high concentrations may be

due to blockade of sodium channels [31]. Another DAT

antagonist, GBR12935, has been shown to increase LTP [53].

Thus, it was unexpected to measure a decrease in LTP mediated

by METH at lower concentrations, and we tentatively hypothe-

sized that METH may bidirectionally modulate LTP over a range

of concentrations. Contrary to our hypothesis, we never

Figure 6. 5-HT1A serotonin antagonist NAN-190 blocks the effect of METH on baseline synaptic transmission. (A,B) Summary plot of
normalized fEPSP slope measurements recorded in the CA1 region of the hippocampus. The red triangles (B) are from NAN-190 (0.5 mM) and METH
(30 mM) treated slices; the blue diamonds (A) show results from NAN-190 (0.5 mM) experiments. Error bars are 6 SEM. Insets are 30-msec sweeps
taken from representative experiments illustrating the average fEPSP 0–5 min prior to (solid line) and 55–60 min post-tetanus (dotted line, horizontal
dashed lines are 1 mV apart).
doi:10.1371/journal.pone.0011382.g006
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demonstrated an increase in LTP in response to METH over a

wide range of concentrations. Indeed, we observed a decrease in

LTP over a range of concentrations.

Recently it has been shown that eticlopride, a D2-receptor

antagonist, blocks a cocaine-induced increase in LTP, [31]. Our

findings indicate that, in contrast to cocaine, the effects of METH

are not mediated by the D2 dopamine receptor. As mentioned

previously, it is unclear why cocaine and METH, having a similar

pharmacological outcome (an increase in extracellular mono-

amines), have different effects on synaptic plasticity apparently

mediated by different receptor systems. Indeed, the ‘cocaine

paradox’ [79], in which monoamine neurotransmitter transporter

blockers (e.g., cocaine, GBR12935) curiously reduce the effect of

transporter substrates, or releasers (e.g., methamphetamine, am-

phetamine), elegantly demonstrates that METH-exposure results in

a higher extrasynaptic concentration of monoamines than drugs

which block monoamine neurotransmitter transporters. Why then,

do we not simply see the same effects, only larger, induced by

METH vs. DAT blockers? One possible explanation is that the

larger sphere and duration of monoaminergic influence, or volume

transmission [80] induced by METH exposure may activate

different subsets of receptors. Another intriguing speculation is that

cocaine and METH may have differing activity at sigma receptors,

indeed, sigma receptor agonists can decrease LTP in the CA1 [81].

As previously reported, we also observed that the D1/D5

dopamine antagonist SCH23390 decreases LTP per se [59]. Our

surprising finding that SCH23390 on its own increased baseline

synaptic transmission might be explained by our longer drug

treatment protocol before the tetanus stimulation (30 min)

compared to previously published observations [54,56]. The

finding that application of METH after pre-application of

SCH23390 did not increase in baseline synaptic transmission

Figure 7. In vivo METH exposure also decreases LTP. (A) Summary plot of normalized fEPSP slope measurements recorded in the CA1 region of
the hippocampus. The red triangles are from METH-treated mice; the blue diamonds show results from vehicle-treated subjects. Error bars are 6 SEM.
(B) Summary plot of paired-pulse facilitation measurements recorded in the CA1 region of the hippocampus. The red triangles are from METH-treated
mice; the blue diamonds show results from vehicle-treated subjects. Error bars are 6 SEM.
doi:10.1371/journal.pone.0011382.g007
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further may suggest that the METH-mediated modulation of

fEPSPs might in part be due to the release of endogenous

dopamine and subsequent activation of D1/D5-like receptors (also

see figure S1). Application of D1/D5 agonists can induce a

potentiation that is long lasting, D1/D5 receptor specific, and

requires protein synthesis and glutamatergic activation [47],

although some have not observed this phenomenon [55]. The

short duration of the increase in fEPSPs induced by METH

indicates it is likely not similar to the long-lasting D1/D5 agonist

potentiation others have observed [54].

Since no known D1 or D5-selective pharmacological tools

currently exist, D1 and D5 haploinsufficient mice are attractive

tools to further characterize the putative dopaminergic effects of

METH. In addition, a haploinsufficient genotype is a more

generalizable condition to human pathophysiology than complete

knockout of a protein [82]. The finding that METH increased

baseline synaptic transmission only in D5 receptor haploinsuffi-

cient mice suggests that the effects of METH in part may rely on

D1-like dopamine receptors, and in addition, specifically implicate

the D1 receptor in the effects of METH on baseline synaptic

transmission. Although LTP has been assessed in D1 receptor

knockout mice [83], to our knowledge synaptic plasticity has not

been studied in either D1 or D5 haploinsufficient mice, thus, our

results provide additional information about the modulatory

effects of D1 and D5 receptors on LTP. To our knowledge, we

are first to show a deficit in LTP in D5 receptor +/2 mice,

suggesting that the D5 receptor is required for the normal

expression of synaptic plasticity.

Our findings that METH-evoked effects on synaptic transmission

and LTP are reduced by a 5-HT1A antagonist, NAN-190 implicate

a serotonergic mechanism for METH in the hippocampus. The

reported effects of 5-HT in the hippocampus are divergent, as some

have documented inhibitory [84,85,86], while others have shown

excitatory [65] effects, or no effect on synaptic transmission [87]. Our

results suggest that 5-HT has an excitatory effect in the CA1 (also see

figure S1). One documented mechanism for excitatory effects of 5-

HT in the hippocampus suggests 5-HT1A receptor activation can

inhibit tonic GABA release from inhibitory interneurons, thereby

inhibiting glutamatergic transmission [65]. Future studies are

required to further examine this putative METH-induced seroto-

nergic modulation of hippocampal neurotransmission.

Our studies on the systemic exposure of animals to METH also

demonstrated a decrease in LTP. We observed no change in

paired-pulse facilitation, which suggests that there is not a change

in the probability of transmitter release caused by systemic METH

administration. It is of interest to note that the half-life of METH

in mice is ,1 hour [88,89,90], much shorter than in humans

[12,91,92]. We assessed the LTP ,16 hours after the last

injection. Using a t1/2 of 70 minutes, the elimination rate

constant can be easily calculated (t1/2 = ln(2)/k). Assuming

instantaneous absorption, we estimated of the percent of drug

plasma concentration remaining after sixteen half-lives using first

order kinetics with concentration of drug at time zero being equal

to 100% (C(0) = 100%) using the equation Ct = C(0)e
2kt (C =

concentration, e = 2.7183, k = elimination rate constant, t = time).

This estimate (which does not account for i.p. absorption),

indicates that after 16 hours, the percentage of the initial

concentration of METH remaining would be 0.0074%. We

estimate that nearly all of the METH from the last i.p. injection

was cleared at the time the mice were sacrificed for LTP

experiments [92]. This suggests that METH has a lasting effect on

synaptic plasticity after the drug is cleared from the body. It is

unknown how long the effect of METH on LTP will last, or if it

will remain qualitatively similar, since bi-directional modulation of

synaptic plasticity by drugs of abuse (cocaine) has been observed

after long periods of withdrawal [24]. This is an important

question, and will be further studied.

In summary, we provide evidence that METH increases

baseline synaptic transmission (before high frequency tetanus see

Fig. 1E,F; time = 30–40 min) and decreases the magnitude of

LTP induced by a high frequency tetanus event. We propose a

dopaminergic and serotonergic mechanism for the effect of

METH on fEPSPs. Our results also suggest that the D1 dopamine

receptor may be specifically involved in the effect of METH on

synaptic transmission. We hypothesize that deficient hippocampal

synaptic plasticity may be a hallmark of METH-induced adverse

cognitive/addictive processes.

Supporting Information

Figure S1 Application of dopamine (DA), or serotonin (5-HT)

increases baseline synaptic transmission. (A) Summary plot of

normalized fEPSP slope measurements recorded in the CA1

region of the hippocampus. Green circles show results from

dopamine-treated slices, purple squares are from serotonin-treated

slices. Error bars show 6 SEM, no tetanus was given.

Found at: doi:10.1371/journal.pone.0011382.s001 (0.63 MB TIF)
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