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Abstract

Background: In recent years, neuroimaging has been increasingly used as an objective method for the diagnosis of
Parkinson’s disease (PD). Most previous studies were based on invasive imaging modalities or on a single modality which
was not an ideal diagnostic tool. In this study, we developed a non-invasive technology intended for use in the diagnosis of
early PD by integrating the advantages of various modals.

Materials and Methods: Nineteen early PD patients and twenty-seven normal volunteers participated in this study. For each
subject, we collected resting-state functional magnetic resonance imaging (rsfMRI) and structural images. For the rsfMRI
images, we extracted the characteristics at three different levels: ALFF (amplitude of low-frequency fluctuations), ReHo
(regional homogeneity) and RFCS (regional functional connectivity strength). For the structural images, we extracted the
volume characteristics from the gray matter (GM), the white matter (WM) and the cerebrospinal fluid (CSF). A two-sample t-
test was used for the feature selection, and then the remaining features were fused for classification. Finally a classifier for
early PD patients and normal control subjects was identified from support vector machine training. The performance of the
classifier was evaluated using the leave-one-out cross-validation method.

Results: Using the proposed methods to classify the data set, good results (accuracy = 86.96%, sensitivity = 78.95%,
specificity = 92.59%) were obtained.

Conclusions: This method demonstrates a promising diagnosis performance by the integration of information from a
variety of imaging modalities, and it shows potential for improving the clinical diagnosis and treatment of PD.
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Introduction

Parkinson’s disease (PD) is the most common movement

disorder and the second most common neurodegenerative disease

[1]. For early PD patients, the most obvious symptoms mainly

include resting tremor, bradykinesia and rigidity [2]. In many

patients, subsequent cognitive and behavioral problems may arise,

with dementia commonly occurring in the advanced stages of the

disease [3]. Current diagnostic criteria for PD rely on the presence

of motor signs. The patient is always clearly diagnosed with PD at

the advanced stage. Moreover, any neuroprotective therapy

initiated at such a late stage may have fewer substantial effects

on the disease progression. Thus, it is crucial to find out some valid

and objective biomarkers to distinguish early PD patients from the

healthy population.

Over the past two decades, various objective measures have

been adopted for the differential diagnosis of PD, including a

range of olfactory, electrophysiological and neuropsychological

tests [4]. However, the most developed area in providing an

objective assessment is neuroimaging [5]. Many imaging methods

have been employed for the diagnosis of PD, the most common

being positron emission tomography( PET) and single-photon

emission computed tomography (SPECT) [5]. These two imaging

techniques use a variety of radioactive tracers to quantitatively

assess the areas of brain blood flow, glucose metabolism and brain

pharmacology to identify markers of PD. Several studies have

demonstrated that these two methods are powerful tools for the

diagnosis of PD [6,7]; however, due to their invasiveness and high

cost, there is a need for more inexpensive alternative techniques

for early diagnosis of PD.

Recently, resting-state functional magnetic resonance imaging

(rsfMRI), a non-invasive technology with high spatial and

temporal resolution, has been used to study abnormal brain

function in a variety of neuropsychiatric diseases. Compared with

the healthy controls, regional homogeneity (ReHo) in the putamen

and cerebellum differed significantly and it was correlated with the

PLOS ONE | www.plosone.org 1 November 2012 | Volume 7 | Issue 11 | e47714



Unified Parkinson’s Disease Rating Scale (UPDRS) in PD [8]. In

addition, another technique (voxel-based morphometry) has

enabled the analysis of structural brain changes from the

perspective of the whole brain. Moreover, some studies have

found decreased GM volume in the frontal, temporal and parietal

brain areas, hippocampus and anterior cingulate cortex [9,10,11].

Regression analyses revealed a negative linear relationship

between the total UPDRS-III scores and the regional GM volume

in the left supplementary motor area, left primary motor cortex,

right ventral premotor cortex and bilateral dorsal premotor cortex

in idiopathic PD patients [12]. Taken together, these studies have

shown that the structural and functional changes observed in PD

patients significantly correlate with the severity of the disease.

Presumably, we would be able to distinguish early PD patients

from a healthy population if we could efficiently integrate the

structural and functional information.

To test our hypothesis, we first extracted multi-level character-

istics (ALFF, ReHo and RFCS) from the fMRI data and extracted

the GM, WM and CSF volume from the structural data. A feature

selection algorithm was performed to select the most discrimina-

tive features, which were then fused together. Finally, based on the

fused features, we used a machine learning technique to construct

a classifier for the early diagnosis of PD (Fig. 1).

Materials and Methods

Subjects
Nineteen right-handed patients and twenty-seven normal

volunteers participated in this study after signing an informed

consent form. The age and gender differences between the two

groups were tested using a two-sample t-test and a x2 test,

respectively, and no significant differences were observed between

the groups (p.0.05). The patients were recruited from the

Department of Neurology, and the normal volunteers were

recruited from Zhejiang University and the communities. The

study was approved by the Medical Ethics Committee of the

Second Affiliated Hospital, Zhejiang University School of Med-

icine.

The diagnosis of PD was based on the medical history,

neurological examination, response to dopaminergic drugs, and

the exclusion of other neuropsychiatric diseases. Anti-parkinsonian

medicine was terminated at least 12 hours prior to the imaging

scans. The scores obtained from the Unified Parkinson’s Disease

Rating Scale (UPDRS) and the Hoehn and Yahr Scale (H&Y)

were assessed for all subjects prior to scanning. All subjects were

diagnosed at an early stage (H&Y I-II). Table 1 lists the clinical

data for the PD group.

Data acquisition
All data were acquired using a 3.0 T GE Signa MR scanner

equipped with a birdcage coil. Foam padding and earplugs were

used to limit head movement and reduce scanner noise for the

subject. During the data acquisition, the subjects were instructed

to keep their eyes closed, but not to fall asleep, and to relax their

minds and move as little as possible. The functional images were

collected axially using an echo-planar imaging (EPI) sequence.

The imaging parameters were as follows: repetition

time = 2000 ms; echo time = 30 ms; slices = 25; thickness = 5 mm;

gap = 1 mm; field of view = 2406240 mm2; resolution = 64664;

and flip angle = 80u. The scan lasted for 390 s. Three-dimensional

axial Fast Spoiled Gradient Recalled (3D-FSGPR) images were

collected using the following parameters: TR/TE = 5100 ms/

1.2 ms; FOV = 24624 cm; matrix = 2566256; slices = 124; thick-

ness = 1.2 mm; and space = 0 mm.

Data preprocessing
All functional imaging data preprocessing was performed using

the Statistical Parametric Mapping (SPM8, http://

Figure 1. A flowchart of the multi-model method for classifi-
cation.
doi:10.1371/journal.pone.0047714.g001

Table 1. Clinical details of all patients.

No. Gender Age
Disease
duration UPDRS H&Y

1 F 60 24 11 1.5

2 M 57 24 36 2

3 F 68 9 17 2

4 F 48 12 22 1

5 F 72 18 23 1

6 F 50 6 18 1

7 F 54 36 33 1.5

8 M 52 36 26 2

9 F 47 12 32 2

10 M 38 12 27 1.5

11 M 54 12 26 1

12 M 65 6 27 2

13 F 44 12 9 1

14 F 71 4 23 1

15 F 62 6 11 1

16 M 58 10 39 2

17 M 59 12 33 2

18 F 47 24 50 2

19 M 57 24 12 1

Mean(SD) 55.9(9.2) 15.7(9.7) 25(10.7)

Abbreviations: UPDRS, Unified Parkinson’s disease Rating Scale; H&Y, Hoehn
and Yahr Scale; M, male; F, female.
doi:10.1371/journal.pone.0047714.t001
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www.fil.ion.ucl.ac.uk/spm) and Data Processing Assistant for

Resting-State fMRI (DPARSF) programs [13]. The ALFF and

ReHo were calculated using the Resting-State fMRI Data Analysis

Toolkit (REST, http://rest.restfmri.net) and the RFCS calculation

program developed by our group (MATLAB R2009a).

Preprocessing of the rsfMRI data was performed as follows. We

discarded the first 10 volumes, taking into account factors that

affect the instability of the initial MR signals and the adaptation of

the subjects to the circumstances. The remaining images were then

corrected for the within-scan acquisition time differences between

slices and further realigned to the first volume to correct for

interscan head motions. Individuals with an estimated maximum

displacement in any direction greater than 2 mm or a head

rotation greater than 1u were discarded to minimize movement

artifacts in this study. The motion-corrected functional volumes

were then spatially normalized to the MNI template and re-

sampled into 2-mm isotropic voxels [14]. Next, temporal band-

pass filtering (0.01 Hz–0.1 Hz) was performed on the time series

for each voxel to reduce the effect of the low-frequency drifts and

high-frequency physiological noise [15]. We then calculated the

ALFF, ReHo and RFCS as described below.

Structural images were preprocessed using SPM8. We first

implemented bias correction for all of the images [14]. Segmen-

tation and normalization were performed using the default tissue

Table 2. Regions of interest (ROIs) included in the AAL-atlas.

Regions Abbreviations Regions Abbreviations

Superior frontal gyrus, dorsolateral SFGdor Middle frontal gyrus, orbital part ORBmid

Middle frontal gyrus MFG Inferior frontal gyrus, orbital part ORBinf

Inferior frontal gyrus, opercular part IFGoperc Superior frontal gyrus, medial orbital ORBsupmed

Inferior frontal gyrus, triangular part IFGtriang Gyrus rectus REC

Rolandic operculum ROL Insula INS

Supplementary motor area SMA Anterior cingulate and paracingulate gyri ACG

Superior frontal gyrus, medial SFGmed Median cingulate and paracingulate gyri DCG

Cuneus CUN Posterior cingulate gyrus PCG

Lingual gyrus LING Parahippocampal gyrus PHG

Superior occipital gyrus SOG Temporal pole: superior temporal gyrus TPOsup

Middle occipital gyrus MOG Temporal pole: middle temporal gyrus TPOmid

Inferior occipital gyrus IOG Olfactory cortex OLF

Fusiform gyrus FFG Hippocampus HIP

Superior parietal gyrus SPG Amygdala AMYG

Inferior parietal, but supramarginal
and angular gyri

IPL Caudate nucleus CAU

Supramarginal gyrus SMG Lenticular nucleus, putamen PUT

Angular gyrus ANG Lenticular nucleus, pallidum PAL

Precuneus PCUN Thalamus THA

Paracentral lobule PCL Precentral gyrus PreCG

Superior temporal gyrus STG Calcarine fissure and surrounding cortex CAL

Middle temporal gyrus MTG Postcentral gyrus PoCG

Inferior temporal gyrus ITG Heschl gyrus HES

Superior frontal gyrus, orbital part ORBsup Vermis_10 Ver10

Cerebelum_Crus1 CERcr1 Cerebelum_Crus2 CERcr2

Cerebelum_3 CER3 Cerebelum_4_5 CER45

Cerebelum_6 CER6 Cerebelum_7b CER7

Cerebelum_8 CER8 Cerebelum_9 CER9

Cerebelum_10 CER10 Vermis_1_2 Ver1_2

Vermis_3 Ver3 Vermis_4_5 Ver4_5

Vermis_6 Ver6 Vermis_7 Ver7

Vermis_8 Ver8 Vermis_9 Ver9

doi:10.1371/journal.pone.0047714.t002

Table 3. Classification performance of the single metrics and
multi-modal combinations.

Metrics Accuracy Sensitivity Specificity

All modal combination 86.96% 78.95% 92.59%

ReHo+ALFF+RFCS 73.91% 57.89% 85.19%

ALFF+RFCS 67.39% 47.37% 81.48%

GM+WM+CSF 80.43% 84.21% 77.78%

doi:10.1371/journal.pone.0047714.t003
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probability maps. All the images were then re-sampled to an

isotropic resolution of 3 mm at the end of the normalization and

segmentation process to maintain a constant resolution across all

of the subjects. All images were modulated so that the total

amount of tissue density in the modulated image remained similar

to that of the original image. The modulated images then

underwent spatial smoothing by a 10-mm full width at half

maximum (FWHM) Gaussian kernel.

Feature extraction
ALFF is an effective indicator of intrinsic or spontaneous neural

activity in the human brain [16]. We calculated the ALFF as

follows. The time series of each voxel was first converted into the

frequency domain using a Fast Fourier Transform, and the power

spectrum was then obtained. The square root was calculated at

each frequency of the power spectrum, and the ALFF was

calculated as the mean of this square root [16]. To reduce the

global effects of variability in all subjects, the ALFF of each voxel

was divided by the global mean value. Thus, an ALFF map was

obtained for each subject. The ALFF map was then partitioned

into 116 regions of interest (ROIs) according to the Automated

Anatomical Labeling (AAL) atlas (Table 2) [17], and the mean

ALFF of each region was calculated by averaging the ALFF values

within that region. The ALFF feature of one subject consisted of

the mean ALFF of every region.

The ReHo measures the functional synchronization of a given

voxel with its nearest neighbors and can be used to evaluate brain

activities in the resting-state [18]. The ReHo of one time series is

defined as the Kendall’s coefficient of the time series of a given

voxel and those of its nearest neighbors [19]. The number of

neighboring voxels is 26. To reduce the global effects of variability

in all of the subjects, the ReHo of each voxel was divided by the

global mean ReHo value for each subject. Thus, a ReHo map was

obtained for each subject. The individual ReHo map was then

partitioned into 116 ROIs using the AAL template, and the mean

ReHo of each region was calculated by the average of the ReHo

values within that region. The ReHo feature of one subject

consisted of the mean ReHo of every region.

The RFCS measures the average correlation strength of a given

region compared with all of the other regions. We first regressed

out the effects of head motion and the whole brain averaged signal

Table 4. The number of features retained in the multi-model
method per fold.

Fold ReHo ALFF RFCS GM WM CSF

1 1 5 6 4 21 22

2 2 2 7 4 12 23

3 2 2 5 5 18 22

4 6 6 8 5 14 23

5 2 2 6 4 9 18

6 1 2 7 4 13 19

7 2 2 4 3 12 22

8 2 1 5 3 12 21

9 1 1 6 5 17 22

10 4 4 4 7 8 20

11 1 3 3 4 10 23

12 1 2 6 3 10 19

13 2 5 5 4 15 23

14 1 6 6 4 21 19

15 2 3 2 5 20 26

16 2 2 7 3 8 22

17 2 1 3 4 9 20

18 2 1 4 5 8 23

19 6 4 5 5 4 20

20 3 4 5 4 13 22

21 2 2 8 4 12 19

22 2 4 8 3 11 20

23 1 1 3 4 14 20

24 2 1 6 5 10 19

25 1 1 3 3 13 19

26 2 2 8 3 9 21

27 2 3 5 6 9 23

28 2 3 6 4 9 21

29 2 3 4 5 14 21

30 3 4 5 5 15 24

31 4 4 4 5 19 25

32 1 2 8 5 12 23

33 2 1 4 4 10 24

34 3 5 5 4 14 19

35 2 2 6 4 13 20

36 1 1 3 5 17 22

37 3 2 7 4 15 21

38 3 3 6 6 12 23

39 3 4 5 5 16 21

40 2 5 4 5 16 26

41 1 3 5 5 12 21

42 2 3 5 6 14 25

43 2 5 6 5 11 19

44 1 2 6 4 10 20

45 2 5 5 6 9 21

46 2 1 3 4 12 19

doi:10.1371/journal.pone.0047714.t004

Figure 2. Classification performance of the multi-model
method. The ROC curve of the classifier. The area under the ROC
curve was 0.951.
doi:10.1371/journal.pone.0047714.g002
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[20]. The individual volume was first partitioned into 116 ROIs

using the AAL atlas, and the mean time series of each region was

then extracted by averaging the time series within that region.

Each subject was assigned a 1166116 correlation matrix. This

matrix was calculated using the Pearson correlation coefficients

between the time series of all the potential pairs of regions. We

then measured the RFCS using a method described in our

previous study [21]. The RFCS of region i was defined as:

S(i)~
1

N{1

X

j=i

DRij D,

where Rij is the correlation coefficient between region i and region

j and N is the number of regions.

As a result of preprocessing, the volume of each subject was

divided into three images: the GM image, the WM image and the

CSF image. Similar to the functional maps, the individual

modulated images were first partitioned into 116 ROIs using the

AAL atlas, and the mean value of each region was then extracted

by averaging the values of all of the voxels within that region.

Thus, we extracted 116 features separately from the GM, WM

and CSF maps for each subject.

Feature selection
Because the extracted features included considerable decreasing

classification accuracy and the generalization of ‘‘noise’’, we used

the feature selection algorithm to select features with the most

discriminative ability. In this study, the feature selection method

was used to compare the feature values of the various brain regions

between the two subject groups. Features with significant

differences (P,0.05, uncorrected) between the two groups were

selected. Two-sample t-tests were then performed to determine the

features that showed differences between the PD and normal

control (NC) groups. We also used a nonparametric rank-sum test

for the feature selection and obtained similar results. The

remaining feature values for each subject were then concatenated

into a single vector.

Classification algorithm for PD and NC
In this study, we used supervised learning methods to construct

the classifier. Briefly, a supervised machine-learning algorithm was

‘‘trained’’ to produce a desired output from a set of input (training)

data. The supervised machine learning algorithm used in this

study is was the support vector machine (SVM) [22]. The

algorithm was developed using MATLAB (The Math Works,

Natwick, MA) and LIBSVM (http://www.csie.ntu.edu.tw/̃ cjlin/

libsvm/). The leave-one-out cross-validation (LOOCV) method

was used to estimate the performance of the classifier. To train the

SVM classifier, the selection of a penalty parameter C and kernel

function parameters G were very important. The grid search was

performed over the range C = [2210, 229... 29, 210] and G =

[2210, 229,...., 29, 210]. The optimized C and G were then used to

create the optimized SVM model. A hyperbolic tangent function

was selected as the kernel function in this study. The output of this

model was an abnormality index-score.

Results

We used the LOOCV to estimate the generalization ability of

the classifier. Our multi-model method achieves a classification

accuracy of 86.96%, with a sensitivity of 78.95% and a specificity

of 92.59%. These results were better than the values obtained

using the single-model feature combinations. The classification

performance of the combined features is listed in Table 3. We also

list the number of features retained using this method per fold in

Table 4.

Using each subject’s abnormality index-score as a threshold, the

performance of the receiver operating characteristics (ROC) curve

is shown in Fig. 2. The area under the ROC curve (AUC) of the

Figure 3. Scatter plot of the abnormality index-scores of all subjects. Positive scores represent subjects classified in the PD group and
negative scores represent subjects classified in the NC group.
doi:10.1371/journal.pone.0047714.g003
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proposed method is 0.951, which indicates excellent diagnostic

power. Figure 3 is scatter plot of the abnormality index-scores of

all subjects.

Table 5 lists the brain regions which have been selected as

features more than 23 times (Fig. 3). Compared to the NCs, the

PD patients showed significant ReHo value decreases in the

Figure 4. The brain regions which have been selected as features more than 23 times. (A) Selected regions with ReHo. (B) Selected regions
with ALFF. (C) Selected regions with GM. (D) Selected regions with RFCS. (E) Selected regions with WM. (F) Selected regions with CSF.
doi:10.1371/journal.pone.0047714.g004
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bilateral ORBmid, ALFF decreases in the left ROL and significant

RFCS increases in the left PHG, left ANG and right MTG.

Moreover, the volume of the GM in the left PCL showed

significant decreases, and the left PreCG and the bilateral PCG

showed a significant increase in GM volume in the PD group.

Brain regions showing WM volume changes were mainly located

in the frontal and temporal lobes. Additional details are described

in Table 5 and Figure 4.

Discussion

A clinical pathological study showed that the diagnostic

accuracy for idiopathic PD (IPD) was approximately 75% and

that the remaining 25% accounted for those diagnosed with IPD

who exhibited progressive supranuclear palsy (PSP), multiple

system atrophy (MSA), Alzheimer’s disease, or basal ganglia

vascular disease post mortem [23]. Analysis based on neuroimag-

ing (PET or SPECT) can improve this diagnostic accuracy to

approximately 90% for PD patients [6,7,24]. However, these

imaging modalities are invasive and are not suitable as routine

diagnostic tools. In the present study, using a combination of both

functional and structural imaging technology, we constructed a

non-invasive, multi-modal magnetic resonance imaging algorithm

framework for the diagnosis of early PD. The study provides

evidence that the method can be developed to correctly

differentiate between PD and NC.

Compared with a single modality, the advantage of using

multiple modalities is to extract more features (effective features).

In this study, machine learning methods are used to construct

classifier. Theoretically speaking, multiple modalities method

adopts different features as inputs; these inputs respectively reflect

different aspects of samples. We believe that this strategy of feature

selection for issue classification reflects more profiles of different

classes and will be able to obtain more accurate solution. In fact,

my results show that the performance of classifier based on single

modality is lower than the multi-modal method classifier (see

Table 3). There were two modalities to be used: one was structural

imaging, the other was functional imaging. For the rsfMRI images,

we extract features from three different perspectives: ALFF, ReHo

and RFCS. ALFF has been proven to be a effective tool for

evaluation of PD [25,26]. ReHo in cerebellum was positively

correlated with UPDRS [8]. Effective connectivity between

cerebellum and frontal lobe was negative correlated with UPDRS

[27]. It shows that they have different perspectives; the informa-

tion obtained is not the same. Because we want to extract useful

information as much as possible, all three indicators are used.

An important purpose of this study is to find effective biological

indicators which can represent differences between the early PD

and NC. In recent years, in pattern recognition based neuroim-

aging, structural images were often used to diagnose neuropsy-

chiatry disease, such as Alzheimer’s disease [28,29,30] , mild

cognitive impairment [31,32], Huntington’s disease [33] and

schizophrenia [34]. But few studies have reported diagnosis of PD

according to the structural images. The main reason may be that

brain structure changes in PD patients is still a controversial issue.

Some studies showed there was no structural difference between

PD and NC [35,36] and others showed PD patients had atrophy

in brain stem [37],frontal gyrus [38,39], temporal gyrus [40] and

insula [38,40]. There are many reasons for this result. The most

likely reason is that the VBM method is voxel-based and it can not

detect changes in the structure of the brain regions. Thus, we used

a template-based approach to find structural changes of the

various functional areas of the PD patients. From the results, some

functional areas do occur structural changes which may reflect the

physiological changes of PD. We found the volume of precentral

gyrus was increased, consisted with one previous study [41]. Some

studies have showed an increased activation in precentral gyrus in

PD [42,43]. Further studies demonstrated that the functional

connectivity of precentral gyrus was increased in motor network in

PD [44,45]. The strengthened functional connectivity may also

reflect a facet of the primary pathophysiology of PD, due to an

inability to inhibit contextually inappropriate circuits [45,46].

Through feature selection, we selected brain regions with the

most discriminative power between PD and NC subjects. These

results provided some valuable clues for the early diagnosis of PD.

For example, we found that the ReHo of the bilateral ORBmid

had declined, which is consistent with the findings of previous

studies [8]. The prefrontal cortex is a part of the associative circuit

in the striatal-thalamo-cortical loops [47]. One previous study has

shown that cognitive decline in PD is related to a reduced 18F-

fluorodopa uptake in the associative circuit [48]. Thus, the

assessment of both the motor and non-motor symptoms may be

important for the early diagnosis of PD.

Our research used a template-based approach to extract the

features, and we did not use the traditional region of interest (ROI)

method for three main reasons. First, several studies have shown

that functional changes in PD patients–not only activity changes in

several brain areas [8] but also higher levels of change, such as

functional connectivity changes [44] or brain network changes

[21]–may be effective biological markers to identify PD patholog-

ical changes. Thus, the ROI method is not appropriate for the

proper qualification of these changes. Second, based on previous

fMRI studies [8,43,49,50], we found conflicting results regarding

changes in the activities of some brain regions. Thus, it is difficult

Table 5. The brain regions which have been selected as
features more than 23 times.

Type Region P-value T-value

ReHo ORBmid_L 0.0281 22.2710

ORBmid_R 0.0092 22.7258

ALFF ROL_L 0.0121 22.6164

RFCS PHG_L 0.0295 2.2504

ANG_L 0.0244 2.3316

MTG_R 0.0044 3.0034

GM PreCG_L 0.0297 2.2469

PCG_L 0.0166 2.4896

PCG_R 0.0071 2.8237

PCL_L 0.0273 22.2825

WM PreCG_R 0.0044 3.0050

ORBinf_R 0.0137 2.5674

ROL_L 0.0383 2.1359

OLF_R 0.0415 2.1003

HIP_R 0.0332 2.1990

AMYG_R 0.0290 2.2580

PoCG_L 0.0216 2.3826

CAU_L 0.0174 2.4709

CER3_L 0.0163 2.4989

Ver1_2 0.0280 2.2719

A positive t-value represents increased values in the PD group. Abbreviations: R,
right; L left.
doi:10.1371/journal.pone.0047714.t005
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to define brain regions that truly represent pathological changes in

PD. Third, because we want to build the automatic diagnosis

system, identification of ROI required human intervention and

therefore not suitable for use in this method.

Two brain templates were selected: the 116-brain regions

template and the 90-brain regions template. The difference

between the two templates was that the former contained 26

cerebellar regions. One previous study showed that the ReHo of

the cerebellum in PD patients increased in the resting-state [8].

Several other studies showed that the functional connectivity [44]

and effective connectivity [27] of the cerebellum increased when

the patient performed a movement task. In addition, it has been

proposed that hyperactivation of the cerebellum in PD patients is a

functional compensation for a defective basal ganglia [51,52,53].

Thus, we used the template of 116 brain regions to extract features

in this study.

There are several areas in need of improvement in this study.

First, we used a linear regression method to reduce the effects of

the low-frequency drifts and the high-frequency physiological

noise; however, this was not the most effective approach. In future

studies, these physiological effects should be estimated and

removed by simultaneously recording the respiratory and cardiac

cycles during the data acquisition process. Second, although we

used both structural MRI and resting fMRI data, there are also

other modalities (e.g., diffusion tensor imaging) that may be used

to further improve the classification performance. DTI has been

suggested as a potential method for diagnosis of PD [54]. We also

use MNI template to extract FA features and combine it with

other features. It doesn’t improve the final classification results.

The probable reason is that,due to the impact of registration error,

extraction of effective DTI features by my method becomes a very

difficult thing. Further work is to develop new technique to extract

DTI features. Third; we used the AAL atlas to divide the brain

into 116 ROIs. Other structural [55] and functional [56,57] brain

atlases may also be used, as different segmentation methods may

generate different results. In fact, several recent studies have

demonstrated that the connectivity patterns of brain networks can

be affected by different parcellation atlases [57,58]. Future studies

should apply our method to other brain atlases. Fourth, because a

small sample (46 subjects in total) was used in this study, the

obtained classifier is specific to the current dataset and may not be

applicable to other datasets. In the future, we would like to use a

larger dataset to determine the generalizability of this method.

Conclusions
In this study, we developed a method used to distinguish

patients with early PD from NCs using a combination of multi-

modal imaging and multi-level measurements. The discriminative

power of this method was very high, yielding an accuracy of

86.96%. This promising classification power suggests that this

method may provide a non-invasive approach that may improve

the clinical diagnosis of early PD.
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