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Background: Severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and
coronavirus disease 2019 (COVID-19) have caused substantial public health burdens and global health
threats. Understanding the superspreading potentials of these viruses are important for characterizing
transmission patterns and informing strategic decision-making in disease control. This systematic review
aimed to summarize the existing evidence on superspreading features and to compare the heterogeneity
in transmission within and among various betacoronavirus epidemics of SARS, MERS and COVID-19.
Methods: PubMed, MEDLINE, and Embase databases were extensively searched for original studies on the
transmission heterogeneity of SARS, MERS, and COVID-19 published in English between January 1, 2003,
and February 10, 2021. After screening the articles, we extracted data pertaining to the estimated disper-
sion parameter (k) which has been a commonly-used measurement for superspreading potential.
Findings: We included a total of 60 estimates of transmission heterogeneity from 26 studies on outbreaks
in 22 regions. The majority (90%) of the k estimates were small, with values less than 1, indicating an
over-dispersed transmission pattern. The point estimates of k for SARS and MERS ranged from 0.12 to
0.20 and from 0.06 to 2.94, respectively. Among 45 estimates of individual-level transmission hetero-
geneity for COVID-19 from 17 articles, 91% were derived from Asian regions. The point estimates of k
for COVID-19 ranged between 0.1 and 5.0.
Conclusions: We detected a substantial over-dispersed transmission pattern in all three coronaviruses,
while the k estimates varied by differences in study design and public health capacity. Our findings sug-
gested that even with a reduced R value, the epidemic still has a high resurgence potential due to trans-
mission heterogeneity.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

In the past two decades, coronavirus diseases have caused sub-
stantial public health burdens and global health threats. Between
2002 and 2004, over 8,000 cases and approximately 750 deaths
caused by severe acute respiratory syndrome (SARS)-coronavirus
(SARS-CoV) infection were observed [1]. Around 2013, Middle East
respiratory syndrome (MERS)-coronavirus (MERS-CoV) emerged in
the Middle East, causing 2,500 laboratory-confirmed cases and
over 880 associated deaths by 2019 [2]. The ongoing coronavirus
disease 2019 (COVID-19) pandemic, caused by SARS-CoV 2
(SARS-CoV-2), has resulted in more than 210 million cases and
over 4.3 million deaths worldwide, as of August 10, 2021 [3].

Among the many important epidemiological parameters
describing the transmission process of an infectious disease, the
reproduction number (R), which is defined as the average number
of secondary cases generated by a typical infectious individual [4],
represents the transmission potential of an infectious pathogen at
a population scale. However, R fails to reflect the heterogeneity in
transmissibility among individuals, which is widely observed in
coronaviruses [5]. Outbreaks involving an unusually large number
of secondary cases are often seeded by only one or a few index
cases, as observed in the COVID-19 [6–8], SARS [9], and MERS
[10] epidemics. These phenomena are known as superspreading
events (SSEs), and the initial source of infection is regarded as a
super-spreader [11].

Theoretical models are important tools for characterizing and
quantifying the heterogeneity in transmission, but have been
implemented differently across studies. In some studies, standard
compartment models (e.g., the classic susceptible-infectious-recov
ered model) were combined with superspreading compartments to
characterize the transmission heterogeneity of SARS [12] and
MERS outbreaks [13]. In contrast, some studies [14–17] fitted the
observed epidemiological data by a negative binomial (NB) distri-
bution to quantify the superspreading potential. This approach
was initially proposed by Lloyd-Smith et al. [18], in which the
heterogeneity of infectiousness among individuals was quantified
by estimating the dispersion parameter (k). Furthermore, k can also
be estimated through phylogenetic analysis [19] or modeled as a
latent variable in standard compartment models [20].

In general, a small k value indicates higher heterogeneity in
transmission. If k is less than 1, the NB distribution has an expo-
nential tail [21], which indicates that the transmission pattern is
substantially over-dispersed. Different from the typical phe-
nomenon, an over-dispersed transmission manifest the concept
that a small proportion of people generate a large proportion of
transmission. This phenomenon has also been described as the
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‘20/800 rule, which stipulates that 20% of the most infectious cases
are responsible for 80% of the transmission (or secondary cases)
[22]. Theoretically, when k is small and R is sufficiently large, the
value of k approximates the proportion of the most infectious cases
that generate 80% of the total transmissions [23]. Understanding
transmission heterogeneity could provide key indications for pub-
lic health strategies in disease control. When an epidemic exhibits
a heterogeneous transmission pattern, that is, when k is small,
even if the local situation is considered to be under control, with
an R value of approximately 1, the epidemic still has a high resur-
gence potential [24].

Early studies evaluated the superspreading potential and trans-
mission heterogeneity of coronaviruses during different periods
and under different intervention measures [17,25,26]. However, a
comprehensive summary of the superspreading potential of the
three coronavirus diseases is lacking, and few studies have com-
pared their transmission dispersiveness. Therefore, the aim of this
study was to compare the superspreading potential of these dis-
eases by systematic reviewing existing estimates of their transmis-
sion heterogeneity, thereby providing key intelligence for better
intervention and infectious disease control.

2. Methods

This systematic review was conducted in strict accordance with
the Cochrane collaboration guidelines and the Preferred Reporting
Items for Systematic reviews and Meta-Analyses’ (PRISMA) guide-
line [27]. MEDLINE, Embase, and PubMed databases were searched
for literature published between January 1, 2003, and February 10,
2021. The details of the search strategies and outcomes are pre-
sented in Supplementary Table S1. We supplemented these
searches by consulting with content experts (SZ and MKCC) and
by scanning the bibliographies of the identified articles. All articles
were imported into EndNote (version X8, Thomson Reuters, Carls-
bad, CA, USA), and duplicate studies were removed before further
analysis.

2.1. Article selection criteria

Two reviewers (JW and ZH) independently identified eligible
studies. Consensus was reached by referring to a third reviewer
(XC) when opinions differed. All articles were screened by title
and abstract, followed by the full text, to determine if the following
pre-determined criteria were met: (I1) the study characterized the
transmission heterogeneity of SARS, MERS, or COVID-19 in the
human population; (I2) the article comprised peer-reviewed orig-
inal research; and (I3) the values of the dispersion parameter (k) or
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the ‘20/800 rule were explicitly and exactly reported. Studies were
excluded if they had the following features: (E1) focused only on
wild zoonotic transmission cycles; (E2) included patients without
virological evidence of SARS-CoV, MERS-CoV, or SARS-CoV-2 infec-
tion; (E3) presented insufficient data or information to quantify
the transmission heterogeneity; and (E4) was not published in
English.

2.2. Data extraction

A standard data extraction form was used to extract informa-
tion from the selected studies by three independent reviewers
(JW, XC, and ZH). The following information was collected:
(INF1) basic information of the study (i.e., the name of the first
author, year of publication, investigation period, geographical
region); (INF2) study population and settings (i.e., confirmed cases,
cases in nosocomial setting [hospital clusters], younger vs. elderly
cases, symptomatic vs. asymptomatic cases); (INF3) type of disease
(i.e., SARS, MERS, COVID-19); (INF4) type of dataset used to gener-
ate the estimation (i.e., transmission pairs, cluster size, epidemic
size, genome sequences); and (INF5) measurements of transmissi-
bility and heterogeneity in transmission, (i.e., dispersion parameter
[k], ‘20/800 rule, reproduction number [R]).

2.3. Quality assessment

Two reviewers (XC and ZH) independently evaluated the quality
of each included study using the Appraisal Tool for Cross-Sectional
Studies (AXIS) scale [28]. There are 20 ‘Yes/No’ questions in the
AXIS scale. Seven questions measure the quality of reporting and
study design, and six questions measure the possible introduction
of biases. A higher AXIS score indicates better study quality. A score
of 16 points is considered as the cut-off to distinguish between
high- and low-quality studies [29].

2.4. Calculating k in studies reporting the ‘20/800 rule

We consistently used k to represent the superspreading poten-
tial. If an article did not explicitly report k, but reported R and the
transmission distribution profiles in the form of the ‘20/800 rule,
we generated an estimation of k by using the framework proposed
by Endo et al. [14], which has also been adopted in other studies
[15]. For given values of R and the ‘20/800 rule, the overdispersion
parameter k is given by

1� P ¼
Z X

0
NB x; k;

k
Rþ k

� �
dx;

where X satisfies

1� Q ¼ 1
R

Z X

0
x NB x; k;

k
Rþ k

� �
dx:

Here, P is the expected proportion of the most infectious indi-
viduals responsible for Q of all transmissions. NB �ð Þ represents
the NB distribution for secondary cases, with mean R and disper-
sion parameter k. For studies reporting both the ‘20/800 rule and
R, the confidence intervals of k were constructed by adapting the
posterior estimation of these parameter values to the above equa-
tions. For studies reporting the ‘20/800 rule without R, a range of k
was obtained by assuming an R ranging from 0.5 to 4.

3. Results

In the literature searches of the Embase, MEDLINE, and PubMed
databases, 1,384 records were identified (Fig. 1). There remained
718 articles after the removal of duplicates. After the initial screen-
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ing, the full text of 199 articles was reviewed, resulting in the
selection of 23 articles. Three additional articles were recom-
mended by experts. Thus, 26 articles were finally selected. From
these, 60 estimates of heterogeneity in transmission were included
for further analysis. The AXIS quality scores of the included articles
ranged from 14 to 19 points. Twenty-five articles (96.2%) met the
criteria for a high-quality study. The detailed scores for each item
on the AXIS are shown in Supplementary Table S2.

3.1. Characteristics of the included studies

The characteristics of the selected articles are listed in Supple-
mentary Table S3. Among the 60 estimates of transmission hetero-
geneity, four (6.7%) from two studies estimated the dispersion
parameter (k) of SARS [16,18], 11 (18.3%) from eight articles esti-
mated the k for MERS [16,17,30–35], and 45 (75.0%) from 17 arti-
cles estimated the k for COVID-19 [14,15,19,36–49]. Forty
estimates (66.7%) were based on transmission pair data (i.e., num-
ber of offspring cases generated by each index case), and four esti-
mates were calculated using epidemic/cluster size data. The most
common modelling method used to estimate k was a NB distribu-
tion, followed by phylogenetic analyses using genome sequence
data.

3.2. Measurements of transmissibility and transmission heterogeneity

The dispersion parameter k, ‘20/800 rule, and reproduction
number were reviewed. Only five estimations (8.3%)
[15,17,18,38] reported all three measurements simultaneously.
Twenty-five estimations (41.7%) reported only k without the other
two measures [33,41,43,46,49,50]. We conducted a secondary
analysis to generate an estimated k value for seven articles that
reported the ‘20/800 rule [31,32,34,35,40,43,44] instead of a k
value.

Overall, 54 of 60 estimates (90%) reported small values for k,
with a scale of less than 1.

3.3. Estimated dispersion for SARS and MERS

The estimates of k for SARS and MERS are shown in Fig. 2. All
estimates of k for SARS, and 90.9% (10/11) of those for MERS, were
smaller than 1.

The k estimates for SARS ranged between 0.12 (90% confidence
interval [CI]: 0.08, 0.42) in Beijing [18] to 0.20 (95% CI: 0.13, 0.27)
in a global study [16], which assumed reproduction numbers of
1.88 [18] and 0.95 (95% CI: 0.67, 1.23) [28], respectively. Both esti-
mates were derived from hospital clusters. Additionally, a study in
Singapore reported an estimated k value of 0.16 (90% CI: 0.11, 0.64)
based on confirmed cases regardless of transmission patterns [18].

For MERS, the point estimates of k ranged between 0.06 (95% CI:
0.03, 0.09) and 2.94 (95% CI: 0.23, infinity). Only one study [33]
(9.1%) reported an estimated k larger than 1; this study used a
likelihood-based inference applied to a global MERS dataset. For
four studies [31,32,34,35] that reported the ‘20/800 rule, the con-
verted k ranged between 0.013 and 1.495, and only one of these
[35] had a lower bound of less than 1 (Fig. 2).

3.4. Estimated dispersion for COVID-19

The 45 estimates of k for COVID-19 had a wide range, from
0.009 (95% CI: 0.007, 0.348) in the United States (US) to 4.998
(95% CI: 0.003, infinity) in Israel. Over 91% of the k estimates
(41/45) were derived from Asia, of which 23 estimates from seven
studies were conducted in China [15,19,37,42,46,47,50]. The US
was the only country studied outside of Asia [43].



Fig. 1. PRISMA 2009 flow diagram of the literature selection process.
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In total, 40% of the k estimates (18/45) were derived from sub-
sets of data that focused on specific age ranges, transmission pat-
terns, and generations (see Supplementary Table S3 for details).
Additionally, all of these subgroup estimates were derived from
studies conducted in China and the US. To avoid duplications and
overweighting of these two countries, only the 27 estimates using
data from the entire study population are shown in Fig. 3; among
test, 22 estimates (81.5%) were smaller than 1. Regarding the five
estimates larger than 1, two were from India [41], one was from
Israel [40], and the other two, which used the number of offspring
by each index case, were from Hong Kong [42] and Singapore [42].
4. Discussion

Understanding the potential for SSEs and transmission hetero-
geneity is helpful in determining the risks of over-dispersion in
5042
an epidemic and in informing effective infectious disease control
measures. To our knowledge, this is the first systematic review to
provide a comprehensive overview of the dispersion parameter,
k, for SARS, MERS, and COVID-19. We included 60 estimates from
26 studies conducted in 22 countries/regions. Nearly half of the
estimates pertained to transmission heterogeneity for COVID-19
in Asia. Most of the selected studies estimated the k value as lower
than 1, suggesting a substantial over-dispersed transmission pat-
tern in all three coronaviruses. Compared with that for SARS, wider
ranges of estimated k values were observed for COVID-19 and
MERS.

All studies from Indonesia, Japan, and the US reported a
high potential for SSEs for COVID-19, while a low potential
for SSEs for COVID-19 was reported in some studies from
India, Hong Kong, and Israel. This may be partly explained
by the combined effect of several extrinsic and intrinsic fac-
tors, such as the local public health capacity, study period,



Fig. 2. Estimated dispersion parameter (k) for SARS and MERS. – Point estimates and 95% confidence intervals were reported, if not specified. §Studies explicitly reported the k
estimate. # Studies reported the ‘20/800 rule, but not reproduction number or k. Only a range of k values were generated by using the method proposed in Endo et al [14],
assuming a reproduction number ranges between 0.5 and 4.

Fig. 3. Estimated dispersion parameter (k) for COVID-19. – Point estimates and 95% confidence intervals were reported (except for Endo et al, which is credible interval), if not
specified. § Studies explicitly reported the k estimate. y Studies used non-truncated framework. � Studies used truncated framework. * Studies reported the ‘20/800 rule and
reproduction number, but not k. We estimated k values and corresponding confidence intervals by using the method proposed in Endo et al [14]. # Studies reported the ‘20/800

rule, but not R or k. Only a range of k values were generated by using the method proposed in Endo et al [14], assuming a reproduction number ranges between 0.5 and 4.
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data type, and data quantity [13,26]. For instance, the extre-
mely large k for COVID-19 reported by a study conducted in
Israel [40] may be attributable to a series of border control
strategies and public health measures implemented even
before confirmation of the first local case in Israel. These mea-
sures successfully prevented substantial transmission from
imported cases, which were considered as the major initiator
of SSEs in many other countries [15,41,45].
5043
We also noted that studies conducted in the same region, but
over different time periods, showed diverse outcomes. For exam-
ple, an early study in Hong Kong that included data up to early
March 2020 reported a large k estimate (2.3) [42], while a later
study that included data up to April 28, 2020 reported a k less
than 1 [15]. Similar differences in k estimates were also found in
MERS studies conducted at different time periods [33]. These
examples demonstrate the effect of study period on the k estimate.
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The type of data also influenced the estimate of transmission
heterogeneity. The data type used for calculating k mainly fell into
two categories: ‘cluster size data’ and ‘transmission pair data’. The
former comprises only information on the total cluster size,
whereas the latter contains primary-secondary case pairs con-
structed by contact tracing. In general, we found that studies using
cluster size data [14,45] tended to estimate a higher heterogeneity
than those using transmission pair data [19,36,37,41,46,49]. This
tendency was also noted in [15], in which the authors separately
estimated k using both cluster size and transmission pair data col-
lected during the same period. Although [14] pointed out that SSEs
are more likely to be missed by contact tracing and the use of
transmission pair data would overestimate k, cluster size data col-
lected during an outbreak may have a relatively smaller sample
size; hence, the resulting confidence interval for k is often much
wider [15].

Regarding data quantity, previous studies suggested that when
sample sizes are small, estimating k using the maximum likelihood
(ML) method tends to overestimate k, while the risk of underesti-
mating k is minimal [51]. This upward bias appears because small
samples are less likely to cover a SSE [33]. Thus, for research that
applied the ML method to small datasets, the results should be
interpreted with caution.

During the study period covered by this review, very few k esti-
mates for COVID-19 were based on data collected outside of Asia.
This may be partly explained by different contract-tracing mea-
sures used within and outside Asia. While ‘backward tracing’,
which traces the source cases who infected the index cases, were
adopted by many Asian countries during the early phase of the
COVID-19 epidemic (e.g. Japan and Singapore) [52,53], contact
tracing measures in non-Asia regions often targeted ‘downstream’
individuals who may have been infected by index cases (i.e., ‘for-
ward tracing’) [54]. This may imply a lack of contact tracing and
data reporting on identified transmission chains in the majority
of regions beyond Asia. A previous stochastic modeling study sug-
gested that backward tracing is much more effective in finding
cases, especially when an over-dispersed transmission pattern
arises [55]. As backward contact tracing measures have been grad-
ually adopted in non-Asian countries, more non-Asian studies have
estimated k and reported on the heterogeneity in COVID-19 trans-
mission in the past few months [56,57].

The substantial transmission heterogeneity reported in most of
the reviewed articles may be partly attributable to the shared char-
acteristics of all three coronaviruses in terms of the host, pathogen,
and environment [58]. Heterogeneity in transmission can be
explained by contact patterns and social behaviors, where super-
spreaders often have notably higher numbers of contacts than
others [59–61]. For example, majority of SSEs during the SARS
and MERS outbreaks were linked to healthcare facilities that the
index cases frequently visited [10,31,59], while COVID-19 SSEs
have mainly occurred in social settings (e.g., bars, parties, and reli-
gious sites) [15,62]. A recent modeling study further discussed the
potential relationship between superspreading and social hetero-
geneity [23]. Furthermore, the large proportion of pre-
symptomatic or asymptomatic cases of SARS-CoV-2 infection
may escape from case ascertainment and maintain an active social
life, implying difficulty in identifying the source cases of clusters
and curtailing COVID-19 SSEs [63]. Some real-world studies on
COVID-19 clusters in Japan and India found that a notable propor-
tion of clusters in the community were due to pre-symptomatic or
asymptomatic transmission [41,64].

Higher virus loads and shedding in severe cases also enable a
wider spread of disease to the mass population [59,65,66]. Further-
more, heterogeneity in the virus shedding profile would signifi-
cantly contribute to shaping individual infectiousness. Recent
studies have suggested that while the majority of COVID-19 cases
5044
are moderately infectious, as they barely expel the virus, highly
infectious individuals are estimated to expel tens to thousands of
infectious virus particles per minute [67,68].

Environmental conditions are also crucial for driving SSEs. In
the MERS outbreak in 2015, the overcrowding of healthcare facili-
ties contributed to the emergence of SSEs [17]. Additionally, Yu
et al. [69] verified that the occurrence of a superspreading outbreak
during SARS was largely due to the airborne spread of the virus
within and between residential buildings caused by the defects
in drainage systems and air movement.

This study has some limitations. First, as the superspreading
potential is context-dependent in nature, meta-analysis of k was
not performed to avoid misinterpretation. Previous studies also
discussed the strong influence of differences in the study period,
data type, and statistical methods [46,49]. Second, although this
review provided a comprehensive picture of the superspreading
potential of the three coronaviruses, the quality of evidence varied
across diseases. For instance, compared with that for COVID-19,
fewer studies were published on SARS and MERS, and a large pro-
portion of k estimates for MERS were calculated backwardly in cur-
rent study by using the ‘20/800 rule. Third, among the studies on
COVID-19, most k estimates were based on data from the early
stages of the pandemic. More evidence is needed, considering the
long-term nature of the pandemic and genetic mutations in patho-
gens. Lastly, this review considered 1 as the reference point for the
k estimate. A few published estimates of k also indicated the risk of
over-dispersion by comparing k with 1 [18,33], considering that ‘k
equals to 10 leads to a sub-exponential tail in mathematical mod-
els; however, its linkage to epidemic dynamics or epidemiological
interpretation remain unclear.

In conclusion, this systematic review provided a comprehensive
overview of the superspreading potential and transmission hetero-
geneity of SARS, MERS, and COVID-19. We found that while the k
estimates varied across studies due to the differences that arose
in public health capacity and aspects of study design, the small k
values among majority of the studies demonstrated a substantial
over-dispersed transmission pattern in all three coronaviruses.
Our findings suggested that even with a reduced R value, the epi-
demic of these three coronavirus diseases still has a high resur-
gence potential due to transmission heterogeneity.
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