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The pharmacological properties of slow Ca

 

2

 

�

 

-activated K

 

�

 

 current (K

 

slow

 

) were investigated in mouse pancreatic

 

�

 

-cells and islets to understand how K

 

slow

 

 contributes to the control of islet bursting, [Ca

 

2

 

�

 

]

 

i

 

 oscillations, and insulin
secretion. K

 

slow

 

 was insensitive to apamin or the K

 

ATP

 

 channel inhibitor tolbutamide, but UCL 1684, a potent and
selective nonpeptide SK channel blocker reduced the amplitude of K

 

slow

 

 tail current in voltage-clamped mouse

 

�

 

-cells. K

 

slow

 

 was also selectively and reversibly inhibited by the class III antiarrythmic agent azimilide (AZ). In
isolated 

 

�

 

-cells or islets, pharmacologic inhibition of K

 

slow

 

 by UCL 1684 or AZ depolarized 

 

�

 

-cell silent phase
potential, increased action potential firing, raised [Ca

 

2

 

�

 

]

 

i

 

, and enhanced glucose-dependent insulin secretion. AZ
inhibition of K

 

slow

 

 also supported mediation by SK, rather than cardiac-like slow delayed rectifier channels since
bath application of AZ to HEK 293 cells expressing SK3 cDNA reduced SK current. Further, AZ-sensitive K

 

slow

 

current was extant in 

 

�

 

-cells from KCNQ1 or KCNE1 null mice lacking cardiac slow delayed rectifier currents.
These results strongly support a functional role for SK channel-mediated K

 

slow

 

 current in 

 

�

 

-cells, and suggest that
drugs that target SK channels may represent a new approach for increasing glucose-dependent insulin secretion.
The apamin insensitivity of 

 

�

 

-cell SK current suggests that 

 

�

 

-cells express a unique SK splice variant or a novel
heteromultimer consisting of different SK subunits.

 

I N T R O D U C T I O N

 

When exposed to glucose concentrations 

 

�

 

7 mM,
pancreatic islets of Langerhans exhibit electrical oscilla-
tions consisting of bursts of fast Ca

 

2

 

�

 

-dependent action
potentials riding upon slower depolarizing plateaus
(Dean and Matthews, 1970a; Ashcroft and Rorsman,
1989; Cook et al., 1991; Satin and Smolen, 1994). The
period of this bursting typically ranges from tens of
seconds to minutes in 11.1 mM glucose, and numerous
studies have shown that bursting leads to concomitant
oscillations in islet [Ca

 

2

 

�

 

]

 

i

 

 that drive insulin secretion
(Bergsten et al., 1994; Barbosa et al., 1998; Zhang et
al., 2003). However, despite extensive investigation, the
ionic basis of islet pacemaking is not fully understood.
The cyclic activation of a Ca

 

2

 

�

 

-activated K

 

�

 

 current
(K

 

Ca

 

) has been a strong candidate pacemaker (Atwater
et al., 1979; Satin and Smolen, 1994; Sherman, 1996),
and in support of this, islet bursting is simulated by
models incorporating the cyclic activation and deactiva-
tion of K

 

Ca

 

 channels by bursting-induced elevations in
[Ca

 

2

 

�

 

]

 

i

 

 (Chay and Keizer, 1983). Göpel et al. (1999)
presented evidence that K

 

slow

 

, a novel slow Ca

 

2

 

�

 

-activated
K

 

�

 

 current, tracks [Ca

 

2

 

�

 

]

 

i

 

 as it rises in response to a

voltage clamp command designed to mimic an islet
burst. Unlike the fast or “BK type” K

 

Ca

 

 channels of 

 

�

 

-cells
(Kukuljan et al., 1991), K

 

slow

 

 was insensitive to charyb-
dotoxin or low concentrations of TEA (Göpel et al.,
1999; Hennige et al., 2000), but was regulated by both
store and cytoplasmic Ca

 

2

 

�

 

 (Goforth et al., 2002). In
contrast to their initial description of the current (Gö-
pel et al., 1999), Kanno et al. (2002) suggested that
K

 

slow

 

 might be a mosaic of K

 

ATP

 

 and Ca

 

2

 

�

 

-activated K

 

�

 

current. More recently, Tamarina et al. (2003) confirmed
that small-conductance calcium-activated K

 

�

 

 channels
(SK type) are expressed in pancreatic islets, and sug-
gested these channels regulate glucose-induced [Ca

 

2

 

�

 

]

 

i

 

oscillations in islets by mediating K

 

slow

 

. However, a
problem with this hypothesis is that apamin, the canon-
ical SK blocker in other systems, does not affect mouse
islet bursting or 

 

�

 

-cell K

 

slow

 

 current (Lebrun et al., 1983;
Ämmälä et al., 1993; Göpel et al., 1999; Goforth et al.,
2002). Thus, it is not yet proven that SK channels medi-
ate K

 

slow

 

 current in 

 

�

 

-cells. The lack of a selective K

 

slow

 

blocker has further hampered progress in determining
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the function role of K

 

slow

 

 current in islet electrophysiol-
ogy and stimulus–secretion coupling.

We now report that UCL 1684, a highly selective,
nonpeptidergic blocker of SK channels (Rosa et al.,
1998), or azimilide (NE-10064, (E)-1-[[[5-(4-chlo-
rophenyl)-2-furanyl]methylene]amino]-3-[4-(4-methyl-
1-piperazinyl)butyl]-2,4-imidazolidinedione dihydro-
chloride, AZ), a novel class III antiarrhythmic agent,
inhibit K

 

slow

 

 in mouse pancreatic 

 

�

 

-cells or islets. In car-
diac cells, AZ blocks both the slowly (I

 

Ks

 

) and rapidly
activating (I

 

Kr

 

) components of delayed rectifier potas-
sium current and as a result prolongs cardiac refractori-
ness (Busch et al., 1994; Fermini et al., 1995; Salata and
Brooks, 1997; Karam et al., 1998). In islets, however,
K

 

slow

 

 blockade by AZ was due to block of Ca

 

2

 

�

 

-activated
SK channels because we found that, on the one hand,
AZ was effective in blocking K

 

slow

 

 even in 

 

�

 

-cells from
mice in which I

 

Ks

 

 was eliminated by two different global
knockouts, and on the other hand, AZ blocked SK3
channels expressed in transfected HEK 293 cells. In
terms of function, suppression of K

 

slow

 

 by UCL 1684 or
AZ resulted in membrane depolarization, increased ac-
tion potential firing, and a concomitant increase in is-
let 

 

�

 

-cell [Ca

 

2

 

�

 

]

 

i

 

. In islets exhibiting regular [Ca

 

2

 

�

 

]

 

i

 

oscillations in 11.1 mM glucose (Zhang et al., 2003),
UCL or AZ increased [Ca

 

2

 

�

 

]

 

i

 

 as well as oscillation fre-
quency. Furthermore, both K

 

slow

 

 blockers significantly
enhanced glucose-dependent insulin release, while not
affecting basal secretion.

 

M A T E R I A L S  A N D  M E T H O D S

 

Culture of Islets and Islet 

 

�

 

-Cells

 

Mouse islets were isolated from the pancreases of Swiss-Webster
mice by collagenase digestion (Zhang et al., 2003). Islets were
dispersed into single cells by gently shaking the islets in a low-cal-
cium solution. Islets or 

 

�

 

-cells were seeded on glass coverslips in
35-mm Petri plates and cultured in RPMI-1640 medium with 11.1
mM glucose, FBS, 

 

l

 

-glutamine, and penicillin/streptomycin (In-
vitrogen). All cultures were kept at 37

 

�

 

C in an air/CO

 

2

 

 incubator.
Cells were fed every 2–3 d, and were kept in vitro for up to 5 d,
while islets were typically cultured for 1–2 d.

 

Electrophysiology

 

�

 

-cells or islets were superfused with a standard external solution
containing (in mM) 115 NaCl, 3 CaCl

 

2

 

, 5 KCl, 2 MgCl

 

2

 

, 10
HEPES, 11.1 glucose (pH 7.2). The perforated patch-clamp tech-
nique was used to record islet or 

 

�

 

-cell membrane potentials or
ion currents. Pipettes were pulled from borosilicate glass using a
two-stage horizontal puller (P-97, Sutter Instruments). Pipette
tips were filled with an internal solution containing (in mM) 28.4
K

 

2

 

SO

 

4

 

, 63.7 KCl, 11.8 NaCl, 1 MgCl

 

2

 

, 20.8 HEPES, 0.5 EGTA (pH
7.2) and then backfilled with internal solution plus 0.1 mg/
ml amphotericin B. An Axopatch-200B patch-clamp amplifier
(Axon Instruments) was used in the standard tight-seal perfo-
rated patch-clamp mode to record membrane potentials or ion
currents in current or voltage clamp mode, respectively (Hamill
et al., 1981). Pipette resistances ranged from 5 to 8 M

 

�

 

 using our
internal solutions, while seal resistances ranged from 2 to 10 G

 

�

 

.

Solutions were applied to 

 

�

 

-cells or islets using a gravity-driven
perfusion system, which allowed switching between multiple res-
ervoirs and flow rates in excess of 1 ml/min. All experiments
were performed at 32

 

�

 

C–35

 

�

 

C using a feedback-controlled tem-
perature regulation system (CellMicro Controls). All drugs were
made up fresh daily from frozen stock solutions. Drugs and
chemicals were obtained from Sigma-Aldrich with the exception
of AZ and HMR1556, which were a gift from G.N. Tseng (VCU,
Richmond, VA).

 

[Ca

 

2

 

�

 

]

 

i

 

 Measurements

 

Cultured mouse islets were loaded with the Ca

 

2

 

�

 

-sensitive dye,
fura-2/AM (Invitrogen). 2 

 

�

 

mol/l fura-2-AM and 1 

 

�

 

l of 2.5%
pluronic acid were added to cells in 35-mm culture dishes con-
taining 1 ml of medium, and islets were incubated for 30 min at
37

 

�

 

C to load with dye. After loading, islets were washed once and
then incubated in standard external solution for 20 min. [Ca

 

2

 

�

 

]

 

i

 

was measured by placing islets in a small recording chamber
mounted on the stage of an Olympus IX-50 inverted epifluores-
cence microscope (Olympus). Fura-2 was excited at 340/380 nm
using a galvanometer-driven mirror that alternated a light beam
from a xenon source (“HyperSwitch,” IonOptix Corporation). A
photomultiplier and photon counting were used to quantify fura-2
emission at 510 nm (IonOptix Inc.). Fluorescence data were ac-
quired and analyzed using IonWizard software (IonOptix).

[Ca

 

2

 

�

 

]

 

i values were determined from the fluorescence ratio
(R) of Ca2�-bound fura-2 (excited at 340 nm) to unbound fura-2
(excited at 380 nM). Absolute [Ca2�]i was determined using a
standard equation (Grynkiewicz et al., 1985). To convert R to
[Ca2�]i using this equation, Rmax and Rmin were obtained by ex-
posing islets to 10 �M ionomycin plus 3 mM Ca2� or 10 mM
EGTA, respectively, at the end of each experiment. The equilib-
rium constant for Ca2� binding to fura-2 (Kd) was assumed to be
224 nM (Grynkiewicz et al., 1985).

Measurement of Insulin Secretion
Islets were cultured overnight and then washed twice with our
standard external saline containing 11.1 mM glucose. Following
this, each dish containing 10 islets was incubated for 60 min in 1
ml of standard external solution containing various concentra-
tions of glucose, UCL 1684, or AZ. A portion of the reaction solu-
tion was withdrawn at the end of the incubation period and di-
luted appropriately for insulin assay. Insulin was measured using
an ELISA kit for detecting mouse insulin (Mercodia Ultrasensitive
Mouse Insulin ELISA Kit; Mercodia), according to the instructions
of the manufacturer. Sample absorbance at 450 nm was read using
a microplate reader (model 2550, Bio-Rad Laboratories). Data
were collected from four mice for UCL 1684 and four mice for AZ,
and the experiment was repeated three times. The content of insu-
lin in samples was calculated according to a standard curve.

Functional Expression of the hSK3 Gene in HEK 293
HEK 293 cells were cultured in minimal essential medium con-
taining glutamine and 10% FBS. 1 or 2 d before transfection, cells
were transferred to 35-mm Petri dishes and were grown to �70%
confluence. A mixture containing 0.1 �g of the plasmid DNA
encoding EGFP-N1 (BD Biosciences, CLONTECH Laboratories
Inc.) and 1 �g of plasmid DNA encoding human SK3 (Kohler et
al., 1996; Chandy et al., 1998) was transfected into HEK 293 cells
using Lipofectamine 2000 (Invitrogen) according to the manu-
facturer’s protocol. Cells were studied 24–48 h after transfection.

SK3 currents were recorded using whole-cell patch clamp as
described in general above. The electrodes used contained 28.4
mM K2SO4, 63.7 mM KCl, 10.7 mM NaCl, 20.8 mM HEPES, 1 mM
MgCl2, 1 mM EGTA, 0.9 mM CaCl2, pH 7.2; the calculated
[Ca2�]i for this solution was �1 �M, which is sufficient for nearly
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maximal activation of SK3 channels (Kohler et al., 1996). HEK
293 cells showing green fluorescence in the bath solution (115
mM NaCl, 3 mM CaCl2, 5 mM KCl, 2 mM MgCl2, 10 mM HEPES,
11.1 mM glucose, pH 7.35) were selected for voltage clamping.
After the formation of a tight seal in cell-attached mode, the ex-
ternal solution was changed to an “SK blocking solution” (71 mM
NaCl, 5 mM KCl, 2 mM MgCl2, 10 mM BaCl2, 30 mM TEA-Cl, 10
mM HEPES, 11.1 mM glucose, pH 7.35), which contained Ba2�

and TEA to prevent SK current activation before establishing
whole cell mode to help preserve cell viability. Once whole cell
mode was established, SK3 currents were then initiated by using
a high K� external solution (90 mM NaCl, 30 mM KCl, 3 mM
CaCl2, 2 mM MgCl2, 10 mM HEPES, 11.1 mM glucose, pH 7.35)
and were recorded at �80 mV and �10 mV. The effects of UCL
1684 and AZ on SK3 currents were observed by adding these
drugs to the bathing solution.

Data analysis, curve fitting, and graphics were performed us-
ing IgorPro Software (Wavemetrics) and statistical analysis and
curve fitting of dose–response data was done using GraphPad
Prism Pro. Data shown are means � SEM. Where relevant, paired
or unpaired Student’s t tests were used to test for significance. P
values 	0.05 were considered significant and denoted by * or #
in figures; P 	 0.01 are denoted by ** or ## in figures; and P 	
0.001 are denoted by *** or ### in figures.

R E S U L T S

Kslow Current Is Inhibited by the SK Blocker UCL 1684 in 
Mouse Single �-Cells
Mouse islet cells and insulin-secreting cell lines express
SK channel isoforms, and SK channel modulators alter
glucose-dependent [Ca2�]i oscillations in mouse islets
(Tamarina et al., 2003). Paradoxically, however, the
prototypical SK inhibitor apamin, which modulates
[Ca2�]i oscillations in rodent islets (Tamarina et al.,
2003), does not block Kslow current in mouse �-cells
(Göpel et al., 1999; Goforth et al., 2002), and is without
effect on islet electrical bursting (Lebrun et al., 1983).
The reasons for these discrepancies are not clear. To
determine whether Kslow is indeed mediated by SK
channels, and to determine the role of Kslow in islet
stimulus–secretion coupling, we more fully character-
ized the pharmacological properties of Kslow current.

To elicit Kslow current, we used a standard protocol
consisting of a physiological waveform command that
resembled an islet burst to isolate a deactivation “tail”
of Kslow current. This protocol stepped membrane po-
tential from �65 to �40 mV for 5 s, followed by a 5-s
train of spike-like pulse depolarizations from �40 to 0
mV, and then a 10-s sojourn back to �40 mV (for more
details of the protocol used, see Göpel et al., 1999).

As shown in Fig. 1 A, upon application of the pulse
train, an envelope of slow outward current progressively
activated, with faster outward currents superposed, and
then slowly deactivated once the pulse train was termi-
nated. The peak amplitudes of the deactivating tail cur-
rents mediated by Kslow are denoted by arrows in the fig-
ure, and were used to quantify the degree of Kslow activa-
tion (Göpel et al., 1999; Goforth et al., 2002).

As the bath application of up to 1 �M apamin did not
block Kslow current (n 
 10, unpublished data), we
tested the potent nonpeptide SK blocker UCL 1684,
which is known to selectively target SK 1-3 type KCa

channels (Rosa et al., 1998). As shown in Fig. 1 B, 10 nM
UCL 1684 inhibited Kslow current. In 17 isolated �-cells,
the mean current density was reduced from 1.34 � 0.14
to 0.83 � 0.15 pA/pF (P 	 0.001). Kslow block by UCL
1684 was dose responsive, as shown in Fig. 1 C. The data
were fit by a single binding site model to yield an IC50 of
6.2 nM and a Bmax of 54.1%. This IC50 is similar to the
sensitivity of SK channels to UCL 1684 in other systems
(Dunn, 1999; Malik-Hall et al., 2000; Hosseini et al.,
2001). The data are consistent with the hypothesis that
SK channels are at least partly involved in the mediation
of �-cell Kslow current. In a previous study, Kanno et al.
(2002) reported that Kslow was a composite of KCa and
KATP channels. In our hands, however, the Kslow current
of mouse �-cells was insensitive to 200 �M tolbutamide
(1.14 � 0.11 vs. 1.04 � 0.14 pA/pF, n 
 16, P � 0.05), as
initially reported by Göpel et al. (1999). This suggests
that Kslow current does not appear to be a mosaic of SK
and KATP currents using our standard conditions.

The Class III Antiarrythmic Drug AZ also Blocks Kslow 
Current in Single Mouse �-Cells
In heart cells, the class III antiarrythmic agent AZ blocks
both IKr and IKs delayed rectifying K� currents, the
former a fast, voltage-dependent K� channel, and the

Figure 1. Expression and block of Kslow by an SK channel blocker.
UCL 1684, a potent and selective nonpeptide SK blocker blocks
Kslow currents in mouse �-cells. Top traces (A and B) show repre-
sentative recordings of Kslow current. The peak of the Kslow tail
currents is denoted by arrows. The currents shown were elicited
using a burst pulse protocol (see MATERIALS AND METHODS)
in voltage clamp. (C) Dose–response curve of UCL 1684 on
Kslow. UCL 1684 suppressed Kslow current with an IC50 of 6.2 nM.
Data shown are mean � SEM, with n (number of experiments)
indicated in brackets. Curve was fit with single binding site model.
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latter a slowly activating K � channel (Busch et al., 1994;
Ohyama et al., 2001). HMR 1556 is a selective blocker of
IKs in heart cells (Gögelein et al., 2000). The antiarryth-
mic action of AZ is believed to occur due to prolonga-
tion of the cardiac action potential and increased rela-
tive refractoriness, both secondary to K� current block-
ade (Busch et al., 1994; Fermini et al., 1995; Salata and
Brooks, 1997; Karam et al., 1998). As conventional K�

channel blockers like TEA did not show selectivity for

Kslow, and because IKs in cardiac cells shows a similar slow
deactivation characteristic, we decided to test whether
two blockers of IKs affect the �-cell Kslow current. The
bath application of AZ to �-cells resulted in the revers-
ible and nearly complete suppression of Kslow current
(Fig. 2 A). The addition of 3 �M AZ reduced Kslow cur-
rent density from 1.68 � 0.31 to 0.77� 0.15 pA/pF (n 

5, P 	 0.05), and Kslow blockade typically reached a
steady-state level within 5 min. Fig. 2 B shows the dose–
response curve of AZ blockade of Kslow, whose fit yielded
an IC50 of 3.2 �M and a Bmax of 100% (n 
 5–8, P 	
0.05), as shown in the figure. The IC50 for Kslow block by
HMR 1556 was 127.3 nM (unpublished data). The sensi-
tivity of Kslow to AZ and HMR 1556 was generally similar
to that reported for cardiac IKs channels (Busch et al.,
1994; Gögelein et al., 2000; Thomas et al., 2003).

The blockade of Kslow by AZ and HMR raised the pos-
sibility that IKs rather than SK channels might mediate
or at least contribute to mouse �-cell Kslow current. To
test this hypothesis, we isolated islets from mice lacking
either KCNQ1 or KCNE1 genes due to a global deletion
(Kupershmidt et al., 1999; Casimiro et al., 2001; Kondo
et al., 2003). It has been documented that IKs current in
heart cells is mediated by a heteromultimeric channel
consisting of a KCNQ1 channel subunit and a KCNE1
ancillary subunit (Robbins, 2001). The presence of
KCNE1 significantly increases the amplitude and activa-
tion time constant of IKs in heterologous expression sys-
tems (Seebohm et al., 2001; Melman et al., 2004).

Figure 2. The class III antiarrythmic drug azimilide also blocked
Kslow currents in mouse �-cells. (A) Representative recordings
showing that AZ reversibly blocks Kslow current. (B) Dose–response
curve of AZ inhibition of Kslow. AZ suppressed Kslow current with an
IC50 of 3.2 �M. Data shown are mean � SEM, with n (number of
experiments) indicated in parentheses. Curve was fit with a single
binding site model.

Figure 3. (A) �-cells from KCNE1 null mice lacking cardiac type IKs delayed rectifier K� channels also express AZ-sensitive Kslow currents.
Top traces show representative Kslow currents from KCNE1 (�/�) mouse �-cells, both �-cells from KCNE1 (�/�) and KCNE1 (�/�)
mice are sensitive to AZ. Bottom bar graph shows no difference of mean Kslow currents in KCNE1 (�/�) and KCNE1 (�/�) mice
(n 
 38–45, P � 0.05), AZ significantly inhibited Kslow currents in both group mice (**, P 	 0.01, n 
 6). (B) �-cells from KCNQ1 null
mice lacking cardiac type IKs delayed rectifier K� channels still have AZ-sensitive Kslow currents. Top traces show representative Kslow

currents from KCNQ1 (�/�) mouse �-cells. Both �-cells from KCNQ1 (�/�) and KCNQ1 (�/�) mice are sensitive to AZ. Bottom bar
graph shows no difference of mean Kslow currents in KCNQ1 (�/�) and KCNQ1 (�/�) (P � 0.05, n 
 12), AZ significantly inhibited
Kslow currents in both groups of mice (*, P 	 0.05, n 
 5).
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As shown in Fig. 3 (A and B), islet �-cells isolated
from global KCNE1 or KCNQ1 knockout mice that
lack cardiac IKs (Kupershmidt et al., 1999) still exhib-
ited slowly activating and deactivating, and AZ-sen-
sitive Kslow currents. The mean t1/2 of Kslow deactiva-
tion in wild-type �-cells was 1.9 � 0.2 s, n 
 16, and
was not significantly different in �-cells from either
KCNQ1 �/� or KCNE1 �/� islet �-cells (n 
 16 or
n 
 24). The bar graphs shown in Fig. 3 (A and B)
confirm that Kslow current density was not significantly
reduced in �-cells from either the KCNQ1 �/� or
KCNE1 �/� mice. Furthermore, it is clearly appar-
ent that 3 �M AZ retained its ability to inhibit Kslow

current despite the lack of IKs. This strongly suggests
that AZ does not inhibit Kslow by targeting channels
composed of KCNQ1/KCNE1, and that, by exten-
sion, IKs is unlikely to mediate Kslow current in pancre-
atic �-cells.

To determine whether AZ also blocked KATP, we test
its effect on �-cell KATP current recorded in whole cell
patch clamp configuration. We found that whole cell
KATP conductance was unchanged by AZ. Thus, KATP

conductance varied from 3.35 � 0.36 to 3.30 � 0.39 nS
measured from �80 to �20 mV in the absence or pres-
ence of AZ, respectively, n 
 6). Whole cell KATP con-
ductance was activated by dialyzing single mouse �-cells
with a pipette solution lacking Mg-ATP. Taken together
with data showing that Kslow current was insensitive to
tolbutamide, these findings show that Kslow is not medi-
ated by KATP in our hands. Parenthetically, AZ also had
no effect on the amplitude of voltage-dependent Ca2�

current in �-cells (unpublished data).

AZ and UCL 1684 Block SK Channels Expressed in HEK Cells
Although AZ is known to interact with a variety of chan-
nels and receptors in other systems (for review see

Figure 4. (A) HEK 293 cells coexpressed SK3 and EGFP genes used in the study. Green fluorescent cells were chosen to measure SK3
currents (left), and the figure on the right shows the same cells in bright field. (B) UCL 1684 blocks SK3 channels expressed in HEK 293
cells. i and iii traces show the representative currents recorded at �80 mV (i) or �10 mV (iii) from 15 cells. Green fluorescent cells were
selected and the SK3 currents were recorded using the whole cell patch clamp configuration. As shown in figure, bath application of an SK
blocking solution containing 10 mM BaCl2 and 30 mM TEA-Cl, resulted in small basal currents. After replacing the external solution with
30 mM KCl, robust SK3 currents are observed (*, P 	 0.05; **, P 	 0.01, compared with the basal level). 10 nM UCL 1684 significantly
inhibited this current at �80 mV (ii) or �10 mV (iiii) (#, P 	 0.05; ##, P 	 0.01, n 
 6, bottom bar graph). (C) SK3-mediated currents in
HEK 293 cells are also significantly blocked by AZ (##, P 	 0.01, n 
 7).
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Brooks et al., 2001), a direct interaction with SK chan-
nels has not been previously reported. We thus tested
the possibility that AZ inhibits Kslow by directly inhibit-
ing SK type channels. Cloned SK3 and eGFP genes
were cotransfected into HEK 293 cells using standard
techniques (see MATERIALS AND METHODS), and
cells exhibiting green fluorescence were selected for
patching (Fig. 4 A, left). A bright field image of these
cells is shown in Fig. 4 (right).

As shown in Fig. 4 B, control recordings made using
solutions containing 30 mM external KCl exhibited
large inward currents at �80 mV (Fig. 4 B, i and ii,
mean value of �46.1 � 6.9 pA/pF) and outward cur-
rents at �10 mV (Fig. 4 B, iii and iiii, mean value of
36.2 � 11.1 pA/pF). Current increased following estab-
lishment of the whole cell mode when pipettes con-
tained 1 �M free calcium. To preserve cell viability while
recording large SK currents, �-cells were initially bathed
in a solution containing the reversible SK blockers Ba2�

and TEA to inhibit osmotic stress due to SK activation and
resulting large K� fluxes. Following break in, Ba2� and
TEA were then washed off the cells and 30 mM KCl
added to the bath solution to measure SK current, and
to test the sensitivity of the current to UCL 1684 or AZ
(Wittekindt et al., 2004). The current measured in HEK
293 cells dialyzed with 1 �M [Ca2�]i reversed at �70
mV, near the calculated potassium equilibrium poten-
tial (�80 mV, Shah and Haylett, 2000), and showed a
near-Nernstian shift when [K]o was increased from 5 to
30 mM (38 mV shift vs. 45 mV predicted).

As shown in Fig. 4 B (ii and iiii), SK3-mediated cur-
rent was reduced �60% by the addition of 10 nM UCL
1684 (from �46.1 � 6.9 to �18.0 � 2.0 pA/pF at �80
mV, or from 36.2 � 11.1 to 12.6 � 3.2 pA/pF at �10
mV, P 	 0.05, n 
 6). As shown in Fig. 4 C, the applica-
tion of 10 �M AZ also significantly inhibited SK3 cur-
rent �46% (from �55.5 � 12.2 to �29.0 � 6.9 pA/pF
at �80 mV or from 68.5 � 14.0 to 36.9 � 7.9 pA/pF at
�10 mV, P 	 0.01, n 
 7). The direct blockade of
cloned SK3 current by either AZ or UCL 1684 supports
the hypothesis that both UCL1684 and AZ block Kslow

in single �-cells by inhibiting an SK type KCa current, al-
though one that is insensitive to apamin (see DISCUS-
SION). We believe this is the first report that AZ blocks
SK-type K� channels.

Functional Role of Kslow in Mouse �-Cells and Islets
To elucidate the role of Kslow current in mouse islets, we
used UCL and AZ as probes for Kslow participation in
the physiological regulation of glucose-induced islet
electrical activity, [Ca2�]i, and insulin secretion from
�-cells or islets.

As shown in Fig. 5, the application of 10 nM UCL
1684 or 3 �M AZ to single mouse �-cells that were fir-
ing rapid action potentials in 11.1 mM glucose resulted

in a reversible membrane depolarization and signifi-
cantly increased action potential firing. In the �-cells,
sporadic action potentials or fast bursting were ob-
served under control conditions (for detail of single
�-cells firing properties, see Kinard et al., 1999; Zhang
et al., 2003). The addition of UCL 1684 depolarized
the cells and increased the frequency of the spikes (Fig.
5, top). In 13 �-cells, 10 nM UCL 1684 depolarized �-cell
silent potential from �50.2 � 2.5 mV to �44.4 � 2.4
mV (P 	 0.01), and increased the spike frequency from
58.8 � 18.9 min�1 to 133.7 � 31.4 min�1 (P 	 0.01).
Similar results were obtained using micromolar con-
centrations of AZ, as shown in the bottom trace of Fig.
5. In eight cells, the addition of 3 �M AZ depolarized
�-cell potential from �48.3 � 3.7 mV to �41.3 � 2.5 mV
(P 	 0.01) and increased spike frequency from 76.4 �
25.0 min�1 to 146.6 � 44.5 min�1 (P 	 0.05). These
data suggest that Kslow helps maintain the resting mem-
brane potential of single �-cells, and acts as a brake to
limit cell firing, as in other systems (Wolfart et al.,
2001). Decreased repolarization would also be ex-
pected if UCL 1684 inhibited rapid delayed recitifer
outward K� current (KV) in �-cells, but the application
of 10 nM UCL 1684 had no effect on whole cell KV cur-
rent in parallel studies (unpublished data). The data
are also in accord with our previous observation that
�-cells exhibiting larger Kslow currents tended to be more
hyperpolarized (Goforth et al., 2002). This would be
expected if Kslow contributed to the maintenance of the
hyperpolarized silent phase potential of �-cells, along
with KATP.

In mouse islets, the addition of 11.1 mM glucose re-
sults in the appearance of electrical bursting (Ashcroft
and Rorsman, 1989; Zhang et al., 2003). As shown in

Figure 5. Bath application of Kslow blockers in 11.1 mM glucose
depolarize mouse isolated �-cells and increase the frequency of
action potential firing. The perforated patch clamp technique was
used to record the membrane potential of single mouse �-cells.
Cell 1 (top trace) shows a representative sample from 13 recordings
before and after bath addition of 10 nM UCL 1684. Cell 2 (bottom
trace) shows a representative sample from eight recordings before
and after bath application of 3 �M AZ.
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Fig. 6 A, medium (top) as well as slow bursting islets
(bottom) were similarly affected by Kslow blockade.
Thus, the application of 6 �M AZ to islets bathed in
11.1 mM glucose reversibly depolarized islets and in-
creased action potential frequency. While some fast
membrane repolarization could still be observed in the
presence of AZ (arrow; Fig. 6 A, bottom), these repolar-
izing events appeared to be much shorter than in the
absence of drug, and the mean silent phase potential
was significantly depolarized by AZ (from �54.4 � 2.3
mV vs. �43.9 � 2.7 mV, n 
 13, P 	 0.001).

UCL 1684 or AZ addition also reproducibly modu-
lated the [Ca2�]i responses of islets exposed to 11.1
mM glucose. Thus, UCL 1648 increased the [Ca2�]i

level corresponding to the membrane silent phase
(solid line), and increased the frequency of islet
[Ca2�]i oscillations (Fig. 6 B, representative of 10 is-
lets). Mean [Ca2�]i increased from 269.4 � 18.8 nM to
328.6 � 16.2 nM after treatment with 100 nM UCL
(P 	 0.05). The application of 6 �M AZ to islets in-
creased the frequency of islet [Ca2�]i oscillations and
the mean [Ca2�]i level from 288.4 � 18.3 to 322.6 �
23.1 nM (n 
 7, P 	 0.05).

Blocking Kslow Potentiates Mouse Islet Insulin Secretion in a 
Glucose-dependent Manner
The increase in [Ca2�]i we observed following Kslow

blockade suggested that glucose-dependent insulin se-

cretion might also be increased by UCL 1684 or AZ.
While 10 and 100 nM UCL 1684 had no effect on basal
insulin secretion (measured in 2.8 mM glucose (P �
0.05), these concentrations increased glucose-stimu-
lated insulin secretion from 722.3 � 42.7 to 919.4 �
54.2 or 1096.0 � 54.2 pg · l�1 · islet�1 · h�1

, respectively
(Fig. 7 A, P 	 0.01, n 
 8).

AZ also potentiated glucose-dependent insulin secre-
tion as shown in Fig. 7 B. Thus, basal insulin release in
2.8 mM glucose was 264.7 � 19.7 pg · l�1 · islet�1 · h�1.
When glucose concentration was increased to 11.1 mM,
insulin release increased to 722.3 � 42.7 pg · l�1 ·
islet�1 · h�1. The addition of 3.0 or 10.0 �M AZ signifi-
cantly enhanced islet insulin release by 34.8% and
68.4%, respectively (Fig. 7 B, P	 0.01, n 
 8).

The similar potentiating effects of these two struc-
turally unrelated Kslow blockers suggest that targeting
this channel may represent a new pharmacological
approach for increasing insulin release from the pan-
creas without also producing hypoglycemia (MacLeod,
2004). Thus, blockers of Kslow such as AZ and UCL 1684
could work in a similar manner to the KATP channel-
blocking sulfonylureas, as both drug types block a rest-
ing K� conductance, resulting in cell membrane depo-
larization, increased Ca2� uptake, and increased insulin
exocytosis (Ferner and Neil, 1988; Aguilar-Bryan et al.,
1995; Philipson and Steiner, 1995). However, in the
case of Kslow blockers, insulin secretion would only be

Figure 6. (A) Islets exposed to 6 �M AZ in 11.1 mM glucose exhibited depolarized silent phase potential and increased bursting. Top,
response of a medium bursting islet to AZ; bottom, response of a slow bursting islet to AZ. Traces are representative of 14 islet recordings.
(B) UCL 1684 and AZ increase mean [Ca2�]i in mouse islets. The acute application of 100 nM UCL 1684 or 6 �M AZ to islets bathed in
11.1 mM glucose increased silent phase [Ca2�]i, while the peak levels appeared to be unchanged. The traces shown are representative
samples of 10 islets from UCL 1684 group and seven islets from AZ group. Dotted lines indicate the silent phase levels of [Ca2�]i.
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amplified when glucose was already elevated, reducing
the possibility of hypoglycemia, a drawback of the sulfo-
nylureas (Ferner and Neil, 1988). Kslow blockade is ex-
pected to require elevated glucose for it to be effective,
since �-cell depolarization due to KATP closure by glu-
cose must first occur for [Ca2�]i to rise sufficiently to
activate Kslow (Göpel et al., 1999; Goforth et al., 2002).
Under basal condition, [Ca2�]i would be too low to suf-
ficiently activate Kslow.

D I S C U S S I O N

SK Channels Mediate Kslow Current in Mouse �-Cells
While there is agreement in the field that Kslow is medi-
ated at least in part by a Ca2�-activated K� channel in
pancreatic �-cells, the specific channel involved has
been controversial. Thus, while the insensitivity of Kslow

to charybdotoxin, which blocks the large conductance
BK type KCa channels of �-cells (Kukuljan et al., 1991;
Li et al., 1999), specifically rules out mediation by
BK channels, SK mediation has been unclear because
apamin, a bee venom peptide that selectively blocks SK
but not BK channels, has yielded disparate results, with
one group reporting effects of the toxin on islet Ca2�

oscillations (Tamarina et al., 2003), while two other
groups reporting that Kslow current was insensitive to
apamin (Göpel et al., 1999; Goforth et al., 2002).

We thus considered other pharmacological agents in
an attempt to further clarify matters. The sensitivity
of Kslow current to the nonpeptide SK inhibitor UCL
1684, and its insensitivity to the IK(Ca) (or SK4) inhibi-
tor chlortrimazole (0.94 � 0.07 vs. 0.94 � 0.08 pA/pF,
n 
 10, P � 0.05) suggests that Kslow current is medi-
ated at least in part by SK channels similar to SK1, 2,
or 3, although the �-cell isoform involved must be
apamin insensitive.

Further evidence in favor of Kslow mediation by SK
channels was obtained with AZ, which readily blocked
Kslow current and which up to now has been discussed
as a selective inhibitor of the slow delayed rectifier cur-
rent in heart, IKs (Busch et al., 1994). We ruled out that
islet Kslow current included a contribution from a car-
diac-like IKs, as AZ-blockable Kslow current persisted in
islets obtained from KCNQ1 or KCNE1 null mice lack-
ing IKs, which in cardiac cells is formed by the coexpres-
sion of KCNQ1 and KCNE1 subunits (Barhanin et al.,
1996). Moreover, showing that AZ can directly block
heterologously expressed hSK3 channels in HEK cells
suggests SK mediation of Kslow current. However, the
apamin sensitivity of hSK3 suggests it is unlikely that
SK3 is the isoform that mediates Kslow in �-cells (Tama-
rina et al., 2003). The fact that the extended current–
voltage curves we observed in some native �-cells had
the pronounced inward rectification expected of SK
currents (unpublished data; Soh and Park, 2001) fur-
ther supports the hypothesis that SK channels mediate
Kslow in �-cells.

We also briefly considered the possibility that apa-
min-insensitive KCa channels such as those that mediate
the slow afterhyperpolarization of CNS neurons (sAHP;
Vogalis et al., 2003; Stocker et al., 2004) might be in-
volved in mediating �-cell Kslow current. However, this
seems to be unlikely given that the neuronal sAHP,
which is believed to be mediated by a non-SK type iso-
form is insensitive to the UCL compounds (Shah et al.,
2001; Bond et al., 2004). Furthermore, the kinetic
properties of sAHP would appear to be slower than for
�-cell Kslow current (Vogalis et al., 2003).

What SK Isoforms Mediate Kslow?
While it might appear paradoxical that Kslow could be
mediated by an apamin-insensitive SK isoform, recent
studies have revealed that alternative splicing of the SK

Figure 7. (A) UCL 1684 enhanced glucose-dependent insulin secretion from mouse islets. Islets were treated with different concentrations
of UCL 1684 for 1 h using either basal (2.8 mM) or high (11.1 mM) glucose. Data shown were collected from four mice. ***, P 	 0.001 vs.
2.8 mM glucose group. ##, P 	 0.01; ###, P 	 0.001 vs. untreated 11.1 mM glucose group. (B) AZ also increased insulin release from islets
in 11.1 mM glucose. Data shown were obtained using islets isolated from four different mice. ***, P 	 0.001 vs. 2.8 mM glucose group. ##,
P 	 0.01; ###, P 	 0.001 vs. untreated 11.1 mM glucose group.
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gene can yield splice variants that are relatively insensi-
tive to apamin, as we found for Kslow (e.g., SK3_ex4;
Wittekindt et al., 2004), and that combining different
SK subunits in a heteromultimeric assembly can modify
SK channel pharmacology (Benton et al., 2003; Mon-
aghan et al., 2004; D’hoedt et al., 2004). While we can-
not at present select among these possibilities, further
work is required to clone and sequence the �-cell–spe-
cific SK isoforms. A recent paper reported that SK1–4
are all expressed in islet tissue and �-cell lines, al-
though whether these isoforms are �-cell specific was
not determined (Tamarina et al., 2003).

The Effects of Selective Kslow Blockers Suggests that Kslow 
Participates in Islet Bursting
We found that either UCL 1684 or AZ inhibited Kslow

current in a dose-dependent manner in mouse �-cells,
leading to increased membrane depolarization, action
potential firing, and, concomitantly, elevated [Ca2�]i

and insulin secretion. These findings broadly support
the hypothesis that Kslow plays an important role in the
genesis of islet electrical activity, as has been proposed
(Göpel et al., 1999; Goforth et al., 2002) but not previ-
ously demonstrated experimentally. We found that Kslow

activation contributes to �-cell membrane potential
during the silent phase of bursting, and may play a role
in terminating the cyclic bursts of Ca2�-dependent ac-
tion potentials that drive Ca2� influx and insulin secre-
tion in mouse islets. Similar findings were observed in
neurons following inhibition of slow Ca2�-activated cur-
rents like sAHP (El Manira et al., 1994; Ghamari-Lan-
groudi and Bourque, 2004). While the activation and
deactivation kinetics of Kslow are relatively brief given
the more prolonged nature of electrical bursting ob-
served in islets, modeling studies have previously shown
that fast Kslow may interact with slower process in the
�-cells (e.g., KATP via ATP/ADP changes; ER Ca2�) to
mediate slower modes of electrical activity (Bertram et
al., 2000; Bertram and Sherman, 2004a,b). Kslow may
also display slower deactivation kinetics during more
prolonged phases of Ca2� influx than provided experi-
mentally here. Alternatively, we cannot rule out that in
situ the kinetics of Kslow current are slower than we ob-
served in the isolated �-cells.

The Development of Novel Drugs To Block Kslow Could 
Represent a New Way To Increase Glucose-dependent 
Insulin Secretion in Diabetic Patients without also Causing 
Hypoglycemia
There is currently much interest in the islet field in in-
vestigating novel targets for drugs that might increase
insulin secretion in a glucose-dependent manner (Mac-
Leod, 2004). Our work suggests that inhibition of Kslow

could be useful clinically, as Kslow appears to help con-
trol Ca2� influx into the �-cell when glucose is elevated

and that its inhibitors significantly enhance insulin se-
cretion. Targeting Kslow pharmacologically may thus
provide a novel, glucose-sensitive target for a new gen-
eration of antidiabetic agents.
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