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a b s t r a c t

The use of insect meal in aquafeed formulations has recently gained attention. Detailed knowledge about
the inclusion levels for pikeperch (Sander lucioperca), a promising candidate for intensive aquaculture in
Europe remains, however, fragmented. In the present study, 4 isoproteic (45% dry matter) and iso-
energetic (21 MJ/kg) diets were formulated, including a control diet (H0) containing 30% fishmeal (FM)
on an as-fed basis and the other 3 diets in which FM protein was replaced by defatted black soldier fly
(Hemetia illucens) meal (HIM) at 25%, 50%, and 100% (diet abbreviation H9, H18 and H36, corresponding
to an inclusion level of 9%, 18% and 36%, respectively). The feeding trial was performed in triplicate
groups of 50 juvenile pikeperch (mean weight, 68.7 g) fed with experimental diets for 84 d during which
the growth performance, nutrient digestibility, fillet quality and economic and environmental sustain-
ability of rearing pikeperch were evaluated. Our findings indicated that pikeperch in H0, H9, and H18
groups displayed better results regarding growth performance indices, except for survival rate where no
significant difference among groups was recorded (P ¼ 0.642). A significantly lower organ-somatic index,
including hepatosomatic, viscerosomatic and perivisceral fat index, was found in fish in H18 groups than
other groups (P < 0.05). Inclusion of HIM affected the digestibility of the nutrients and resulted in an
almost linear reduction in the apparent digestibility coefficient of dry matter and protein. Concerning the
fillet quality, dietary HIM negatively affected the protein and ash contents of the fish fillets, while the
crude fat remained unchanged. Dietary HIM did not significantly modify total saturated, mono-
unsaturated and polyunsaturated fatty acids in the fillets of fed pikeperch (P > 0.05) but did reduce total
n-3 fatty acids (P ¼ 0.001) and increased total n-6 (P < 0.001). Increasing inclusion levels of HIM reduced
the environmental impacts associated with fish in-to-fish out ratio but entailed heavy burdens on energy
use and eutrophication. Low and moderate inclusion levels of HIM did not negatively affect land use and
water use compared to an HIM-free diet (P > 0.05). The addition of HIM at a level as low as 9% elicited a
similar carbon footprint to that of the control diet. The economic conversion ratio and economic profit
index were negatively affected at increased insect meal inclusion levels. This study has shown that the
incorporation of HIM in feed formulations for pikeperch is feasible at inclusion levels of 18% without
iation of Animal Science and
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adverse effects on growth performance parameters. The feasibility also highlighted the environmental
benefits associated with land use and marine resources required to produce farmed fish.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

European aquaculture has recently been expanding to include
new species such as pikeperch (Sander lucioperca) (Policar et al.,
2019). In the wild, this carnivorous species feeds mainly on crus-
taceans and insects, and on fish at a later stage. It is an important
food fish for European inland aquaculture, and considerable efforts
have been made to increase stock in fish farms (Steenfeldt et al.,
2015; Policar et al., 2016).

In order to fully replace the natural diet with a formulated feed,
pikeperch diets have to contain high levels of protein (43% to 50%)
as recommended by Nyina-wamwiza et al. (2005). This require-
ment can be covered by marine fishmeal (FM), which is considered
an optimal and nutritionally well-balanced ingredient for carniv-
orous fish (Oliva-Teles et al., 2015; Gasco et al., 2018). Nevertheless,
FM sources are not endless; their market price is increasing and FM
is therefore becoming unfavourable for commercial fish farming
(FAO, 2020a).

It is well known that significant progress has been made over
the past decade in reducing FM levels in commercial feeds for
farmed fish (Gasco et al., 2019; Nogales-M�erida et al., 2019).
Nowadays, various plant or animal-based alternatives are used for
industrial aquafeedsto help decrease the dependency on FM and
fish oil, with appropriate economic incentives to reduce the feed
cost (Gasco et al., 2018). To be used in aquaculture, an alternative
protein source needs to have certain nutritional characteristics,
such as relatively high protein content, high nutrient digestibility, a
balanced amino acid profile and low levels of fibre and anti-
nutrients (Gasco et al., 2018). Plant proteins (i.e. soybean meal or
plant protein concentrates) are frequently used (Fry at al., 2016),
but are often associated with certain complications, mainly due to
imbalances in the essential amino acid (EAA) profile, the presence
of anti-nutritional factors or palatability problems (Mastoraki et al.,
2020), consequently adversely affecting growth performance and/
or fish health (Gai et al., 2012; Oliva-Teles et al., 2015). Processed
animal proteins (PAPs), such as poultry by-products, blood or meat
and bone meal, have also been included in aquafeeds, with prom-
ising results (Hua et al., 2019; Galkanda-Arachchige et al., 2020),
even though their use is limited by legislation in Europe (Gasco
et al., 2018) and by EAA deficiency, high ash content and vari-
ability in digestibility (Galkanda-Arachchige et al., 2020).

A great deal of attention has recently been paid to insects
(Barragan-Fonseca et al., 2017; Gasco et al., 2019), which have
already been proposed as an efficient and high-quality alternative
protein source for poultry (Neumann et al., 2018; Secci et al., 2018;
Gariglio et al., 2019; Pieterse et al., 2019; Yoo et al., 2019) and swine
(Biasato et al., 2019; Chia et al., 2019). Insects are also a suitable
source of protein and lipids for carnivorous fish (Lock et al., 2018) as
a naturally available food in their environment. Insect meal has
been shown to be a promising alternative to FM in aquaculture
(Lock et al., 2018; Gasco et al., 2019; Nogales-M�erida et al., 2019)
with optimal dietary sources of several vitamins and minerals (e.g.
iron, potassium, calcium, magnesium etc.) (Gasco et al., 2018;
Hawkey et al., 2021). Several insect species can be included suc-
cessfully in carnivorous fish diets [e.g. for rainbow trout (Onco-
rhynchus mykiss) (Chemello et al., 2020), European sea bass
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(Dicentrarchus labrax) (Gasco et al., 2016), Atlantic salmon (Salmo
salar) (Belghit et al., 2019) and gilthead seabream (Sparus aurata)
(Piccolo et al., 2017)] or in omnivorous fish diets [e.g. for common
carp (Cyprinus carpio) (Li et al., 2017) and Nile tilapia (Oreochromis
niloticus) (Devic et al., 2018)], with the best results having been
obtained from a partial replacement of FM. The most common in-
sect species included as processed larva meal are mealworm
(Tenebrio molitor), black soldier fly (Hermetia illucens, HI) and house
fly (Musca domestica) (Lin and Mui, 2017; Magalh~aes et al., 2017;
Ido et al., 2019; Chemello et al., 2020). In particular, HI larva meal
seems to be one of the most promising insect-based PAP alterna-
tives to FM. HI larva meal is rich in protein, with levels up to 60%.
Even if lower in some EAAs compared to FM, HI larva meal has a
well-balanced amino acid profile (Hawkey et al., 2021) and pro-
vides a good amount of minerals and vitamins (Li et al., 2016;
Barragan-Fonseca et al., 2017; Magalh~aes et al., 2017; Renna et al.,
2017; Devic et al., 2018; Nogales-M�erida et al., 2019). Moreover,
black soldier fly larvae grown on low value organic can be an
environmentally sustainable protein source (Danieli et al., 2019;
Smetana et al., 2019; Gasco et al., 2020). Recent research has been
conducted on the use of H. illucensmeal in pikeperch (S. lucioperca)
showing that insect containing diets positively modulated the
richness and diversity of fish intestinal microbiota without adverse
effects in terms of intestinal histomorphology (Tran et al., 2021). To
complement \ the cited study, the effects of different dietary in-
clusion levels of a partially defatted Hermetia illucens larva meal
(HIM) in substitution of FM on the growth performance, di-
gestibility, somatic indices, body and fillet proximate composition,
economic indices and environmental sustainability of pikeperch
juveniles has been evaluated and reported in this paper.

2. Materials and methods

The feeding trial was conducted at the South Bohemia Univer-
sity, Faculty of Fisheries and Protection of Waters, in �Cesk�e
Bud�ejovice (The Czech Republic). The animal care and experimental
protocols were designed and carried out and in accordance with
the Czech and European Community Directive (2010/63/EU) on the
protection of animals used for scientific purposes (ethic approval
protocol number MSMT-6744/2018-2). The HIM provided by Her-
metia Deutschland GmbH & Co. KG (Baruth/Mark, Germany) was
obtained from larvae raised on plant by-products and partially
defatted with a mechanical process performed using high pressure
and without solvents. HIM composition is reported in Table 1.

2.1. Diet formulations

Four experimental diets, with increasing levels of HIM, were
formulated: a control diet (H0) containing 30% FM, in which plant-
based ingredients cover part of the protein requirements to mimic
the current trend of using such materials in aquafeeds, and 3 diets
in which HIM was used to substitute 25% (H9), 50% (H18) and 100%
(H36) of the FM, thus leading to HIM inclusion levels of 9%, 18% and
36%, on an as fed basis, respectively. The diets were isonitrogenous
(crude protein [CP]: 44.9% on an as fed basis), isolipidic (ether
extract [EE]: 18.4% on an as fed basis) and isoenergetic (gross
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Table 1
Ingredients and proximate composition (%, as fed) of the HIM and of the experimental diets.

Item Fishmeal HIM H0 H9 H18 H36

Ingredients
Herring fishmeal1 30 22.5 15 0
HIM2 0.0 9.0 18.0 36.0
Soybean protein concentrate 7.5 7.5 7.5 7.5
Corn gluten meal 17.0 17.0 17.0 17.0
Soybean meal 15.0 15.0 15.0 15.0
Wheat meal 8.0 6.5 5.0 2.0
Merigel 6.0 6.0 6.0 6.0
Fish oil 6.0 6.0 6.0 6.0
Soybean oil 6.0 6.0 6.0 6.0
Vitamin mixture3 1.0 1.0 1.0 1.0
Mineral mixture4 1.0 1.0 1.0 1.0
DL-Methionine 0.7 0.7 0.7 0.7
L-Lysine 0.8 0.8 0.8 0.8
Celite5 1.0 1.0 1.0 1.0

Proximate composition6

DM 94.0 91.0 94.3 94.9 94.5 94.8
CP (N � 6.25) 71.2 54.5 44.8 45.2 44.7 45.1
EE 9.4 8.5 18.9 18.2 18.9 17.4
Ash 14.0 7.6 8.7 8.6 8.1 7.4
Chitin7 5.34 e 0.47 0.97 1.93
NFE8 4.1 24.06 27.60 27.53 27.33 28.17
Gross energy9, MJ/kg 21.22 20.20 21.05 20.36 20.32 21.06

HIM ¼ defatted Hermetia illucens larva meal; DM ¼ dry matter; CP ¼ crude protein; EE ¼ ether extract; NFE ¼ nitrogen free extracts.
1 Purchased from FF SKAGEN A/S (Skagen, Denmark).
2 Purchased from Hermetia Deutschland GmbH & Co. KG (Baruth/Mark, Germany).
3 Vitamin mixture (IU or mg/kg diet): DL-a tocopherol acetate, 60 IU; sodium menadione bisulphate, 5 mg; retinyl acetate, 15,000 IU; DL-cholecalciferol, 3,000 IU; thiamin,

15 mg; riboflavin, 30 mg; pyridoxine, 15 mg; B12, 0.05 mg; nicotinic acid, 175 mg; folic acid, 500 mg; inositol, 1,000 mg; biotin, 2.5 mg; calcium panthotenate, 50 mg
(purchased from Granda Zootecnici S.r.l., Cuneo, Italy).

4 Mineral mixture (g or mg/kg diet): dicalcium phosphate, 500 g; calcium carbonate, 215 g; sodium salt 40, g; potassium chloride, 90 g; magnesium chloride, 124 g;
magnesium carbonate, 124 g; iron sulphate, 20 g; zinc sulphate, 4 g; copper sulphate, 3 g; potassium iodide, 4 mg; cobalt sulphate, 20 mg; manganese sulphate, 3 g; sodium
fluoride, 1 g (purchased from Granda Zootecnici S.r.l., Cuneo, Italy).

5 Celite, a source of acid-insoluble ash.
6 Values are reported as the mean values of duplicated analyses.
7 Estimated as ADF e ADFN.
8 Calculated as 100 � (CP þ EE þ Ash þ Chitin).
9 Determined by means of a calorimetric bomb.

Table 2
Amino acid content (% of protein) of the fishmeal, defatted black soldier fly (Hemetia
illucens) and the experimental diets.

Item FM HIM Experimental diets1

H0 H9 H18 H36

S EAA 46.2 54.3 50.8 46.1 48.8 47.2
Arginine 6.2 5.6 4.4 3.8 4.5 4.2
Histidine 2.4 3.0 2.7 2.5 2.5 2.3
Isoleucine 4.2 5.1 3.7 3.5 3.8 3.8
Leucine 7.2 7.9 9.2 8.4 8.9 8.7
Lysine 7.5 6.6 9.8 8.8 9.2 8.3
Methionine 2.7 2.1 3.4 2.6 2.7 2.3
Phenylalanine 3.9 5.2 4.6 4.2 3.9 3.9
Tyrosine 3.1 6.9 3.6 3.7 3.6 4.2
Threonine 4.1 3.7 5.3 4.8 5.1 4.8
Valine 4.9 8.2 4.1 3.8 4.6 4.7
S Non-essential amino acids 42.5 44.0 46.5 44.2 43.8 45.5
Alanine 6.3 7.7 5.4 5.2 6.1 6.5
Aspartic acid 9.1 10.0 7.9 7.2 7.9 7.7
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energy [GE]: about 20.71 MJ/kg as fed) to meet the nutritional re-
quirements of juvenile pikeperch (Schulz et al., 2007, 2008). The
extruded experimental feeds were prepared at the EXOT HOBBY
s.r.o. facility (Cerna v Posumavi, Czech Republic). All dried in-
gredients, which were finely ground to 300 to 400 mm, were mixed
in a feedmixer HLJe700/C (Saibainuo, China), then 4% oil and water
were sequentially blended in the feed mixer and the obtained
mixture was then extruded, using a commercial dual-screw
extruded SLG II 70 (Saibainuo, China), to form 3 mm pellets. The
remainder of the lipid was added during vacuum coating. The
pellets were dried to approximately 90% dry matter using a 7-layer
air dryer KX-7-8D (Saibainuo, China). The pellets were vacuum
packed and stored at �20 �C until fed. The temperature and pres-
sure during the feed production process ranged from 96 to 106 �C
and from 19 to 22 atm, respectively. A maximal temperature of
138 �C was used during the drying process, which lasted 25 to
30 min. Crystalline EAAs lysine and methionine were supple-
mented in the diets to ensure that the requirements of the pike-
perch were met (Geay and Kestemont, 2015). The ingredients and
the proximate composition and amino acid content of the experi-
mental diets are reported in Table 1 and Table 2.
Glycine 6.4 5.7 4.2 3.8 3.9 3.8
Glutamic acid 12.6 10.9 15.7 14.6 15.3 14.9
Proline 4.2 6.6 9.2 9.6 6.4 8.3
Serine 3.9 3.1 4.1 3.8 4.2 4.3
Total amino acids 88.7 98.3 97.3 90.3 92.6 92.7

EAA ¼ essential amino acids; FM ¼ herring fish meal; HIM ¼ Hermetia illucensmeal.
1 H0, H9, H18, H36 represent experimental diets where fishmeal was replaced by

HIM at 0%, 25%, 50% and 100%, respectively.
2.2. Facilities, fish and the feeding trial

The feeding trial lasted 12 wk and was conducted in a recir-
culation system (total volume 11,400 L), consisting of fifteen 250 L
round conical plastic tanks (black walls, white bottom), a
9
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mechanical drum filter (AEM 15, AEM-Products V.O.F., Lienden,
The Netherlands), sedimentation tanks (total volume 2,600 L, se-
ries of filtration sections Bioakvacit PP10) and a moving bed bio-
filter (volume 4,700 L, media BT10 Ratz Aqua & Polymer Technik,
Remscheid, Germany). The water temperature was maintained at
23.1 ± 1.0 �C by conditioning the ambient air and using Eheim
J€ager Thermocontrol 300 submerged heaters (Eheim GmbH & Co
KG, Stuttgart, Germany); the photoperiod was set at 12 h light-12 h
dark by controlling the light through the use of timers. Light in-
tensity was set at 20 to 35 lx on the water surface. The flow rate in
each tank was approximately 200 L/h. Dissolved oxygen
(8.6 ± 1.3 mg/L) and pH (6.98 ± 0.28) were monitored twice daily,
at 08:00 and 16:00, using a HACH HQ 40 multi-meter (HACH
Lange, Germany). Pure oxygen was distributed, using ceramic
diffusors, in the header tank, whenever necessary. The ammonia,
nitrate and nitrite concentrations were analysed by means of
HACH, LCK 304, LCK 339 and LCK 341 kits, using a HACH DR2800
spectrophotometer at 2-day intervals. The nitrite-N, nitrate-N, and
ammonia-N concentrations were 0.42 ± 0.24, 78.88 ± 37.31 and
1.89 ± 0.58 mg/L, respectively.

The juvenile pikeperch used in the trial were obtained, ac-
cording to the procedure described in Policar et al. (2013), from the
own faculty source. Part of this stock was implanted with a PIT-tag
(7 mm � 1.35 mm, Loligo Systems ApS) when juveniles reached a
mean body weight of 52.51 ± 5.23 g (10 d before start of feeding
trial). In order to perform the trial, a total of 750 juveniles (of which
450 were tagged) were individually weighed using a digital balance
(Scout, Ohaus Corporation, The USA, d ¼ 0.1 g) (initial body weight
[IBW] of 68.7 ± 6.6 g) and randomly allotted to 15 tanks with a total
of 50 fish per tank. The mean stocking density at the start of the
trial was 13.17 ± 0.24 kg/m3.

Moreover, the tagged fish were also measured after anaesthesia
in an MS 222 bath (50 mg/L), (initial body length [IBL] ± 1 mm) to
follow both the body weight and length over time. All the fish were
acclimated to the rearing system for 10 d before the start of the trial
and fed by a grower commercial feed EFICO Sigma 970 (crude
protein: 54%, crude lipid: 18%, pellet size: 3 mm) (BioMar A/S,
Brande, Denmark).

The pikeperch in each tank were fed 7 d, using a combination of
automatic feeders (EHEIM Twins, 5 meals per day at 07:00, 09:00,
11:00, 13:00 and one hand feeding at the end of the day at 15:00).
Feed distribution was stopped as soon as the fish stopped eating.
After each meal, any uneaten pellets were siphoned off using a
central bottom drain and counted to calculate the real total feed
supply.
2.3. Growth parameters

On the first day and on day 21, 42, 63 and 84 of the experiment, a
subsample of 30 tagged fish per tank was weighed (0.01 g) and
measured (body length [BL] ± 1 mm). The fish were anesthetized
during the measurements with a solution of MS 222 in the bath
(50 mg/L).

At the end of the trial, the fish were starved for 2 d, anesthetised,
and individually weighed to record the final body weight (FBW).
Moreover, the biomass of each tankwas then determined through a
bulk weighing of all the fish.

The obtained data were used to calculate the following
variables:

Survival (SR, %)¼ 100e (Number of dead fish/Initial number of fish)
� 100,

Weight gain (WG, %) ¼ [(FBW (g) e IBW (g)/IBW (g)] � 100,
10
Specific growth rate (SGR, %/day) ¼ [(lnFBW e lnIBW)/Number of
feeding days] � 100,

Feed intake (g/kg average body weight [ABW] per day)¼ Total feed
consumed (g, DM)/Average body weight (kg)/Number of feeding
days (Guerreiro et al., 2020),

Feeding rate (FR, %/ day) ¼ [Total feed supplied (g, DM) � 100/
Number of feeding days]/[e(lnFBW þ lnIBW) � 0.5] (Lock et al., 2018),

Protein efficiency ratio (PER) ¼ WG (g) /Total protein fed (g, DM),

where ABW is calculated as (Initial body weight þ Final body
weight)/2. SD is the standard deviation of the fish subsample.

At the end of the experiment, 7 individuals were taken from
each replicate (tank) to be measured and their viscera, liver and
perivisceral fat were weighed ( ± 0.01 g) to determine the viscer-
osomatic (VSI), hepatosomatic (HSI) and perivisceral fat indices
(PFI). All the fish were filleted, by a person experienced in filleting,
to calculate the fillet yield (FY). The collected data were used to
calculate the following parameters:

Fulton's condition factor (K) ¼ (FBW/FBL3) � 100,

Hepatosomatic index (HSI, %) ¼ 100 � Liver weight (g)/Fish weight
(g),

Viscerosomatic index (VSI, %) ¼ 100 � Viscera weight (g)/Fish
weight (g),

Perivisceral fat index (PFI, %) ¼ 100 � Perivisceral fat weight (g)/
Fish weight (g),

Fillet yield (FY, %) ¼ 100 � Fillet weight (g)/BW,

where FBL is final total body length (mm). The right and left fillets
of 5 fish per tank (15 fish/treatment) were stored at �20 �C for
subsequent proximate composition analyses.

Moreover, 3 fish per tank (9 fish/treatment) were sampled and
stored at �20 �C for a whole-body composition (WBC) assessment.

2.4. Digestibility trial

Seventy-five day after the start of the trial, faeces were
collected daily for 7 d using settling columns placed at the bottom
of the tanks. After each meal, any uneaten feed was collected, as
reported in section 2.3. One hour after each feeding, the faeces
accumulated in each settling column were collected, centrifuged
(3,000 � g), pooled for each tank and stored at �20 �C until they
were freeze dried for analyses. The apparent digestibility co-
efficients of the dry matter (ADCDM), crude protein (ADCCP) and
ether extract (ADCEE) of the 4 experimental diets were measured
using the indirect acid-insoluble ash (AIA) method, with 1% celite
(Fluka, Switzerland) added to the diets as an inert marker, and
then calculated according to Renna et al. (2017). Celite is a com-
mon and reliable indigestible marker used to assess nutrient di-
gestibility in fish (Da et al., 2013; Chemello et al., 2020; Caimi et al.,
2021). This marker was found to not leak from faeces throughout a
24-h cycle and therefore feasible to recover in adequate quantities
in the faeces (Sales et al., 2001).

2.5. Proximate composition of the HIM, diets, fish and fillets

The HIM and feed samples were analysed as reported in Renna
et al. (2017). The diets were ground finely using a cutting mill (MLI



Table 3
Fatty acid composition (% of the total fatty acids) of fishmeal, defatted black soldier
fly (Hemetia illucens) and the experimental diets.

Fatty acids FM HIM Experimental diets1

H0 H9 H18 H36

C12:0 0.35 43.70 0.04 1.61 2.57 6.18
C14:0 5.16 11.82 1.72 2.01 2.12 2.75
C16:0 21.64 16.34 10.27 10.68 10.52 10.62
C16:1 5.00 3.92 2.37 2.39 2.40 2.41
C18:0 4.45 2.69 2.99 3.02 3.03 2.81
C18:1n9 16.64 11 20.13 19.60 19.56 18.85
C18:1n7 1.67 0.38 20.62 19.60 19.79 19.45
C18:2n6 2.47 nd 25.76 25.41 25.10 24.18
C18:3n3 0.16 0.76 3.89 3.73 3.70 3.43
C20:1n9 1.25 nd 3.30 3.12 3.10 2.75
C20:3n3 4.26 nd 0.11 0.10 0.10 0.08
C20:4n6 0.17 nd 0.25 0.24 0.19 0.11
C20:5n3 0.99 nd 0.32 0.31 0.30 0.26
C22:5n6 9.72 nd 0.63 0.59 0.54 0.42
C22:6n3 1.00 nd 4.82 4.55 3.91 2.67
C23:0 nd nd 0.50 0.80 0.86 0.81
Other 4.40 1.0 2.28 2.24 2.21 2.22
SFA 33.76 74.89 16.46 19.06 20.00 23.95
MUFA 29.30 15.43 47.09 45.36 45.48 44.02
PUFA 36.58 9.15 36.00 35.14 34.04 31.60
n3 31.83 0.76 9.14 8.69 8.01 6.44
n6 4.74 8.39 26.81 26.40 25.98 24.83
n3/n6 6.72 0.09 0.34 0.33 0.31 0.26

FM ¼ herring fish meal; HIM ¼ defatted black soldier fly (Hemetia illucens);
nd ¼ traces, < 0.05%; SFA ¼ saturated fatty acids; MUFA ¼ monounsaturated fatty
acids; PUFA ¼ polyunsaturated fatty acids.

1 H0, H9, H18, H36 represent experimental diets where fishmeal was replaced by
HIM at 0%, 25%, 50% and 100%, respectively.
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204; Bühler AG, Uzwil, Switzerland) and the analyses were per-
formed according to AOAC International (2000). Samples were
dried in the oven at 105 �C to reach constant weight for dry matter
(AOAC no.934.01), then crude protein was estimated using the
Kjeldahl method (AOAC no. 984.13), ash content measured (AOAC
no. 942.05) by incinerating the samples in a muffle furnace at
550 �C, and crude fat determinated by the Soxhlet extraction
method following the procedure AOAC no. 2003.05 (AOAC, 2003).
The gross energy content was determined using an adiabatic
calorimetric bomb (C7000; IKA, Staufen, Germany). Chitin was
estimated according to Finke (2007). All the feed analyses were
performed in duplicate. Fatty acid profile was determined as
described in detail by Sampels et al. (2014) by methylating lipid
with boron triflouoride-methanol complex (BF3), dissolving in
0.5 mL of hexane and storing under normal atmosphere at �80 �C
until gas chromatography analysis. Fatty acid methyl esters were
determined using a gas chromatograph. Analysis of the amino acid
composition of the experimental diets was performed in triplicate,
using an automatic amino acid analyzer AAA 400 (INGOS Prague)
based on dye-forming reaction of amino acids using ninhydrin as
an oxidizing agent (Stejskal et al., 2019).

The whole-fish (n ¼ 9) and fillets (n ¼ 15) that had been stored
for analysis were individually ground using a Braun FP3131WH
grinder and then freeze-dried. Proximate composition and gross
energy tests were performed using the samemethods as those used
for the experimental feeds.

The lipid quality indices were calculated according to Chen and
Liu (2020) as follows:

Atherogenicity index (AI) ¼ [C12:0 þ (4 � C14:0) þ C16:0]/SUFA,

Thrombogenicity index (TI) ¼ (C14:0 þ C16:0 þ C18:0)/
[(0.5 � SMUFA) þ (0.5 � Sn6 PUFA) þ (3 � Sn3 PUFA) þ (n3/n6)],

Unsaturation index (UI) ¼ 1 � (% monoenoics) þ 2 � (%
dienoics) þ 3 � (% trienoics) þ 4 � (% tetraenoics) þ 5 � (%
pentaenoics) þ 6 � (% hexaenoics).

2.6. Economic analyses and environmental sustainability of the
experimental diets

An economic conversion ratio (ECR) and an economic profit
index (EPI) were calculated for each tested group to determine the
relative efficacy of the tested diets and their subsequent benefits,
using the following formulas [Moutinho et al. (2017)]:

ECR (V/kg of fish) ¼ Feed conversion ratio � DP,

EPI (V/fish) ¼ (WG � SP) e (WG � DP),

where DP is the price of the diet (V/kg of diet) and SP is the selling
price (V7.58/kg).

The per kilogram cost (V), excluding labour and taxes, of all the
used components bought from commercial retailers was as follows:
FM ¼ V1.48; HIM ¼ V3.50; wheat meal ¼ V0.60; fish oil ¼ V1.33;
mineral mixture ¼ V0.51; vitamin mixture ¼ V3.90; soy
concentrate ¼ V1.50; corn gluten meal ¼ V0.37; soybean
meal ¼ V0.33; merigel ¼ V0.75; fish oil ¼ V1.33; soybean
oil ¼ V0.58; vitamin premix ¼ V3.90; mineral premix ¼ V0.51; L-
methionine ¼ V6.00; L-lysine ¼ V1.50. The followed prices of the
diets were calculated: H0 ¼ V0.97; H9 ¼ V1.17; H18 ¼ V1.36 and
H36 ¼ V1.75. The sales price of pikeperch was calculated as V7.58/
kg based on published price report (FAO 2020b) and personal
communicationwith 2 European fish farmswho produce pikeperch
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in RAS systems. The fish-in-to-fish-out ratio (FIFO) was used as a
practical measure of the quantity of live fish from capture fisheries
required for each kilogram of farmed pikeperch. This indicator was
calculated as follows (Tacon and Metian, 2008):

FIFO ¼ (LFM þ LFO)/(YFMw þ YFOw) � Feed conversion ratio,

where LFM is the level of FM in the diet; LFO is the level of fish oil in
the diet; YFMw is the FM yield from wild fish; YFOw is the fish oil
yield from wild fish.

The simulated environmental impacts associated with 1 kg
farmed pikeperch production were calculated according to Tran
et al. (2022a) as a multiplication between environmental impacts
of the diet and respective feed conversion ratio. Six environmental
impact categories of experimental diets, including global warming
potential (GWP, kg CO2 equivalent [eq.]), energy use (EU, kg oil eq.),
acidification (kg SO2 eq.), eutrophication (kg P eq.), land use (m2

arable land [a.]) and water use (WU, m3), were calculated based on
the life cycle assessment database for animal feed ingredients (GFLI,
2022). These categories for black soldier fly (H. illucens) were
retrieved from Smetana et al. (2019). Environmental impacts were
calculated as follows:

Environmental impact (GWP, EU, WU) per kilogram of
feed ¼ Environmental impact (GWP, EU, WU)/kg ingredient (GFLI,
2022 database) � Inclusion levels of ingredients in pikeperch diet.

Environmental impact (GWP, EU, WU) per kilogram of fish
produced ¼ Environmental impact (GWP, EU, WU) per kilogram of
kg feed � Feed conversion ratio.

2.7. Statistical analysis

All data were tested for homogeneity of variance using the
Cochran, Hartley and Bartlett tests. The effects of the diet on the
growth performance, somatic indices, whole body proximate



Table 4
Survival and growth performances of the pikeperch fed the experimental diets (mean ± standard deviation).

Item Experimental diets1 P-value

H0 H9 H18 H36

IBW, g 69.0 ± 6.5 67.5 ± 7.0 68.4 ± 5.7 69.9 ± 7.0 0.092
BW21, g 91.3 ± 12.1ab 91.1 ± 8.9ab 91.2 ± 10.3a 87.6 ± 9.8b 0.031
BW42, g 111.8 ± 18.0a 109.3 ± 12.9a 110 ± 16.8a 102.4 ± 13.6b 0.001
BW63, g 128.5 ± 21.8a 129.6 ± 20.3a 127.1 ± 20.8ab 119.0 ± 18.6b 0.005
FBW, g 154.3 ± 24.5a 152.3 ± 24.2a 151.6 ± 26.5a 132.7 ± 19.9b <0.001
SR, % 96 ± 2.0 97.3 ± 3.1 96.7 ± 1.2 94 ± 5.3 0.642
WG, % 122.0 ± 2.5a 126.1 ± 17.4a 121.9 ± 6.5a 86.9 ± 6.7b 0.004
SGR, %/d 0.95 ± 0.20a 0.96 ± 0.21a 0.93 ± 0.22a 0.76 ± 0.17b <0.001
Feed intake (g/kg ABW per day) 10.65 ± 0.27b 10.86 ± 0.30b 10.66 ± 0.18b 11.78 ± 0.12a <0.001
Feed conversion ratio2 1.27 ± 0.06b 1.28 ± 0.07b 1.29 ± 0.03b 1.81 ± 0.15a <0.001
FR, %/d 1.25 ± 0.01b 1.28 ± 0.01b 1.26 ± 0.03b 1.34 ± 0.02a 0.002
PER 1.66 ± 0.08a 1.64 ± 0.09a 1.64 ± 0.04a 1.16 ± 0.10b <0.001

IBW ¼ initial body weight; BW21 ¼ body weight at day 21; BW42 ¼ body weight at day 42; BW63 ¼ body weight at day 63; FBW ¼ final body weight; SR ¼ survival rate;
WG ¼ weight gain; SGR ¼ specific growth rate; ABW ¼ average body weight; FR ¼ feeding rate; PER ¼ protein efficiency ratio.
a,bDifferent letters within a row indicate significant differences (P < 0.05).

1 H0, H9, H18, H36 represent experimental diets where fishmeal was replaced by defatted black soldier fly (Hemetia illucens) at 0%, 25%, 50% and 100%, respectively.
2 Data published in the study (Tran et al., 2021).
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composition, FIFO, ECR and EPI were analysed separately, by means
of one-way ANOVA, followed by the Tukey test.

The effects of the diet on composition of the pikeperch fillets
were tested, by means of KruskaleWallis non-parametric analysis,
using themedian test andmultiple pair wise comparisons by ranks.
Differences were considered significant at P < 0.05. The data were
expressed as the mean ± SD, and statistical analyses were per-
formed using STATISTICA 12.0.
3. Results

The fish readily accepted the feeds and the survival rate was
high, with no significant differences between treatments. At the
end of the experiment, the FBW, WG and SGR, were found to be
lower in the H36 group, while these parameters were not signif-
icantly different in the remaining groups. Clear differences in fish
growth appeared between H36 and the other dietary treatments
after 42 d of the trial. Consequently, the H36 group displayed
significantly higher FR and feed intake than H0, H9 and H18
(Table 4).

Significant differences (P < 0.05) were highlighted for K, somatic
and perivisceral indices and fillet yields (Table 5). The K of fish in
Table 5
Condition factor, somatic indexes and fillet yield in the pikeperch fed the experi-
mental diets (mean ± standard deviation, n ¼ 21).

Item Experimental diets1 P-value

H0 H9 H18 H36

K2 0.81 ± 0.09a 0.80 ± 0.07ab 0.81 ± 0.09a 0.78 ± 0.06b 0.019
HSI3, % 1.41 ± 0.36a 1.20 ± 0.27ab 1.03 ± 0.26b 1.27 ± 0.22a <0.001
VSI4, % 9.42 ± 1.58a 8.68 ± 1.39ab 7.54 ± 0.95b 8.79 ± 1.73a <0.001
PFI5, % 5.16 ± 1.42a 4.64 ± 1.27a 3.92 ± 0.74b 4.58 ± 1.40a 0.019
FY6, % 45.6 ± 2.1ab 46.1 ± 2.2ab 46.6 ± 1.5a 44.8 ± 1.9b 0.027

a,bDifferent letters within a row indicate significant differences (P < 0.05).
1 H0, H9, H18, H36 represent experimental diets where fishmeal was replaced by

defatted black soldier fly (Hemetia illucens) at 0%, 25%, 50% and 100%, respectively.
2 Fulton's condition factor (K) ¼ [Final body weight (g)/Final body

length (mm)] � 100.
3 Hepatosomatic index (HSI) ¼ 100 � Liver weight (g)/Fish weight (g).
4 Viscerosomatic index (VSI) ¼ 100 � Viscera weight (g)/Fish weight (g).
5 Perivisceral fat index (PFI) ¼ 100 � Perivisceral fat weight (g)/Fish weight (g).
6 Fillet yield (FY) ¼ 100 � Fillet weight (g)/BW.
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H36 gourp was lower than H0 and H18 groups, but similar to H9
group. Similar trends were observed for the HSI and VSI of the fish
in the dietary treatments. HSI and VSI were lower in H18 group
than in H0 and H36 groups, while H9 group presented intermediate
values. As far as PFI was concerned, H18 group showed the lowest
result (P < 0.05) of all the treatments. The only significant differ-
ence (P < 0.05) in FY was found in H18 and H36 groups, with H36
group having the lowest yield.

The ADC values of the nutrients are presented in Table 6. Dif-
ferences (P < 0.05) were recorded for all the parameters, with the
lowest values of DM and CP digestibility being recorded for the H36
diet. A decreasing trend of nutrient digestibility was generally
observed for increasing inclusion levels of HIM, except for ether
extract digestibility, where only the H36 diet differed from the
other diets.

The inclusion of HIM significantly affected the whole-body DM,
CP, EE and energy content (P < 0.05). The whole-body composition
for DM, CP and energy content were markedly reduced in H36,
compared to H9 (P ¼ 0.043, 0.026, and 0.007, respectively). The
whole-body EE content was significantly lower in the H36 and H18
groups (P ¼ 0.006) than in H9 while the ash content showed no
significant differences (Table 7).

The chemical composition and fatty acid profiles of the fillets of
the fish fed the experimental diets is reported in Table 8. Although
EE remained unaffected by the treatments, the inclusion of HIM
significantly altered the DM, CP and ash content (P < 0.05). In de-
tails, DMwas lower in H36 than in H9 (P< 0.05). The CP of the fillets
was improved in H9, compared to H0 ( þ 2.5%) and H36 ( þ 5.2%) (P
< 0.05). The total replacement of FM by HIM decreased the ash
content, while H0, H9 and H18 did not show any correlation with
this parameter.

The total amount of saturated fatty acids (SFA) in the pikeperch
fillets was not influenced by the diet. The lauric acid (C12:0) and
myristic acid (C14:0) values of the fillets gradually increased as the
insect meal inclusion increased.

Palmitic acid (C16:0) was the predominant SFA, with a signifi-
cantly higher content in the H9 group than in the H36 group
(Table 8). Stearic acid (C18:0) was also present at high levels, but
dietary insect meal inclusion showed no effect. Other SFAs made up
less than 3% of the total fatty acids. The total monounsaturated fatty
acid (MUFA) level was not influenced by the feeds with different
insect meal inclusion levels. Oleic acid (C18:1n9) was the pre-
dominant MUFA in all the experimental groups, but the insect meal



Table 6
Apparent digestibility coefficient of the dry matter, proteins and ether extract of pikeperch fed the experimental diets (mean ± standard deviation, n ¼ 3).

Item Experimental diets1 P-value

H0 H9 H18 H36

ADC DM 82.77 ± 0.77a 81.64 ± 0.59ab 80.86 ± 0.35b 72.90 ± 0.16c 0.001
ADC CP 86.10 ± 0.62a 84.35 ± 0.50b 82.95 ± 0.16c 70.75 ± 0.18d 0.001
ADC EE 84.15 ± 0.71a 82.90 ± 0.55a 83.15 ± 0.68a 72.22 ± 0.17b 0.001

ADC ¼ apparent digestibility coefficient; DM ¼ dry matter; CP ¼ crude protein; EE ¼ ether extract.
a-dDifferent letters within a row indicate significant differences (P < 0.05).

1 H0, H9, H18, H36 represent experimental diets where fishmeal was replaced by defatted black soldier fly (Hemetia illucens) at 0%, 25%, 50% and 100%, respectively.

Table 7
Proximate composition (homogenates of the whole body; g/100 g as it is) of the pikeperch fed the experimental diets (mean ± standard deviation, n ¼ 9).

Item Experimental diets1 P-value

H0 H9 H18 H36

DM 26.2 ± 1.4ab 27.0 ± 1.8a 25.7 ± 0.9ab 25.0 ± 1.5b 0.043
CP 16.8 ± 0.6ab 17 ± 1.0a 16.9 ± 1.0ab 15.9 ± 0.7b 0.026
EE 7.2 ± 0.7ab 7.8 ± 1.6a 6.2 ± 0.7b 6.4 ± 0.7b 0.006
Ash 3.8 ± 0.2 3.8 ± 0.4 4.0 ± 0.4 3.8 ± 0.3 0.597
Energy content, MJ/kg 0.63 ± 0.04ab 0.65 ± 0.06a 0.59 ± 0.03ab 0.57 ± 0.06b 0.007

DM ¼ dry matter; CP ¼ crude protein; EE ¼ ether extract.
a,bDifferent letters within a row indicate significant differences (P < 0.05).

1 H0, H9, H18, H36 represent experimental diets where fishmeal was replaced by defatted black soldier fly (Hemetia illucens) at 0%, 25%, 50% and 100%, respectively.

Table 8
Proximate composition (g/100 g as it) and fatty acid profiles (% of total fatty acids) of fillet of pikeperch fed the experimental diets.

Item Experimental diets1 P-value

H0 H9 H18 H36

Proximate composition
DM 20.8 ± 0.1ab 21.3 ± 0.6a 21.0 ± 0.8ab 20.3 ± 1.1b 0.003
CP 19.7 ± 0.7b 20.2 ± 0.3a 19.9 ± 0.5ab 19.2 ± 0.7c <0.001
EE 0.86 ± 0.21 0.81 ± 0.21 0.88 ± 0.27 0.83 ± 0.20 0.791
Ash 1.10 ± 0.06a 1.10 ± 0.11a 1.09 ± 0.12a 1.01 ± 0.04b <0.001
Fatty acid profiles
C12:0 0.02 ± 0.01c 0.23 ± 0.09bc 0.55 ± 0.14a 0.50 ± 0.27ab <0.001
C14:0 1.15 ± 0.21c 1.26 ± 0.13bc 1.59 ± 0.20a 1.55 ± 0.29ab 0.001
C16:0 18.83 ± 1.44ab 19.25 ± 0.57a 18.75 ± 0.65ab 18.27 ± 0.81b 0.048
C16:1 2.17 ± 0.31 1.84 ± 0.30 2.15 ± 0.39 2.08 ± 0.42 0.112
C18:0 4.98 ± 0.60 5.45 ± 0.31 5.5 ± 0.64 5.27 ± 0.55 0.155
C18:1n9 13.15 ± 1.65 11.86 ± 1.24 13.02 ± 1.08 13.3 ± 1.72 0.072
C18:1n7 nd nd nd nd
C18:2n6 13.85 ± 3.95b 14.36 ± 1.06b 15.34 ± 0.63b 17.31 ± 1.18a 0.001
C18:3n3 1.66 ± 0.47a 1.47 ± 0.13b 1.67 ± 0.13ab 1.83 ± 0.20a 0.001
C20:1n9 1.64 ± 0.08a 1.43 ± 0.13b 1.46 ± 0.06b 1.57 ± 0.12ab <0.001
C20:3n3 1.45 ± 0.18a 1.44 ± 0.13a 1.27 ± 0.10ab 1.25 ± 0.16b 0.002
C20:4n6 0.14 ± 0.03 0.14 ± 0.03 0.14 ± 0.01 0.14 ± 0.04 0.690
C20:5n3 4.88 ± 0.61 4.95 ± 0.56 4.53 ± 0.22 4.89 ± 0.54 0.252
C22:5n6 1.49 ± 0.17b 1.47 ± 0.52ab 1.41 ± 0.45b 1.82 ± 0.36a 0.009
C22:6n3 32.79 ± 4.14a 32.85 ± 2.02a 30.69 ± 1.80ab 28.37 ± 2.67b 0.001
C23:0 nd nd nd nd
SFA 25.66 ± 1.93 26.88 ± 0.65 27.04 ± 0.95 26.21 ± 0.82 0.078
MUFA 15.08 ± 1.64 13.59 ± 1.32 14.73 ± 1.13 15.12 ± 1.80 0.075
PUFA 56.75 ± 1.41 57.21 ± 1.47 55.57 ± 1.91 56.16 ± 2.19 0.185
PUFA þ MUFA 71.82 ± 1.76a 70.8 ± 0.71ab 70.29 ± 1.10b 71.28 ± 0.81ab 0.029
n3 40.78 ± 4.13a 40.71 ± 2.10a 38.16 ± 1.94ab 36.33 ± 2.84b 0.001
n6 15.96 ± 3.88b 16.49 ± 1.25b 17.40 ± 0.77b 19.82 ± 1.04a <0.001
n3/n6 2.88 ± 1.53a 2.49 ± 0.29a 2.20 ± 0.16ab 1.84 ± 0.21b <0.001
UI2 284.90 ± 16.76a 284.25 ± 9.77a 272.37 ± 10.35ab 267.05 ± 13.74b 0.003
AI3 0.33 ± 0.02b 0.35 ± 0.01ab 0.37 ± 0.02a 0.35 ± 0.02ab 0.002
TI4 0.18 ± 0.01b 0.19 ± 0.01ab 0.20 ± 0.01a 0.20 ± 0.01a 0.003

DM¼ drymatter; CP¼ crude protein; EE¼ ether extract; nd¼ traces, <0.05%; SFA¼ saturated fatty acids; MUFA¼monounsaturated fatty acids; PUFA¼ polyunsaturated fatty
acids.
a-cDifferent letters within a row indicate significant differences (P < 0.05).

1 H0, H9, H18, H36 represent experimental diets where fishmeal was replaced by defatted black soldier fly (Hemetia illucens) at 0%, 25%, 50% and 100%, respectively.
2 Unsaturation index (UI) ¼ 1 � (% monoenoics) þ 2 � (% dienoics) þ 3 � (% trienoics) þ 4 � (% tetraenoics) þ 5 � (% pentaenoics) þ 6 � (% hexaenoics).
3 Atherogenicity index (AI) ¼ [C12:0 þ (4 � C14:0) þ C16:0]/SUnsaturated fatty acids.
4 Thrombogenicity index (TI) ¼ (C14:0 þ C16:0 þ C18:0)/[(0.5 � SMUFA) þ (0.5 � Sn6 PUFA) þ (3 � Sn3 PUFA) þ (n3/n6)].
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inclusion level showed no effect. Moreover, no difference was
found for the total polyunsaturated fatty acids (PUFA) between the
experimental groups. Docosahexaenoic acid (DHA, C22:6n3) was
the predominant PUFA, with similar levels in the H0, H9 and H18
groups. The H36 group showed a significantly lower relative con-
tent than H0 and H9 (P ¼ 0.001). The second most abundant PUFA
was linoleic acid (C18:2n6), which showed a higher level in H36
than in the other diets. A significant difference also emerged be-
tween groups for the n3:n6 ratio (P < 0.001) as well as for UI
(P ¼ 0.003), AI (P ¼ 0.002) and TI (P ¼ 0.003). On the contrary, the
C18:2n6, C18:3n3, MUFA, PUFAþMUFA and n6 values for the fillets
were numerically lower than those of the experimental insect-
based feeds.

The effects of the insect meal inclusion level on the pikeperch
diets, as observed for some environmental parameters and eco-
nomic aspects, are shown in Table 9. The increased inclusion level
of HIM increased the cost of the diet and had an adverse effect on
ECR and EPI. However, the inclusion of HIM progressively improved
the fish-in-fish-out ratio (P < 0.001). Environmental impacts
associated with one kg pikeperch production were HIM-dose
dependent. Dietary HIM significantly elevated eutrophication and
energy use (P < 0.001), while acidification and land use remained
comparable among the control, H9, and H18 groups (P> 0.05). At an
inclusion level as low as 9%, dietary insect meal entailed similar
GWP as the control diet, while increasing HIM levels caused a
significant burden on GWP (P< 0.001). It is worth noting that low to
moderate inclusion levels of HIM (9% and 18%) required a similar
amount of water to produce one kg pikeperch compared to HIM-
free diet (P > 0.05), but the higher inclusion (36%) created a
higher water demand (P < 0.001).
4. Discussion

Insect meal has been identified as one of the most promising
potential alternative protein sources for aquafeeds in the coming
decades (Hua et al., 2019). The inclusion of insect meal at appro-
priate levels in aquatic animal diets has shown a good response, in
terms of growth performance and feed utilisation (Gasco et al.,
2019; Hua, 2021). In addition, the use of dietary insect meal en-
tails environmental benefits associated with the use of forage fish
(FIFO) (Stejskal et al., 2020) and, from a life cycle assessment
Table 9
Economic and environmental sustainability parameters of pikeperch fed the experiment

Item Experimental diets1

H0 H9

Diet cost, V/kg 0.97 1.17
ECR2, V/kg of fish 1.23 ± 0.06c 1.50 ± 0.08bc

EPI2, V/fish 1.06 ± 0.02a 1.03 ± 0.02a

FIFO2 1.66 ± 0.08a 1.33 ± 0.07b

Environmental impacts associated with 1 kg pikeperch production
GWP, kg CO2 eq. 2.59 ± 0.13c 3.1 ± 0.17bc

Acidification, kg SO2 eq. 11.67 ± 0.58b 12.96 ± 0.71b

Eutrophication, kg P eq. 0.26 ± 0.01d 0.98 ± 0.05c

Land use, m2a 2.11 ± 0.11b 2.23 ± 0.12b

Energy use, kg oil eq. 0.34 ± 0.02d 0.53 ± 0.03c

Water use, m3 0.036 ± 0.002b 0.036 ± 0.002b

GWP ¼ global warming potential; eq. ¼ equivalent.
a-dDifferent letters within a row indicate significant differences (P < 0.05).
EPI ¼ (Weight gain � SP) e (Weight gain � DP),
FIFO ¼ (LFM þ LFO)/(YFMw þ YFOw) � Feed conversion ratio,
where DP is the price of the diet (V/kg of diet) and SP is the selling price (V7.58/kg); LFM is
from wild fish; YFOw is the fish oil yield from wild fish.

1 H0, H9, H18, H36 represent experimental diets where fishmeal was replaced by def
2 ECR ¼ Feed conversion ratio � DP.

14
viewpoint, on climate change, acidification, human toxicity, marine
ecotoxicity and abiotic depletion (Sm�arason et al., 2017).
4.1. Growth performance, condition factor, somatic indices, and
digestibility of the diets

The growth performance of juvenile pikeperch in the present
study, measured as specific growth rate (SGR) (range 0.76% to
0.95%/d), was comparable to the 0.77%/d in earlier findings (Zakę�s
et al., 2008) but slightly lower than that reported previously,
1.14% to 1.24%/d (Jarmołowicz et al., 2012) and 1.1% to 2.1%/day
(Wang et al., 2009). The discrepancy could be attributed to the
different fish sizes utilised in these studies; in fact larger fish, such
as those utilised in our study, usually have lower SGR compared to
fingerlings utilised in the other trials (Wang et al., 2009;
Jarmołowicz et al., 2012). A meta-analysis concerning the effects of
FM replacement by insect meal on the growth performance of fish
conducted by Hua (2021) revealed that possible inclusions up to
33% and 25% full and defatted HIM, respectively, ensured a similar
growth response to that of fish fed FM-based diets. Our results are
consistent with that finding and have confirmed that an 18% in-
clusion threshold (which, in our research, led to 50% FM substitu-
tion) was possible for pikeperch. Previous studies that included
HIM also reported a threshold over the 13.2% to 40% range (or 25%
to 50% FM substitution) (St-Hilaire et al., 2007; Sealey et al., 2011;
Renna et al., 2017; Dumas et al., 2018; Terova et al., 2019) for
rainbow trout (O. mykiss), whilst 14.8% to 25%, or a 100% substitu-
tion level, was applied, with no adverse effects, to SGR in Atlantic
salmon (Lock et al., 2016; Belghit et al., 2019). Similarly,10.6% to 14%
levels, or 100% FM substitution, were found to be possible for
omnivorous common carp (C. carpio), without any negative effects
on SGR (Li et al., 2017; Zhou et al., 2018). Feeding Nile tilapia
(O. niloticus) with a dietary HM of 8% (Devic et al., 2018) or 30%
(Muin et al., 2017) was also found to be successful.

Increasing the dietary HIM inclusion to 36% (100% FM substi-
tution) depressed the growth performance of pikeperch, as shown
by the significantly lower WG, FW and SGR in H36 than in the
control diet. Hua (2021) reported that the negative effect on fish
growth, caused by increasing levels of insect meal, could refer to a
nutritional imbalance. Such a worsening of the performance pa-
rameters was supported by the general decrease in the
al diets (mean ± standard deviation, n ¼ 3).

P-value

H18 H36

1.36 1.75 e

1.75 ± 0.04b 3.17 ± 0.27a <0.001
1.00 ± 0.03a 0.81 ± 0.03b <0.001
0.98 ± 0.02c 0.40 ± 0.03d <0.001

3.6 ± 0.09b 6.45 ± 0.54a <0.001
14.24 ± 0.36b 23.42 ± 1.96a <0.001
1.71 ± 0.04b 4.44 ± 0.37a <0.001
2.35 ± 0.06b 3.61 ± 0.3a <0.001
0.73 ± 0.02b 1.58 ± 0.13a <0.001
0.036 ± 0.001b 0.051 ± 0.004a <0.001

the level of FM in the diet; LFO is the level of fish oil in the diet; YFMw is the FM yield

atted black soldier fly (Hemetia illucens) at 0%, 25%, 50% and 100%, respectively.
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digestibility coefficients recorded as the HIM inclusion increased.
In addition, an increasing dietary inclusion of HIM reduced
essential fatty acid components, PUFA and MUFA (Table 3), which
play important roles in the growth and health-promoting effects of
aquatic animals (Turchini et al., 2009). The presence of chitin, a
non-protein nitrogen, in the cuticle of insects (Henry et al., 2015),
could be a factor that impairs the growth rate of pikeperch fed
H36. An analysis of chitin revealed a content in the HIM of 5.34% as
it is, leading to dietary inclusions of 0.47%, 0.97% and 1.93% for H9,
H18 and H36, respectively. These values are similar to the ones
reported in the study of Stejskal et al. (2020). Previous studies
pointed out a reduction in the SGR of turbot (Kroeckel et al., 2012)
fed 17% HIM as a replacement of 20% FM. In contrast, feeding
increasing levels of HIM did not affect the SGR of European perch
(Stejskal et al., 2020) or Atlantic salmon (Belghit et al., 2018) fed
diets containing 40% and 60% of HIM, respectively. The detrimental
effect of chitin on the growth performance of fed organisms could
be due to the compromise of protein digestibility related to its
capacity to reduce the activity of proteolytic enzymes that break
down peptides into amino acids or bind proteins (Henry et al.,
2015; Weththasinghe et al., 2021) and the induction of stress in
fish (Gopalakannan and Arul, 2006). This is illustrated by a
decreasing condition factor (K), which is known to reflect the
growth rate of fish (Mahadevan et al., 2020). K is an index of the
health and metabolic status of fish; the lower K value in pikeperch
fed H36 could possibly be the result of a synergic effect, consid-
ering that fish in this group were smaller and less fatty in respect
the other groups. Conversely, fish in the H18 group showed a
higher K value due to the different metabolism of fat as shown by
the HSI an VSI indices.

One criterion that should be considered concerning the pos-
sibility of introducing alternative ingredients to FM in aquafeeds
is palatability, which can influence the feed intake and other
physiological characteristics of fed organisms (Galkanda-
Arachchige et al., 2020). HIM appeared to be palatable to pike-
perch as a higher feed intake was recorded for the H36 group
compared with HIM inclusion levels up to 18%, where a similar
feed intake was recorded. These results are in contrast to those
observed for Jian carp (C. carpio) (Li et al., 2017), rainbow trout
(Renna et al., 2017), Japanese seabass (Lateolabrax japonicus)
(Wang et al., 2019), and European perch (Stejskal et al., 2020)
where a decreased palatability was observed with increasing HIM
inclusion level. Interestingly, our results indicated that HIM in-
clusions of 9% and 36% did not affect the somatic indices (VSI, HSI
and PFI), while HIM inclusion of 18% significantly reduced these
parameters. In fish metabolism, the liver plays a key role and HSI
is often used to assess the effect of diet on liver functionality
(Dernekbaşı, 2012; Chemello et al., 2020). In salmonids, values
between 1% and 2% are considered standard for HSI while lower
or higher values could indicate issues such as oxidized feed,
disorders in lipid and glucose metabolism, or vitamin deficiency
(Pearce et al., 2003). In our study, all the fish groups recorded HSI
values in the range considered normal for salmonids, therefore
an HIM inclusion level up to 36% in pikeperch feeds could be
tolerated without negative impacts on lipid and glucose
metabolism.

4.2. Whole body and fillet composition

No consistent trends were observed with the composition of the
body of pikeperch fed graded levels of HIM among the low and
medium inclusion levels. However the pikeperch fed the H36 diet,
except for the ash content, showed a significantly different
composition than other groups. This pattern could be explained by
considering feed nutrient digestibility, as the lower body nutrient
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content recorded in the pikeperch fed H36, compared to the other
groups, could be attributed to a decline in nutrient digestibility as
reported in other fish trials carried out in several species fed
increasing content of insect meal (Coutinho et al., 2021). Further-
more, the detrimental effect of chitin on protein digestibility is well
known (Henry et al., 2015; Gasco et al., 2016).

The fat content of the fillets in our study was dietary HIM-
independent and ranged from 0.81% to 0.88%, which was higher
than the range (0.20% to 0.58%) reported for pikeperch farmed in
RAS, pond-RAS and in a pond system (Policar et al., 2016), or
controlled rearing conditions (Schulz et al., 2005) with values of
0.6% in fish fed diets with different dietary lipid composition.
However, the protein content in the fillets was comparable with the
data from these studies.

The FA profile in the pikeperch fillets reflects those of the cor-
responding diets, as reported for finfish species (Turchini et al.,
2009). The major effect of dietary partially defatted HIM on the
muscle profile of pikeperch was a significant increase in total n6
constituents, especially linoleic acid (C18:2n6), and a significant
decrease of total n3 fatty acids (especially C22:6n3). A similar
phenomenon was also observed in previous studies carried out on
juvenile pikeperch fed with feed supplemented with vegetable oils,
such as linseed and peanut (Kowalska et al., 2010).

Another pronounced trend was observed for the fish muscle
saturated fatty acids, lauric and myristic acids, which increased
significantly with insect meal dietary inclusion. A similar pattern
was also reported for rainbow trout fed increasing levels of defatted
HIM (Renna et al., 2017). However, these differences in lauric and
myristic acids seem to be too mild to alter the total SFA across the
fed groups. Interestingly, the considerably lower lauric acid content
in the fish fillets than in the feed may attributed to a prioritised
energy utilisation of this FA (Renna et al., 2017) in pikeperch. PUFAs
are significant components of muscle lipids in pikeperch, and they
were found to range from 50.2% to 57.0% (Guler et al., 2007). These
fatty acids were found to be high in our study (55% to 57% total
detectable fatty acids) and independent of the administered diets.
Compared to data reported for sander farmed in a different system
(PUFAs, 34% to 44%) (Policar et al., 2016), the present study has
shown relatively higher percentages of these fatty acids. DHA and
EPA are important fatty acids that play vital roles in human health.
DHA was found to be predominant in our study, ranging from 28%
to 32% of the total detected fatty acids, and was affected by dietary
HIM. An HIM inclusion of 18% maintained the DHA content relative
similar to the FM group. The percentage of EPA instead varied by
4.5% to 4.9%, regardless of the dietary HIM. The DHA values are
higher than those previously published for pikeperch (Policar et al.,
2016; Kowalska et al., 2010). Therefore, using HIM at moderate
inclusion levels, in combinationwith a marine oil source, could be a
good way of enhancing the beneficial fatty acids of pikeperch for
human nutrition.

4.3. Economic analysis and environmental sustainability

There is a general lack of economic analysis on insect meal in-
clusion in aquafeeds (Arru et al., 2019; Stejskal et al., 2020). The
current study has revealed that increasing inclusion levels of HIM
resulted in elevated ECR and reduced EPI, which is consistent with
recent findings for European perch (Stejskal et al., 2020). Arru et al.
(2019) revealed low profitability as a result of insect meal
(T. molitor) inclusion in farmed seabass aquafeeds. This economic
insufficiency could mainly be due to the uncompetitive price of
insect meal vs. FM (IPIFF, 2018; Arru et al., 2019). Fortunately, insect
meal production is increasing globally (IPIFF, 2018; Gasco et al.,
2020a) and the price of insect meal is thus expected to be
comparative with that of FM in the near future (Arru et al., 2019;
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Hua et al., 2019). In the meantime, the marketing of seafood
products with socially and environmentally sustainable feed in-
gredients, such as insect meal, could improve consumers' percep-
tions and their willingness to pay (Zander and Feucht, 2018).

Together with the economic aspects, the environmental im-
pacts associated with aquafeeds are of critical concern (Ghamkhar
and Hicks, 2020). Our study has shown that dietary HIM has
negative impacts on the environment associated with eutrophi-
cation and energy use. On the other hand, an inclusion level of up
to 18% resulted in comparable acidification and land use with the
control diet. Our study also highlighted the benefits of using insect
meal HIM in the diet for pikeperch at a moderate inclusion level
(18%) in terms of water resource use relative to an HIM-free diet.
The high variability in environmental impact indices following
replacement of FM by HIM could be attributed to the percentage of
HIM vs. FM ingredients and slight modification of wheat meal
across experimental diets. Indeed, the larger impact of HIM pro-
duction, associated with energy use, GWP, eutrophication, and
land use, than those of FM, has been confirmed (Salomone et al.,
2017; Smetana et al., 2019; Tran et al., 2022b). Recent studies
employing life cycle assessment have demonstrated that feeding
arctic char (Salvelinus alpinus) with dietary HIM also entailed a
heavier environmental burden of EU than insect-free diets, while
multiple benefits were reported for abiotic depletion, acidification,
eutrophication, the global warming potential, the human toxicity
potential and the marine aquatic ecotoxicity potential (Sm�arason
et al., 2017). Similar findings were reported for rainbow trout fed
dietary T. molitor (Le Feon et al., 2019).

Although insect meal inclusion entails more environmental
impacts than improvements, Le Feon et al. (2019) found a positive
effect on the use of biotic resources and water. In addition to water
use, we also found similarities in land use among H0, H9, and H18.
In other words, the low to moderate inclusion level of HIM did not
negatively affect the environmental impact indices associated with
the most limited natural resources e water and land. This phe-
nomenon could be associated with the change in wheat meal in-
clusion levels across experimental diets. It is well acknowledged
that the production of wheat meal among plant ingredients re-
quires a significantly higher amount of water and arable land than
FM (GFLI, 2022; Silva et al., 2018; Smetana et al., 2019). Therefore,
a substantial decrease in wheat meal following FM replacement by
HIM to ensure nutrient balance, in combination with slightly
higher water use and land use from production of HIM over FM
(Samuel-Fitwi et al., 2013; Smetana et al., 2019), could result in
comparable impacts on these natural resources among the control,
H9, and H18 groups. Additionally, feed conversion ratio was re-
ported to be responsible for the environmental impacts of the
aquaculture system (Bohnes et al., 2019) and for that associated
with one kg pikeperch production in the present study. As illus-
trated by the comparable feed conversion ratio, 3 diets, H0, H9,
and H18, were efficiently utilized by pikeperch (Tran et al., 2021).
However, despite a gradual decrease in wheat meal, a significantly
higher feed conversion ratio following 100% replacement FM with
HIM did not improve environmental impacts on pikeperch pro-
duction. It is apparent that although an FM-free diet with the
addition of HIM did not benefit pikeperch aquaculture in terms of
either production performance or environmental consequences,
elimination of FM originated from marine resources in aquafeed
could be beneficial for the marine ecosystem as indicated by FIFO.
In the present study, replacement of FM by HIM significantly
improved the FIFO as less marine fish forage was required to
produce the live weight of farmed fish (Tacon and Metian, 2008;
Naylor et al., 2009). The same result has been reported for Euro-
pean perch (Stejskal et al., 2020) and for Siberian sturgeon (Rawski
et al., 2021). We found that FIFO could be decreased by 40.1% in
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pikeperch fed an insect-based diet, without affecting the growth
performance (group H18). From a global perspective, an increasing
use of fish by-products and other FM alternatives could be a
strategic way of ensuring the environmental sustainability of the
aquaculture industry (Hua et al., 2019; Cottrell et al., 2020; Gasco
et al., 2020), thereby reducing FM, and the fish oil proportion in
aquafeeds. Consequently, the global FIFO is expected to reduce
considerably in the coming decades (Kok et al., 2020). Since
aquaculture is increasingly dependent on terrestrial crops and
forage fish as feed inputs, and thereby damaging to aquatic eco-
systems and fisheries (Smith et al., 2011; Troell et al., 2014), the
use of insect meal could provide a promising alternative to tackle
the growth of aquaculture in an era that has limited natural and
marine fishery resources.

Future research should be focused on optimising the level of
inclusion of insect meal in fish diets and the fine tuning of insect-
based diets. Moreover, long-term studies focusing on growing fish
to higher marketable size (more than 700 g) in combination with
sensory and textural analyses of the final product should be carried
out to explore the full potential and gaps of insect-based diets for
pikeperch throughout their whole life cycle. Information on the
effect of insect meal on the physical characteristics of extruded
feeds in aquafeeds for different fish species is still lacking, andmore
research and new methods to establish the correct insect meal
digestibility of such fish feeds are therefore needed (Arru et al.,
2019; Pap�a�cek et al., 2020).

This investigation is the first on the potential of HI larva meal for
S. lucioperca. The main findings of the present work are that the
inclusion of HIM to levels of up to 18% (equivalent to a 50% sub-
stitution of FM in the diet), did not affect the biometry, fillet yield,
or the nutritional quality of pikeperch, except for the fat content
which was lower. Both hepatosomatic index and perivisceral fat
index were even improved by the inclusion of HIM up to 18%.
Feeding HIM to pikeperch improved the FIFO, that led to the use of
less forage fish from marine ecology to produce farmed fish and
conserved more water resources than an insect-free diet. In eco-
nomic terms, at present, HIM does not seem to be a price-
competitive ingredient for pikeperch feeds.

5. Conclusion

This study has shown that the incorporation of HI meal in the
feed formulations of pikeperch for inclusion levels of up to 18% did
not affect most of the growth parameters considered. Moreover, the
use of such feeds is associated with a reduction in reliance on
marine resources and freshwater use. On the other hand, certain
limitations have emerged, such as the production cost, decreased
digestibility of protein and dry matter as well as increased impact
on greenhouse gas production, energy use, and eutrophication.
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